

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47636 | Page 1

Secure Low-Cost Platform for startup Company Using Cloud Virtualization Desktop

1Sri Venkateshwaraa college of technology ,Sriperambadur ,vadakal ,Kanchipuram district
2 Vinodhini R 412621104053 BE CSE department

3Nagaarjuna Prasanth SK 412621104026 BE CSE department
4Selvi M 412621104042 BE CSE department

Corresponding author: Yamini.J 412621104054 BE CSE department

This work was supported by the Sri Venkateswaraa college of technology ,Sriperambadur

 ABSTRACT Smart VmobiDesk is an existing solution that provides mobile device management and virtual

desktop infrastructure capabilities. Compared to VmobiDesk, our project focuses on leveraging Amazon Web

Services (AWS) to provide a more scalable, secure, and cost-effective cloud virtual desktop solution for startup

companies.

 This project explores the implementation of a cloud-based virtual desktop infrastructure using Amazon Web

Services (AWS) for startup companies. We utilize an EC2 instance (i-0d540511613f5be95) with a t3.micro

configuration, hosting a virtual desktop environment. The instance is located in the eu-north-1b Availability

Zone, with a private IPv4 address of 172.31.33.124 and a public IPv4 address of 13.61.173.20.The virtual

desktop environment is designed to provide a secure, scalable, and accessible platform for startup companies

to store and manage their data. With a total memory of 1024 MB and up to 5 Gigabit network performance,

the infrastructure is optimized for efficient data processing and transfer.The project aims to integrate startup

company details into the virtual desktop environment, enabling seamless data management and collaboration.

By leveraging AWS services, we can ensure high availability, reliability, and security for startup companies'

data.The cloud-based virtual desktop infrastructure offers numerous benefits, including reduced infrastructure

costs, increased flexibility, and enhanced scalability. Startup companies can access their virtual desktops from

anywhere, at any time, using various devices.The project's significance lies in its potential to transform the way

startup companies manage their data and collaborate with team members. By adopting cloud-based virtual

desktop infrastructure, startup companies can improve their productivity, efficiency, and competitiveness.

 INDEX TERMS Mobile cloud computing, mobile device, BYOD, virtual desktop, android.
I. INTRODUCTION

In recent years, smart mobile devices (e.g., smart phones and

tablets) have been widely used by people all over the world.

They have already been an indispensable part of our daily lives.

We use mobile devices to contact with families and friends, go

shopping and surf the Internet. A large group of us use mobile

devices to study online. Particularly, it is extremely common that

we use mobile devices to handle documents and emails through

mobile applications (apps) at work. In May 2017, Google

announced that Android had 2 billion monthly active users [1],

[2]. As of February 2017, the Google Play store has over 2.7

million Android apps published [3]. Statistics show that as of

May 2016, those apps have been downloaded for more than 65

billion times [4].

Because of the great convenience, personal smart mobile

devices have been increasingly used at work in many

The associate editor coordinating the review of this manuscript and

enterprises, so called Bring-Your-Own-Device (BYOD) [5], [6].

BYOD increases employees’ morale by trusting them to use their

own devices at work. The brought in convenience also makes

the company appear more flexible and

attractive[7].ManyemployersfeelthatBYODcanevenbeameans

toattractnewhires,pointedbyasurveyindicatingthat44%of

jobseekerslikeanorganizationmoreifitsupportsitsemployees to

use their own devices [8]. According to Logicalis [9], high-

growth markets (including Brazil, Russia, India, UAE, and

Malaysia) demonstrate a much higher propensity of supporting

BYOD. Almost 75% of the employees in these countries are

allowed to do so, compared with 44% in the more mature

developed markets. However, BYOD applications have several

serious challenges.

A. SECURITY AND PRIVACY CONCERNS

BYOD is an effective strategy for enterprises because it can

effectively increase employees’ productivity with lower IT be

aware that BYOD also brings a number of security challenges.

(i) It increases the exposure of a company’s applications and data

to malware and infections due to the lack of control and visibility

on personal devices. (ii) Data leakage becomes a primary

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47636 | Page 2

concern as these personal devices now have access to sensitive

corporate data. (iii) Providing IT support in BYOD

environments is difficult due to the large diversity of personal

devices regarding platforms, operating systems, and so on.

Many solutions have been proposed to mitigate the risk of

supporting BYOD. Among those, device virtualization [10]–

[12] and Virtual Desktop Infrastructure (VDI) [13], [14] are the

most popular. Device virtualization leverages a hypervisor to

allow mobile users to simultaneously run different mobile

operating systems on a single device. This strategy clearly

separates the access of corporate data from personal data.

However, the concern still remains because corporate data is still

accessible or even stored on personal devices. In addition,

virtualization itself consumes a lot of computing resources.

VDI is a desktop virtualization approach which delivers a

desktop OS image to end devices over the network. The desktop

OS image is generated from a desktop operating system

(typically, Microsoft Windows) that runs and is managed in a

datacenter.VDIallowsitsuserstooperatetheOSandinteract with

applications run on the OS as if they run locally. The endpoint

may be a traditional Personal Computer (PC), thin client or even

a mobile device. VDI seems like the best option considering

mobile data protection because data will not be stored on

employees’ devices. Instead, the data is stored in the company’s

servers. This ensures that in case a device gets lost or damaged,

enterprise data remains intact.

