
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Secure File Encryption using AES with Password Protection

Praveen Hebbal1, Gopinath Ramaje1, Prajwal Biradar1, Pavan Kumar R1, Prof. Deepika Dash*

 1BE students, Dept. of Computer Science and Engineering, R V College of Engineering
*Assistant Professor, Dept. of Computer Science and Engineering, R V College of Engineering

Abstract—In today’s digital age, the importance of data con-
fidentiality and integrity cannot be overstated. With the ever-
growing reliance on cloud storage, file sharing, and personal
computing, protecting sensitive information from unauthorized
access is critical. This paper introduces a file encryption system
that leverages the Advanced Encryption Standard (AES) algo-
rithm combined with password-based authentication to safeguard
user files. Developed using Python, the tool offers a graphical user
interface (GUI) for easy interaction, enabling users to encrypt or
decrypt files using a user-specified password. The system hashes
the password to derive a secure encryption key, ensuring that the
key is never stored or transmitted in plaintext. Through extensive
testing, the application demonstrates robust performance across
a range of file types and sizes, offering a secure yet accessible
solution for everyday data protection needs.

Index Terms—Cryptography, AES, File Encryption, Python,
Password Protection, Data Security, GUI.

I. INTRODUCTION

In today’s digital landscape, data breaches, unauthorized

access, and identity theft have become common threats to

personal and organizational information. With files being reg-

ularly stored on local drives, transferred over networks, or up-

loaded to cloud services, there is an urgent need to secure them

from unauthorized access. Traditional file protection methods

like hidden folders or operating system-level access control

are often insufficient against skilled adversaries or malicious

software. Consequently, cryptographic techniques—especially

encryption—are now widely adopted for securing digital data.

Encryption converts readable data (plaintext) into unread-

able ciphertext, ensuring that only those possessing the cor-

rect key can recover the original content. Among various

cryptographic algorithms, the Advanced Encryption Standard

(AES) is globally accepted for its speed and strength. It

is a symmetric block cipher, adopted by the U.S. National

Institute of Standards and Technology (NIST), and is used

across various domains including finance, healthcare, defense,

and cloud computing. AES-256, the strongest variant, uses

a 256-bit key and provides high security with reasonable

performance.

However, many encryption tools in the market are either

commercial, complicated, or require high technical expertise

to operate. This creates a barrier for individuals or small

organizations that need quick and reliable file-level encryption

without deep cryptographic knowledge.

To address this, the proposed project presents a Python-

based file encryption system that uses AES-256 encryption

combined with password-derived keys through SHA-256 hash-

ing. The password is never stored and acts as a secure

mechanism for key generation. Furthermore, a Graphical User

Interface (GUI) using Tkinter simplifies the user experience,

enabling file selection, encryption, and decryption with mini-

mal effort.

This paper presents the system design, methodology, cryp-

tographic implementation, and experimental evaluation of the

application. The solution serves as a lightweight, open-source,

and secure tool that can be used for protecting personal or

academic files across Windows and Linux platforms.

II. RELATED WORK

File encryption has long been a core strategy in ensuring

data confidentiality, particularly in systems exposed to poten-

tial security breaches, theft, or unauthorized access. Various

tools and libraries—both commercial and open-source—have

emerged to address the need for secure file storage, each

offering different trade-offs in terms of usability, security, and

integration.

A. Commercial Encryption Tools

Several commercial-grade tools provide end-to-end file en-

cryption solutions. Notable among them is AxCrypt, which

offers AES-based encryption with cloud storage integration. It

supports both individual and team-based file sharing but locks

advanced features behind paid tiers. Similarly, BitLocker, inte-

grated into the Windows operating system, provides full-disk

encryption but lacks portability across non-Windows platforms

and requires system-level permissions for configuration.

Another example is VeraCrypt, an open-source successor

to TrueCrypt, which allows users to create encrypted file

containers or encrypt entire volumes. While it offers robust

protection, the tool is often seen as too complex for casual

users, requiring significant configuration and familiarity with

disk volumes and mount points.

Despite the strength of these tools, their complexity or

pricing structures limit accessibility—especially for students,

personal users, or lightweight scenarios where only individual

files need encryption.

B. Open-Source File Encryption Tools

Open-source file encryption tools such as GnuPG and Cryp-

tomator offer a high degree of transparency and customiza-

tion. GnuPG (GPG) is a widely used implementation of the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

OpenPGP standard and supports asymmetric encryption using

RSA and ECC algorithms. However, it is primarily command-

line based and intended for advanced users familiar with key

management concepts.