However, VDI lacks of apps since it only supports PC OS such

as Windows 7 or Windows 10. Compared with apps on Android

or Apple mobile operating system, the number and type of

mobile apps developed for Windows is very limited. Moreover,

applications running on PC OS are usually designedfor13-

inchorlargerscreen,itisdifficulttoremotely use these applications

on mobile devices with typical 6-inch or smaller screen.

In a word, device virtualization, VDI and VMI are all designed

to address the security and privacy concerns from BYOD.

However, device virtualization only partially mitigates the data

leakage concern of BYOD. VDI addresses the

problemwellbutitprovidesapooruserexperienceformobile

users.VMI addresses the security and privacy concerns of

BYOD as well as provides good experience for mobile users.

B. LIMITATIONS OF SMART MOBILE DEVICES

When using smart mobile devices, most people suffer from the

following problems.

(i) Limited

hardware capability. Most smart mobile devices have limited

power supply, constrained storage capacity, and computation

capability. Under common circumstances, mobile users need to

charge their devices daily to keep power supply and clear or back

up data termly to free storage space.

Most mobile users have to replace their mobile devices every

year due to outdated hardware.

(ii) Frequent

upgrades for apps. Most Android apps are developed by small

teams (more often, a single developer). Frequent updates of apps

are very common in order to strive the competition in the market.

Mobile users frequently experience crash during apps usage and

have to upgrade apps over and over again.

(iii) Security

threat from malicious apps. With the increasing popularity of

Android OS, it becomes an attractive target for malware because

of its openness [22], [23]. A report from F-Secure states that the

number of malicious software on the Android platform accounts

for 97% of the overall number of mobile malware [24].

Mobile Cloud Computing (MCC) [26]–[28] has therefore been

proposed by many researchers to overcome the above mentioned

limitations of smart mobile devices by integrating cloud

computing [29], [30] into the mobile environment. The strategy

enables mobile users and application providers to effectively and

elastically utilize resources in an on-demand fashion. However,

existing research works and products on MCC are only able to

employ cloud computing to optimize certain mobile

applications, such as mobile cloud albums, mobile cloud

storage, and mobile cloud games [31], [32]. It is

stilldifficulttoprovidecloudservicesforgeneralmobileapps due to

their rapid growth.

To address these issues, Virtual Mobile Infrastructure (VMI), a

general framework that provides more reliable and secure

solution for BYOD, has been proposed. To be specific, in VMI,

mobile apps run on a mobile Operating System (OS)/virtual

machine that is located on a remote server in a cloud data center.

By this way, most workloads are offloaded from mobile devices

to the remote server. Further, a mobile device requires negligible

power to display apps on the screen, which makes mobile

devices more durable. VMI takes the benefits of VDI, but it is

specifically designed for mobile users. Thus, VMI provides

better user experience under the BYOD environment than VDI.

However, since the entire virtual desktop needs to be transferred

from a remote server and displayed on a mobile device, VMI

suffers from performance issues.

C. CONTRIBUTIONS

In this article, we address these issues by designing and

implementing a VMI prototype with optimized network transfer

mechanisms and display virtualization. In particular, our main

contributions are as follows.

1) We design

and implement vDesk which is a prototype system for VMI.

vDesk provides an implementation of VMI desktop

virtualization on windows where mobile devices can remotely

access windows virtual desktops which are running in remote

virtual machines. vDesk focuses on virtualizing the display of

windows desktops, redirecting users’ input events, and providing

audio support and remote camera control and access.

2) Extensive

experiments are conducted on different mobile devices under

different settings to evaluate the performance of vDesk in terms

of the response time, network bandwidth, application

performance and overall system overhead. The experimental

results show that vDesk provides system users with almost the

same experience as in local when accessing and operating the

remote Android virtual desktops.

The rest of this article is organized as follows. Section II

describes the design and implementation of the vDesk system.

In section III, we evaluate the performance of vDesk and analyze

the experimental results. Section IV discusses the potential

limitations of vDesk and the future work. In Section V, we

summarize related works.

Finally, we conclude this article in section VI.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47636 | Page 3

II. DESIGN AND IMPLEMENTATION

In this section, we first discuss the VMI framework.

Subsequently, our VMI system named vDesk is introduced.

A. OVERVIEW

OF VMI

VMI is a framework that provides secure and reliable solution

for mobile users to operate on virtual desktops when there is a

need. The key idea is to host a mobile operating system located

on a local or cloud server. Virtual desktops are generated as

images of the operating system and delivered to mobile devices

via mobile optimized protocols through the network. The mobile

users can then operate on virtual desktops on their mobile

devices locally, as well as enjoy all provided services and apps.

The objective of VMI is to provide smooth local operating user

experiences while offload major resource consumption to

servers.

As shown in Fig. 1, VMI consists of three parts: mobile clients,

a VMI server and, an authentication server. The VMI server

houses a customized mobile OS (mostly Android) that is hosted

on virtual machines (VMs). These VMs run on a hypervisor on

a centralized host machine. Each VM runs a server process to

handle a client’s connection, receive the client’s request, and

deliver the virtual mobile desktop to the client’s screen. Each

mobile client runs a thin client app to connect to the server

running on the VM through the network. For security concern,

each mobile user is allocated an account by the VMI server for

identification verification. An account will be validated by the

authentication server when a mobile client connects to a VM

running on the server.

In VMI, mobile apps running in a VM are transferred in the form

of a single thin client app to the user’s mobile device. The thin

client app runs independently from the remote platform OS, and

can run on any mobile device and OS (iOS, and usually

Android). Mobile devices receive pixel information from the

remote apps, and in return send key, gesture, location, and device

information. No apps or data are saved or stored on the mobile

device itself. One secured communication protocol is used to

transfer user input back to the remote server in order to provide

maximized security.

B. OVERALL

ARCHITECTURE OF vdesk tis our prototype system of VMI and

is constructed as a Client-Server system in order to provide

mobile users with remote access to virtual mobile desktops and

implemented on one of the most popular mobile operating

systems, Android system. As shown in Fig. 2, the vDesk client

is an application running on Android devices (smartphones or

tablets). It is composed of a display module, a multi-touch

module, an audio module, and a camera module.

The display module displays the virtual android desktop on

mobile devices. The multi-touch module handles the mobile

users’ input events. The camera and audio modules provide

mobile users with rich multimedia experience. Meanwhile, the

server of Vdesk is an application running on an Android-x86

virtual machine providing corresponding services to the mobile

client. The client is connected to the server through remote

access. For security concern, access permission to an Android

virtual desktop is given to a client only if it passes the

authentication verification in the first place (1). The server

responds to success verification by sending the desktop content

to the client (2). Then, the client can operate on the virtual

desktop and use apps such as an office suite, a file manager, a

music player, and camera applications during which the

generated data will be transferred between the client and the

server (3).

C. DISPLAY

VIRTUALIZATION

To make vDesk a viable replacement for the traditional desktop,

it needs to be able to deliver similar appearance and user

experience that end-users expect to. Furthermore, vDesk should

work within the framework of existing display systems,

intercept display content from unmodified applications, and

redirect these content to remote clients. In order to provide good

performance, the virtualization should intercept display content

at an appropriate abstraction layer, so that sufficient information

can be observed to optimize the processing of displaying content

in a time efficient manner. To support transparent user mobility

and eliminate client administration complexity, vDesk should

support its usage with thin and stateless clients. To ensure this,

all persistent display states should be stored on the server. There

are many remote display protocols for mobile VDI system, such

as VNC, RDP, SPICE, and etc. However, none of them can be

directly used in vDesk due to that they are not compatible with

Android OS.

Given that traditional display systems are structured in multiple

abstraction layers, there are three layers at which vDesk can

intercept the desktop display content on Android OS. The top

layer is application layer which presents high-level overall

characteristics of the display system. The second layer is the

system service layer. It is responsible for creating a hardware-

independent abstraction of the display hardware to meet the

requirements of the display system and its applications. The

video hardware layer is a low-level, hardware-dependent

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47636 | Page 4

FIGURE 1. The overview of VMI.

FIGURE 2. The overall architecture of vMobiDesk.

layer that exposes the video hardware to the display system.

does not intercept desktop displays at the application layer. The

reason is that doing so requires a significant amount of

application logic and computational resources on the client end

in order to translate high level commands. Compared with VNC,

vDesk does not intercept the display content at framebuffer layer

because it consumes more server’s CPU and causes responding

delay. vDesk captures the display content of Android virtual

desktop at the system service layer through SurfaceFlinger (a

service for Android display system) which composes all the

surfaces from applications. Subsequently, vDesk generates a

complete desktop surface and writes to the hardware

framebuffer for display.

ThearchitectureofdisplayvirtualizationisshowninFig.3. When a

client connects to a server, the server agent requests the

SurfaceFlinger to update the client’s screen for every 10

milliseconds (1). The server intercepts the desktop content from

the GraphicBuffer of SurfaceFlinger service, and then the

intercepted content is temporarily stored in a shared memory

region (2). Because it is unnecessary to display the

FIGURE 3. The architecture of display virtualization.

desktop on the server’s screen, the desktop content will not be

written to its hardware framebuffer. The server then reads it from

the shared memory (3), and transmits the screen data to the

client through the network (4). The display solution used in

vDesk can significantly saves server’s CPU consumption and

improves its responding speed. It provides mobile users with

better visual experience.

As mentioned above, the display content is captured in

SurfaceFlingerandthentransferredtotheserveragentinstead of

being directly delivered to the client through the network for

display. This decision is made because direct data transfer

between the server and a client through network increases

security risk. SurfaceFlinger provides a more reliable and secure

service display service for Android apps and has been widely

used. In addition, Android OS does not well support the

traditional memory sharing and Inter-Process Communication

(IPC) mechanisms like Linux OS. It only provides Anonymous

Shared Memory (Ashmem) for memory sharing and Binder for

IPC. Therefore, SurfaceFlinger is chosen to post the display

content to an Ashmem and then notifies the server agent to read

the content through a Binder. After that, the server agent delivers

the display content to the client.

D. INPUT REDIRECTION

With the arising of smartphones and tablets, user and device

interactions no longer restricted to keyboard and mouse as

majority of those devices are equipped with multi-touch screens.