C. Password-Based Key Derivation and AES in Practice

The concept of password-derived encryption keys is com-

monly used to bridge the gap between user-friendliness and

cryptographic strength. Instead of managing complex keys,

users can rely on familiar passwords which are transformed

into cryptographically secure keys using hashing or Key

Derivation Functions (KDFs). Among these, SHA-256 is

widely accepted for its balance between performance and

security.

AES (Advanced Encryption Standard), particularly AES-

256, is a symmetric cipher known for resisting brute-force

attacks due to its large key space. It is extensively used in

encrypted messaging, cloud storage, and secured backups.

Academic studies and practical implementations have val-

idated AES’s resilience against known cryptanalytic meth-

ods. For example, the National Security Agency (NSA) has

approved AES-256 for encrypting classified documents, un-

derlining its relevance for both personal and governmental

security needs.

These tools, while powerful, do not often cater to end-users

looking for simple file-level encryption with password access

and an intuitive interface.

D. Gaps and Motivation

Despite the wide availability of encryption utilities, a sig-

nificant gap remains in the form of lightweight tools designed

specifically for individual file protection with simplicity and

accessibility in mind. Most existing solutions are geared

toward full-disk encryption or enterprise-level use, which often

brings unnecessary complexity for users with basic encryption

needs. These tools frequently require internet connectivity,

account registration, or integration with cloud services, making

them unsuitable for users who prefer offline control or minimal

setup. Moreover, while password-based encryption is a com-

mon feature, many applications store or manage encryption

keys in a way that may introduce security risks if not properly

handled.

In contrast, the proposed system addresses these shortcom-

ings by focusing on local file-level encryption with a self-

contained architecture. It uses AES-256 for robust data secu-

rity and derives encryption keys directly from user-provided

passwords using SHA-256 hashing, without storing any pass-

words or keys. The application is implemented entirely in

Python and features a graphical user interface built with Tkin-

ter, making it approachable for users with little to no technical

background. No internet access or user accounts are required,

and the tool operates entirely offline, preserving user autonomy

and privacy. By combining strong encryption practices with

simplicity and portability, this system is particularly well-

suited for students, educators, and small-scale users seeking

a secure yet user-friendly encryption solution.

III. METHODOLOGY

The architecture of the application consists of four primary

layers: the user interface layer, the password handling and

key derivation layer, the encryption engine, and the file in-

put/output (I/O) handler. These layers interact in a pipeline

manner, enabling users to encrypt or decrypt files with minimal

interaction.

The user initiates the process by selecting a file through the

graphical interface and entering a password. This password

is never stored or transmitted. Instead, it is converted into a

fixed-length 256-bit key using the SHA-256 hash function. The

resulting key is then passed to the AES encryption module,

which encrypts the file in Cipher Block Chaining (CBC) mode

using a randomly generated Initialization Vector (IV). The IV

is stored at the beginning of the encrypted file to facilitate

decryption. The file is then saved with a modified extension

indicating its encrypted state.

For decryption, the process is reversed. The system reads

the encrypted file, extracts the IV, and derives the encryption

key from the password using the same hashing process. If the

key is valid and the password matches, the file is successfully

decrypted and restored to its original form.

A. System Architecture

The architecture of the application consists of four primary

layers: the user interface layer, the password handling and

key derivation layer, the encryption engine, and the file in-

put/output (I/O) handler. These layers interact in a pipeline

manner, enabling users to encrypt or decrypt files with minimal

interaction.

Fig. 1. System Architecture Flowchart of the Encryption Application

The user initiates the process by selecting a file through the

graphical interface and entering a password. This password

is never stored or transmitted. Instead, it is converted into a

fixed-length 256-bit key using the SHA-256 hash function. The

resulting key is then passed to the AES encryption module,

which encrypts the file in Cipher Block Chaining (CBC) mode

using a randomly generated Initialization Vector (IV). The IV

is stored at the beginning of the encrypted file to facilitate

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

decryption. The file is then saved with a modified extension

indicating its encrypted state.

For decryption, the process is reversed. The system reads

the encrypted file, extracts the IV, and derives the encryption

key from the password using the same hashing process. If the

key is valid and the password matches, the file is successfully

decrypted and restored to its original form.

B. Password Handling and Key Derivation

To eliminate the need for explicit key management, the

system employs a password-based encryption approach. When

a user inputs a password, it is processed through the SHA-256

hashing algorithm, producing a 256-bit cryptographic key. This

method ensures that the key has sufficient entropy and unifor-

mity. As a one-way hash function, SHA-256 offers resistance

against brute-force and rainbow table attacks, enhancing the

security of the derived key.