The responsibility of the input module is to sense the touch input

events of mobile users and then seamlessly redirect those events

to the server. Unfortunately, there is no remote computing

protocol specifically designed for touch screen input devices.

The workflow of input redirection is shown in Fig. 4. Touch

input events handled in vDesk can be loosely

classifiedintosingle-toucheventsandmulti-touchevents.For

instance, touching an icon with one finger to open the app on an

smartphone is a single-touch event, and zooming in and out

pictures with two or more fingers is a multi-touch event. On the

client side, if a single-touch event is detected, user’s input on

virtual mobile desktop is intercepted then forwarded to the

server as a single point coordinate. If a multi-touch event is

identified, multiple coordinates are combined, and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47636 | Page 5

FIGURE 4. The workflow of input redirection.

then forwarded to the server. The client’s user touch input events

are intercepted at the device driver layer to ensure that the input

events are original and application-independent, so that can be

adapted to different Android systems. On the server side, all

forwarded touch events are converted to local events in order to

adapt to the local system and then injected into the server’s input

system for updates.

A virtual device has to be created on the server to receive and

process touch events because there is no real touch screen device

on the server side. Since Android is a Linux-based system,

vDesk employs the Linux uinput module which is a virtual

interface to create a virtual device. Therefore, all the transferred

input events from the client will be transformed to uinput events

so that they can be injected into the virtual device and re-

executed on the server.

E. AUDIO SUPPORT

In order to support audio applications such as teleconference,

vDesk is implemented with audio record and playback

functionalities. On the client side, there are two modules for

audio redirection. The playback module is designed to replay the

audio data transferred from the server. The recording module is

responsible to capture the audio data such as voice input of the

client. On the server side, there are two separate channels used

to process playback data and recorded data, respectively. The

AudioFlinger service of Android-x86 OS is modified to process

input and output audio data for audio applications.

Fig. 5 shows the workflow of audio redirection. In audio

playback redirection, when a user plays a music in a virtual

mobile desktop, the audio data will be intercepted by the audio

thread of AudioFlinger and delivered to the server. Then the

server transfers the audio data back to the client’s playback

module for replay. The redirection of audio recording works in

a similar way. When a user opens an

audiorecordingapplicationonhisvirtualmobiledesktop,this action

will be immediately detected by the server’s recording thread.

Then a message will be sent from the server to activate the

microphone on the client’s mobile device. After that, audio data

captured by the client’s microphone is transferred to the record

channel of the server through the network, and then processed

by its recording application.

Similar to the display virtualization, AudioFlinger does not

directly communicate with the client but the server, instead.

However, data transfers between AudioFlinger and the server is

not through the shared memory. This is because that audio

redirection is more time-sensitive and contains less data than that

in display virtualization. Transferring audio data through
FIGURE 5. The workflow of audio redirection.

shared memory may result in high latency and data loss.

Therefore, we employ the UNIX-domain socket to transfer

audio data between AudioFlinger and the server agent. The

audio data is buffered on both the server and client sides to

support real-time audio applications. To reduce the server’s CPU

usage, received data will not be forward to the server’s audio

device. Experimental results show that vDesk provides low

latency audio support to users.

F. REMOTE CAMERA

Camera is one of the most important modules in smartphones or

tablets. It can be used to take photos and record videos. In order

to support camera applications such as video conference and

scanner apps, it is necessary to provide camera redirection in

vMobiDesk so that mobile users can use cameras in the virtual

mobile desktop.

In vMobiDesk, to support camera redirection, there are two

modules on the client. One is designed to get the information of

the client’s physical camera devices such as the type and number.

The other module captures camera data and transfers data to the

server. On the server side, since there is no physical camera

device on the machine, virtual camera devices are created. The

number of virtual camera devices is determined by the number

of cameras on connected client’s mobile device. The virtual

camera devices can receive and process data received from

clients’ physical cameras, and return the results to the camera

applications on the server.

The design of remote camera is shown in detail in Fig. 6. When

a client connects to a server, its camera information will be

collected by the server (1). The collected information is then

sent to the MediaServer (another system service of Android OS)

to create virtual camera devices (2). When a user opens a

camera application in a virtual mobile desktop, this action will

be immediately detected by the server’s

cameraservice.Thenamessagewillbesentfromtheserverto the

client to activate the camera on the client’s mobile device (3).

After that, data captured by the client’s physical camera device

is transferred to the server through the network (4),

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47636 | Page 6

FIGURE 6. The design of remote camera.

and then processed by the camera module on the server (5).

Here the key challenge is how to handle recorded videos which

usually carry a large amount of video data. To reduce network

bandwidth consumption, the recorded video data is encoded to

H264 [33] which is one of the best format for video streaming.

Originally, recorded video data is captured by client’s physical

camera and transmitted to the server’s virtual camera devices.

After being processed on the server, the video needs to be

transferred back and displayed on the client’s screen for

previewing. Data transmits back and forth may lead to long

delay and poor Quality of Service (QoS) due to the limited

mobile network bandwidth in a VMI system. To address this

problem, we propose not to use data transferred back from the

server but to utilize the client’s local buffered information for

displaying or previewing. By this means, the vMobiDesk system

is able to reduce delay and improve user experience for camera

applications.

G. RESOLUTION ADAPTION

Due to the heterogeneity of users’ mobile devices, the display

resolution of those mobile devices may be significantly

different. In order to provide mobile users with good viewing
TABLE 1. Hardware and software specs for the experimental platform.

experience when they work on the virtual mobile desktop,

resolution adaption is supported in vMobiDesk. Similarly, as

soon as a client connects to a server, its resolution information

will be collected by the server. According to this information,

the server transforms the virtual desktop to the

correspondingresolution,andthenshowittotheclient.Inthis way,

mobile users have the flexibility to choose its favorable display

resolution.

III. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of

vMobiDesk through a series of experiments. The experiments

are conducted on different clients and servers under different

network communication settings.

A. EXPERIMEN

TAL SETUP

As shown in table 1, in the experiments, the server machine has

a 3.40GHz Intel Core i7-6700 processor and 8 GB RAM. The

server operating system is Android-x86-5.1.1 and runs in a

virtual machine created by Virtualbox [34], KVM [35], and Xen

[36] hypervisors, respectively. The tested client devices include

Huawei M3 tablet, Huawei Mate 8, Google Nexus 9 and Vivo

X7 running on Android-6.0 operating system. A 100 Mbps, 1 ms

latency LAN network is utilized to obtain local 2.4G and 5G

Wifi communication between the mobile devices and the server.

vMobidesk consists of a client module and a server module, the

client module is running on the tested mobile devices as an

application, the server module of vMobiDesk is running on the

Android-x86 virtual machine as a system service. The

performance of vMobiDesk is mainly evaluated in terms of

response time, network bandwidth consumption, application

performance, and the overall system overhead.

We have tested the performance of vMobidesk for different

hypervisors and mobile devices. Because the experimental

results show that there is no significant difference among

different hypervisors and mobile devices, we therefore give the

complete results for the response time. For the bandwidth

consumption and audio performance, only the results of Xen

hypervisor and Huawei smartphone are provided. For the remote

camera, we give the results for Xen hypervisor and all the mobile

devices.

B. RESPONSE

TIME

In vMobiDesk, the server provides mobile users with remote

access to the virtual mobile desktop through local Wifi. When a

user works on the virtual desktop, the system needs a certain

response time to redirect each operation to the server and return

back the results to the client. Response time is one of the most

important metrics to evaluate users’ experience. The response

time is expected to be small so that the users can

havesimilarexperiencewhenoperatingonthevirtualdesktop as

that on their local mobile devices. The response time is tested

when the server is configured in different resolutions in

vMobiDesk. The average response time is collected from

operations such as opening a folder with a file manager, typing

several words in a Word document and opening a Web page, and

etc..

As shown in Fig. 7 and Fig. 8, the response time is always less

than one second which is acceptable for human perceiving. But

it increases with resolutions, this is because that a virtual desktop

with high resolution contains much more data than that with low

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47636 | Page 7

resolution, it takes more time to transfer data and to display the

virtual desktop on the client end under high resolution.The

response time stays almost the same for different virtual

machines and different mobile devices, because vMobiDesk is

implemented in an Android guest OS instead of hypervisor layer.

Different virtualization platforms show little influence on

response time of Android virtual desktops. As to different mobile

devices, the client of vMobiDesk is running on a mobile device

just as a common Android app, different mobile devices also

have little impact on the response time of vMobiDesk. Because

a virtual desktop with high resolution contains much more data

than that with low resolution, it takes more time to transfer data

and to display the virtual desktop on the client end under high

resolution. In addition, the response time performs differently

under 2.4G WiFi and 5G WiFi, especially under high resolution.

Because 5G WiFi is more stable and faster than 2.4G.

vMobiDesk performs better in 5G WiFi network environments.

C. BANDWIDT

H CONSUMPTION

This experiment is designed to measure the detailed bandwidth

consumption when browsing web pages in virtual desktops with

different resolutions. In practice, we test the bandwidth

consumption of web pages for different virtual machines and

mobile devices. Similar to the response time, there is no

significant difference. Therefore, here only shows the

experimental results for Xen virtual machine and Huawei

smartphone. As shown in Fig. 9, higher resolution results in

more network bandwidth . Web pages contains image

consuming more bandwidth than web pages with text. Since 5G

WiFi is more stable and faster, it consumes more bandwidththan

2.4G WiFi. When the resolution is below 1024*768, in 2.4G

WiFi, due to the severe signal-jamming, packets are discarded

during transmission. When the resolution is over 1024*768,

even 5G WiFi may suffer from data loss (This is not shown in

the Figure).
D. AUDIO

SUPPORT

To evaluate the performance of audio applications in

vMoBiDesk, we conduct experiments to measure the latency of

audio playback and audio recording under different network

environments. For audio playback, we use a music player to play

a 5 minutes long music. The latency is the time cost from starting

playing music on the server to hearing the music on the client.

For audio recording, we develop a recorder app which can record

and replay the recording simultaneously. The latency is the time

from the user speaks on the client to hears himself from the

client’s audio device.