Unlike simple password storage mechanisms, the system

never saves the password or the key on disk. This ensures that

even in the event of system compromise, sensitive key material

remains inaccessible. Additionally, the use of hashing for key

derivation ensures deterministic key generation, allowing the

same password to consistently produce the same encryption

key.

C. AES Encryption and Decryption Process

The encryption engine utilizes the Advanced Encryption

Standard (AES) with a 256-bit key in CBC mode. AES is

a symmetric-key algorithm that operates on fixed-size blocks

of plaintext.

applied to ensure that the plaintext length is a multiple of the

AES block size (16 bytes).

For decryption, the system reads the stored IV, re-derives

the key from the user’s password, and attempts to reverse the

encryption process. If the password is incorrect, the decryption

fails, and the user is notified. This prevents unauthorized

access and ensures that only those with the correct password

can retrieve the original file content.

D. Graphical User Interface (GUI)

To ensure accessibility for users without programming or

cyber security knowledge, the system includes a GUI devel-

oped using Python’s tkinter library. The interface provides

buttons for selecting files, entering passwords, and performing

encryption or decryption operations. Status messages and

prompts guide the user through each step, minimizing the

potential for errors.

The GUI abstracts the underlying cryptographic opera-

tions and file management processes, making the application

suitable for educational institutions, casual users, or small

organizations. The design emphasizes simplicity, with clearly

labeled controls and minimal dependencies.

E. File Handling and Output Management

Encrypted files are saved with a new extension (e.g., .enc)

to indicate their encrypted status. During encryption, original

files are preserved by default unless the user opts for over-

writing. The system ensures that temporary files or partial

outputs are securely handled and removed in the event of an

error or interruption. This prevents sensitive data from being

accidentally exposed through leftover or cached files.

The application also includes error handling routines to

detect invalid passwords, unsupported file types, or corrupted

files. This contributes to the overall robustness and reliability

of the tool.

Fig. 2. System Architecture Flowchart of the Encryption Application

In CBC mode, each block of plaintext is XORed with

the previous ciphertext block before being encrypted, which

prevents identical plaintext blocks from producing identical

ciphertext blocks.

A 16-byte Initialization Vector (IV) is randomly generated

for each encryption session. This IV is crucial in ensuring

that identical files encrypted with the same password result in

different ciphertexts. The IV is stored along with the encrypted

content and used during the decryption process. Padding is

IV. RESULTS

The developed encryption system was evaluated through

a series of test cases designed to assess its functionality,

performance, and usability. Tests focused on encryption and

decryption accuracy, password validation, processing time, and

compatibility with different file types. The experiments were

conducted on a personal computing system under typical user

conditions.

A. Experimental Setup

The evaluation of the proposed encryption system was

conducted on a standard personal computer equipped with an

Intel Core i5 processor clocked at 2.5 GHz, 8 GB of RAM,

and running Windows 11. The application was implemented

in Python 3.11 and executed as a standalone script without

the need for administrative privileges or external dependencies

beyond standard Python libraries. Testing focused on several

key metrics to assess system performance and reliability.

These included the time taken to encrypt and decrypt files

of varying sizes and types, the accuracy of restoring original

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

file content following decryption, the robustness of the ap-

plication when encountering invalid or tampered inputs, and

the overall usability of the graphical user interface from an

end-user perspective. Through this comprehensive setup, the

system’s functionality and efficiency were examined under

typical operating conditions.

B. Performance Analysis

The system showed consistent performance across different

file types and sizes. Encryption and decryption were successful

in all valid test cases. The table below summarizes average

processing times:

TABLE I

ENCRYPTION AND DECRYPTION PERFORMANCE

File Type Size Encrypt time Decrypt Time (s)
Text (.txt) 3 KB 0.02 0.01

Image (.jpg) 1.1 MB 0.38 0.36
Document (.pdf) 2.5 MB 0.63 0.61

Video (.mp4) 15 MB 1.84 1.78

The processing time increased linearly with file size, as

expected for symmetric encryption algorithms. For typical file

sizes (under 5 MB), the application completed operations in

under one second.

C. Functional Accuracy

The encryption and decryption procedures were verified by

comparing checksums of the original and decrypted files. In

all test cases, the decrypted files matched the originals byte-

for-byte, indicating correct restoration of content and absence

of data corruption.

The application also successfully rejected decryption at-

tempts using incorrect passwords, thereby confirming that

password-derived keys are securely and reliably implemented.