The latency is collected in every minute. The test repeats

tentimesandtheaveragesarecalculated.AsshowninFig.10, audio

applications show lower latency in 5G WiFi than that in 2.4G

WiFi which indicates that the performance of audio redirection

in vMobiDesk is influenced by network bandwidth. The

experimental results also demonstrate that the latency in virtual

desktop accumulates as time goes by. But the latency is always

below 400 ms. It is acceptable if most of the time users only use

audio service in a short period. The latency increase may be

caused by the deviation of system clock in a virtual execution

environment. To verify our inference, we deploy the server of

vMobiDesk in a physical machine that runs Android-x86-5.1.1.

The experimental results in Fig. 10 demonstrate that the latency

is not accumulated as time goes by while running vMobiDesk in

a physical machine.

E. REMOTE

CAMERA

Remote camera is one of the most important modules in

vMobiDesk. The performance is measured based on the

effective frame per second (FPS) and bandwidth consumption

with different resolutions under 2.4G and 5G WiFi network

environments on different mobile devices.

As shown in Fig. 11, the results is highly related to the quality

of hardware camera employed on different mobile devices.

Huawei tablet performs the best. Its effective frame rate can

reach up to 20 FPS. For all mobile devices, FPS decreases as the

resolution increases. That is because the increase of resolution

results in the increase of image size. The network can not

transmit all data produced by the camera in time. Specially,

when the resolution is 1920 * 1080, we have optimized

vMobiDesk to transfer the video data only

once.Theeffectiveframeratecanreach12FPS,anduserscan still

watch video smoothly.

As shown in Fig. 12, the camera occupies lots of bandwidth

since it transmits the generated data from the client to the server

through the network. Fortunately, though the recording
TABLE 2. The overhead of the vMobiDesk client.

FIGURE 10. The latency of audio applications in vMobiDesk under different network environments

.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47636 | Page 8

TABLE 3. The overhead of the vMobiDesk server.

may

produce large amounts of video data, the optimization which

reduces two times transfer to one greatly reduces the bandwidth

consumption.

F. SYSTEM OVERHEAD

In this section, we present the CPU and memory usage profiling

of vMobiDesk. The statistic information is collected during the

execution of the client application (shown in table 2) and the

server (shown in table 3).

On the client side (table 2), the idle state consumes about 5%

CPU and 20 MB memory. While a mobile user launches

different applications in the virtual mobile desktop, the CPU

usage rises to about 8%, 12%, 11%, 13% and 15%, accordingly.

The memory usage also rises to 22 MB, 45 MB, 44 MB, 60 MB,

49 MB, and 177 MB.

Table 3 summarizes the CPU and memory consumption of

vMobiDesk on the server side. It shows only 4% CPU and very

little memory are consumed when the server is idle. Even when

running different applications, server’s CPU usage is always

under 20% and the memory usage is less than 200 MB.

To summary, vMobiDesk brings slight overhead to the entire

system. This is because that it is implemented by modifying the

Android-x86’s system services such as SurfaceFlinger service,

MediaServer, and even the Linux kernel to support desktop

virtualization. The core modules of vMobiDesk are integrated

FIGURE 11. FPS of remote camera under different network environments.

FIGURE 12. Bandwidth consumption of remote camera under different network environments.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47636 | Page 9

into the Android operating system. Thus, the main overhead is

caused by data transfer from Android OS to the server agent.

IV. DISCUSSION

In this article, we have implemented vMobiDesk, a prototype

system for VMI. The proposed prototype, while not perfect,

shows its advantage when being deployed to mobile cloud data

centers. In a series of experiments, the results show that

vMobiDesk performs well for common applications in

popularvirtualizationenvironmentssuchasVirtualbox,KVM,and

Xen. vMobiDesk is adaptive for a variety of mobile devices such

as Huawei, Vivo, and Nexus. It can be easily integrated into

existing cloud products so that the cloud providers are able to

provide mobile users with Android-based VMI services. The

benefits of VMI and future investigation direction are

summarized in this section.
A. BENEFITS OF VMI

1) VMI

provides a general framework for running mobile apps in remote

servers. Most workloads are offloaded from mobile devices to

cloud data centers. That makes mobile devices more durable,

and mobile users can use more abundant apps than before. In

addition, since the mobile OS is running on virtual machines

located on cloud data centers, mobile users can create, suspend,

hung up, delete, and stop the virtual mobile desktop through the

hypervisor anytime and anywhere.

2) VMI can

reduce workload of application developers. Before, there are a

variety of smart mobile devices such as iPhone, Samsung,

Huawei, and etc., and different mobile OS such as iOS, Android

and Winphone, and etc.. Ifwe buildamobile application,we

haveto buildit for each platform. Using VMI means that we can

write one single version app and then deploy it to any device.

3) VMI can

mitigate the risk and challenges of supporting BYOD policies in

enterprises. Much like VDI, corporate data never gets stored on

employee devices. Each employee gets assigned a profile that is

centrally managed and stored on secure company servers.

Employees only need to install a secure app on their devices, log

in, and access all their company files and data without worrying

about mixing personal and company data or IT controls their

gadgets. VMI also saves time, effort, and resources. Through a

central management system, IT administrators can modify

profiles, check for security, and pushes updates to employees’

VMIs through a single console.

B. LIMITATIONS AND FUTURE WORK

First, the response time can be further reduced. Experimental

results show that the response time is within the range from 180

ms to 500 ms under 5G WiFi. It seems to be tolerable for

common applications such as office and file managers, but it

isunacceptableforvideosandgames.Therefore,theresponse time

can be further reduced so that vMobiDesk can be widely

adopted. One possible way is to improve network environments

in our experiments since WiFi network tends to be interfered by

other WiFi networks, which may increase the response time. On

the other hand, better compression algorithms can be leveraged

to process the screen updates so that the response time can be

reduced.

Second, the vMobiDesk can be further extended to support

requirement for watching High Definition (HD) videos and

playing mobile games. At present, vMobiDesk is not strong in

supporting HD videos and games. Because they both contains a

lot of data communication and frequently updates. Therefore, it

is very important to further explore solutions to better process

videos and games in VMI system.

InspiredbyexistingVDIsystemforWindows,webelievethat

redirecting drawing commands for playing videos and games

from the server to the client should be an effective method.

ThismethodallowsGPU-intensiveworkloadsoffloadedfrom the

server to the client. Though this method may require more

processing workload on the client side, it can provides mobile

users with good user experience when playing HD videos and

games.

Third, as shown in section III, vMobiDesk is designed and

implemented by modifying the source code of Android operating

system services such as SurfaceFlinger and MediaServer.

Though this method makes vMobiDesk more adaptive to the

current Android system, frequent upgrades of Android OS may

incur compatibility and maintenance problems. In order to

improve the compatibility and maintainability, we plan to

implement vMobiDesk system in a non-invasive way. According

to quantitative analysis on the architecture of Android operating

system, we propose to implement vMobiDesk at Android’s

Hardware Abstraction Layer (HAL) which is a general

framework among different Android versions and composed of

dynamic-link libraries that can be easily loaded and off-loaded.

Last, existing popular virtualization technologies (Virtualbox,

KVM, and Xen) still show some weakness such as heaviness and

poor performance. Most of them are unable to provide good

support for GPU virtualization [37]–[40], especially for Android

system. But GPU is very important for playing HD videos and

games. we plan to utilize Linux container [41], a lightweight

virtualization technology to virtualize the operating system on

the server. Running Android system in containers will provide

mobile users using virtual

mobiledesktopwithabetteruserexperiencethanrunningthat in

Virtualbox, KVM, or Xen virtual machines.

V. RELATED WORK

VMI provides a general framework for running mobile apps in

a cloud data center. Meanwhile, VMI is a better solution for

BYOD policy than Virtual Desktop Infrastructure (VDI). In this

section, we summarize existing works related to our research.

A. BRING

YOUR OWN DEVICE

The concept of BYOD (Bring Your Own Device) refers to the

policy of permitting employees to bring personally owned

mobile devices to their workplace, and access privileged

company information and applications with these devices. In

recent years, BYOD has been explored by more and more

researchers. Keith W considers the security and privacy in

BYOD [42]. In their opinion, mobile devices contain a wealth of

data that a user might deem private. If personal data is co-

mingled with the employer data on the same device, it is difficult

to build barriers between personal and employer data. Bill

Morrow also indicates that BYOD may result in security

implications for data leakage, data theft and regulatory

compliance [43]. To protect valuable information, organizations

should stop making a distinction between devices in the

corporate network anddevices outside of it. [10], [11]proposed

mobile virtualization, which refers to the technology that

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47636 | Page 10

enables a single device to offer two or more people with

differentsystemsettingsanduserprofilesandtotallydifferent

operating environments.
B. VIRTUAL

DESKTOP INFRASTRUCTURE

Many productive desktop virtualization systems have been

developed and applied to various commercial applications due

to its strength in reducing maintenance and operating costs,

improving resource utilization efficiency and so on. VNC

[44]and THINC [12] are famous thin-client systems proposed in

academic research field. While in industry, there are Microsoft

Remote Desktop [16], Citrix XenDesktop [17],

VMwareView[14],SunRayandHPRemoteGraphicsandso on.

VNC (Virtual Network Computing) is a popular remote display

system based RFB protocol. It uses a virtual driver to maintain

local copy of the framebuffer state. The state information is used

to refresh its display, and forwards user input directly to the

server. VNC shows good performance for office applications but

does not support multi-touch, audio or camera. Therefore it is

not suitable for VMI system.

THINC and its portable version pTHINC intercept low level

video driver commands and adopts a push mode to interact with

client. It is efficient for UI compression but suffers from

compression performance degradation over multimedia content

encoding. As a result, it achieves good performance in

multimedia playback with sufficient bandwidth but not for

network environments with low bandwidth. RDP (Remote

Desktop Protocol) is widely used in desktop virtualization

products such as Microsoft RDS and VMvare view. For office

applications, such as a text editor or a spread-sheet, RDP is

highly optimized. The display changes are quite small and have

low frequency that can be efficiently processed. However, it is

proprietary and only supports Windows operating system.

MobiDesk [45] proposes a thin client solution for mobile

devices by optimizing the WAN traffic involved in performing

remote computing. The solution is primarily meant for mobile

laptops and is similar to other remote computing approaches in

principle. However, all these solutions assume the server is a PC

(Windows 7, Ubuntu, Mac OS, etc.) desktop. They can not be

easily moved to a mobile device such as smartphone or tablet.