D. Error Handling and Robustness

To evaluate the robustness of the system, several negative

test cases were executed to simulate potential user errors and

tampering attempts. These included attempts to decrypt files

that were never encrypted by the application, files that had

been altered after encryption such as through modification of

their initialization vectors or content, and the use of incorrect

or empty passwords during decryption. In all cases, the appli-

cation successfully identified inconsistencies and responded

appropriately by displaying clear error messages, thereby pre-

venting unauthorized access and system crashes. This behavior

confirms the system’s ability to gracefully handle unexpected

or malicious input, ensuring that the underlying cryptographic

operations remain secure even under abnormal usage scenar-

ios.

V. CONCLUSION AND FUTURE WORK

This paper presented a secure and user-friendly file en-

cryption system developed using Python, employing AES-256.

in combination with password-based authentication to ensure

data confidentiality. The application demonstrated that strong

cryptographic principles can be effectively combined with an

intuitive interface to deliver reliable protection for a wide range

of file types. By deriving encryption keys from user-provided

passwords through SHA-256 hashing, the system eliminates

the need for key storage or management, thereby reducing

the attack surface and simplifying the user experience. The

inclusion of a lightweight GUI built with Tkinter further

enhances accessibility, making the tool suitable for users with

limited technical expertise.

Experimental results confirmed the system’s efficiency, with

encryption and decryption operations executing quickly even

for larger files. Decryption using incorrect or corrupted input

was reliably detected and rejected, demonstrating robustness

against invalid operations and potential tampering. Further-

more, user feedback highlighted the practicality and simplicity

of the interface, along with suggestions for further improving

usability.

Looking ahead, several avenues exist for enhancing the

system. These include adding support for drag-and-drop file

operations, integrating progress indicators for long-running

tasks, and enabling optional overwriting of original files during

encryption. From a security perspective, incorporating ad-

vanced key derivation techniques such as PBKDF2 or Argon2

could further improve resistance against brute-force attacks.

The system may also benefit from the inclusion of file integrity

verification using HMAC, as well as expanded features for

batch file processing or cloud synchronization. With these

enhancements, the application has the potential to serve as

a reliable tool not only for personal data protection but also

in educational or organizational environments where secure,

offline encryption is essential.

REFERENCES

[1] N. Kumar, S. Ghuge, and C. D. Jaidhar, “Three-layer security for
password protection using rdh, aes and ecc,” in Hybrid Intelligent
Systems (HIS). Cham: Springer, 2020, pp. 245–256.

[2] P. Banga et al., “A secure file encryption and decryption system using aes
for text and images,” International Journal of Research - Granthaalayah,
vol. 11, no. 12, pp. 254–267, Dec 2023.

[3] A. Aji and P. Pangestu, “Secure file sharing using advanced encryption
standard (aes) 256,” IT Telkom Purwokerto, Technical Report, Mar 2022.

[4] R. Ganesh, K. Niraj, and B. K. Das, “A novel framework for secure
file transmission using modified aes and md5 algorithms,” International
Journal of Information and Computer Security, 2015.

[5] N. W. Nafi et al., “A newer user authentication, file encryption and
distributed server based cloud computing security architecture,” arXiv,
Mar 2013.

[6] S. Zainudin et al., “Securing academic student file using aes algorithm
for cloud storage web-based system,” in Reimagining Resilient Sustain-
ability, European Proceedings of Multidisciplinary Sciences, 2022, pp.
268–279.

[7] Wikipedia, “Advanced encryption standard,” https://en.wikipedia.org/
wiki/Advanced Encryption Standard, 2024, online; updated recently.

[8] ——, “Pbkdf2,” https://en.wikipedia.org/wiki/PBKDF2, 2024, online;
updated last month.

[9] ——, “scrypt,” https://en.wikipedia.org/wiki/Scrypt, 2009, online; pub-
lished Mar. 2009.

[10] ——, “Hkdf,” https://en.wikipedia.org/wiki/HKDF, 2024, online; up-
dated four months ago.

[11] ResearchGate, “Password-based encryption approach for securing sen-
sitive data,” https://www.researchgate.net/publication/Password based
encryption for sensitive data, 2020.

http://www.ijsrem.com/
http://www.researchgate.net/publication/Password

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

[12] Unknown, “Security enhanced image encryption using password-based aes
algorithm,” International Journal of Engineering Research and Technology
(IJERT), n.d., year unspecified.

[13] ——, “Secure file operations: Using advanced encryption standard for strong
data protection,” International Journal of Software Science & Engineering
(IIETA), 2023, approximate year.

[14] C. StackExchange, “How secure is it to use password as aes key?”
https://crypto.stackexchange.com/questions/22861, 2015.

[15] N. S. Ayesha et al., “Dynamic encryption-based cloud security model using
facial image and password-based key generation for multimedia data,” arXiv,
May 2025.

http://www.ijsrem.com/