VI. CONCLUSION

With the rapid adoption of smartphones and tablets, MCC has

recently attracted significant attention from both academia and

industry. In addition, BYOD has been adopted by more and more

enterprises because of the efficiency and convenience. However,

existing solutions for MCC and BYOD still expose several

drawbacks such as lack of generality and security. To address the

existing problems in MCC and BYOD, we propose vMobiDesk,

a prototype system for virtual mobile infrastructure (VMI). We

implemented vMobiDesk on Android operating system which is

one of the most popular mobile operating systems. We

conducted extensive experiments to evaluate vMobiDesk in

terms of response time, network bandwidth consumption,

application performance and the overall system overhead on

several popular mobile devices under different virtualization and

network environments. The experimental results show that

vMobiDesk provides mobile users with good user experience on

remotely accessing Android virtual desktops for several

applications (e.g., office suite, file manager, web browser, music

player, and camera applications).

REFERENCES

1. Protalinski, ‘‘Android passes 2 billion monthly active devices,’’

VentureBeat, San Francisco, CA, USA, Tech. Rep., 2017.
A. Ng, ‘‘Google’s Android now powers more than 2 billion

devices,’’ CNET. CBS Interact., Tech. Rep., May 2017.

2. Number of Android applications, AppBrain, Mar. 2017.

3. N. Statt, ‘‘Android users have installed more than 65 billion apps from

Google Play in the last year,’’ Verge. Vox Media, Washington, DC, USA,

Tech. Rep., 2017.

4. R. Ballagas, M. Rohs, J. G. Sheridan, and J. Borchers, ‘‘Byod: Bring

your own device,’’ in Proc. Workshop Ubiquitous Display Environ.,

Ubicomp 2004.

5. Y. Song, ‘‘‘Bring your own device (BYOD)’ for seamless science

inquiry in a primary school,’’ Comput. Edu., vol. 74, pp. 50–60, May

2014.

6. [Online].Available:http://www.retailwire.com/discussion/16188/

happiness-is-bringing-your-own-computer-devices-to-work

7. K. Casey, ‘‘Risks your BYOD policy must address,’’ InformationWeek,

San Francisco, CA, USA, Tech. Rep., Jun. 2013

8. [Online]. Available: http://cxounplugged.com

9. J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, ‘‘Cells: A virtual

mobile smartphone architecture,’’ in Proc. 23rd ACM Symp. Operating

Syst. Princ. (SOSP), 2011, pp. 173–187.

10. W. Chen, L. Xu, G. Li, and Y. Xiang, ‘‘A lightweight virtualization

solution for Android devices,’’ IEEE Trans. Comput., vol. 64, no. 10, pp.

2741–2751, Oct. 2015.

11. J. Shuja, A. Gani, K. Bilal, A. U. R. Khan, S. A. Madani, S. U. Khan,

and A. Y. Zomaya, ‘‘A survey of mobile device virtualization: Taxonomy

and state of the art,’’ ACM Comput. Surv., vol. 49, no. 1, pp. 1–36, Jul.

2016.

12. R. A. Baratto, L. N. Kim, and J. Nieh, ‘‘THINC: A virtual display

architecture for thin-client computing,’’ ACM SIGOPS Operating Syst.

Rev., vol. 39, no. 5, pp. 277–290, Oct. 2005.

13. [Online]. Available: http://www.vmware.com/products/horizon-view

14. [Online]. Available: http://en.wikipedia.org/wiki/TightVNC

15. [Online]. Available: http://msdn.microsoft.com/en-us/library

16. [Online]. Available: http://hdx.citrix.com/hdx

17. [Online]. Available: http://technet.microsoft.com/

18. M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck, and C.

Wolf, ‘‘Mobile security catching up? Revealing the nuts and bolts of the

security of mobile devices,’’ in Proc. IEEE Symp. Secur. Privacy, May

2011, pp. 96–111.

19. M. L. Polla, F. Martinelli, and D. Sgandurra, ‘‘A survey on security for

mobile devices,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. 446–

471, 1st Quart., 2013.

20. Q. Li and G. Clark, ‘‘Mobile security: A look ahead,’’ IEEE Secur.

Privacy, vol. 11, no. 1, pp. 78–81, Jan. 2013.

21. J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, ‘‘AsDroid:

Detecting stealthy behaviors in Android applications by user interface

and program behavior contradiction,’’ in Proc. 36th Int. Conf. Softw.

Eng. (ICSE), 2014, pp. 1036–1046.

22. Ferreira, V. Kostakos, A. R. Beresford, J. Lindqvist, and A. K. Dey,

‘‘Securacy: An empirical investigation of Android applications’ network

usage, privacy and security,’’ in Proc. 8th ACM Conf. Secur. Privacy

Wireless Mobile Netw. (WiSec), 2015, pp. 1–11.

23. [Online]. Available: http://www.f-secure.com/

24. Huang, ‘‘Mobile cloud computing,’’ IEEE COMSOC Multimedia

Commun. Tech. Committee (MMTC) E-Lett., vol. 6, no. 10, pp. 27–31,

2011.

25. X. Chen, ‘‘Decentralized computation offloading game for mobile cloud

computing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–

983, Apr. 2015.

26.

http://www.ijsrem.com/

