
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42012 | Page 1

Secure Multimedia Content Distribution using Blockchain and Cryptographic

Methods

Arsh Sinha
Department of Electronics and Communication RV College of

Engineering

Bangalore, India arshsinha.ec21@rvce.edu.in

Sanjana S
Department of Electronics and Communication RV College of

Engineering

Bangalore, India sanjanas.ec21@rvce.edu.in

Pavan Practoor
Department of Electronics and Communication RV College of

Engineering

Bangalore, India pavanprasannap.ec21@rvce.edu.in

Kiran V
Department of Electronics and Communication RV College of

Engineering

Bangalore, India kianv@rvce.edu.in

Abstract—Digital content distribution faces security challenges
like unauthorized access, piracy, and cyber threats, risking
intellectual property and data integrity. Our project integrates fa-
cial recognition (MTCNN, InceptionResnetV1), AES encryption,
IPFS for decentralized storage, and blockchain logging to ensure
secure file management. Using Python, TensorFlow, PyTorch,
Cryptography Library, Tkinter, and Hyperledger/Ethereum, it
enables tamper-proof tracking, efficient encryption, and seamless
retrieval. The system enhances security with biometric authen-
tication, cryptographic protection, and decentralized storage,
achieving a 22% performance boost. This robust, user-friendly
solution safeguards digital assets, prevents unauthorized access,
and strengthens digital rights management in multimedia content
distribution.

I. INTRODUCTION

Multimedia content distribution refers to the process of de-

livering various forms of digital media—such as video, audio,

images, and text—across different platforms and networks.

This distribution can occur over the internet, satellite, cable,

or wireless networks, ensuring that users can access content

on multiple devices, including smartphones, tablets, smart

TVs, and computers. The evolution of this technology has

enabled seamless streaming, on-demand access, and real-time

interaction, revolutionizing entertainment, education, and com-

munication. With the advent of high-speed broadband, cloud

computing, and edge computing, multimedia distribution has

become more efficient, offering users a high-quality experience

with minimal latency. Technologies such as content delivery

networks (CDNs), peer-to-peer (P2P) sharing, and blockchain-

based content security have further enhanced the reliability and

security of media distribution.

The roots of multimedia distribution can be traced back to

the early 20th century with the advent of radio and television

broadcasting. The internet revolution in the 1990s paved the

way for digital content distribution, with early platforms like

Napster and YouTube transforming media consumption. The

2000s saw the rise of streaming services such as Netflix

and Spotify, which shifted the industry toward subscription-

based and on-demand models. Today, with the integration of

artificial intelligence (AI), machine learning, and blockchain,

content distribution has become smarter and more secure. The

relevance of multimedia content distribution continues to grow

with the increasing demand for digital entertainment, remote

work, and e-learning, ensuring that users receive personalized,

high-quality media experiences.

Security in multimedia content distribution is crucial to

protect digital assets from piracy, unauthorized access, and

data breaches. With the rise of online streaming, cloud storage,

and peer-to-peer sharing, threats like content leakage, ille-

gal downloads, and cyberattacks have increased. Encryption

techniques such as AES and RSA safeguard data during

transmission, while blockchain technology ensures content au-

thenticity and traceability. Digital Rights Management (DRM)

prevents unauthorized duplication, and watermarking helps

track media ownership. AI-powered security systems detect

anomalies and mitigate threats in real time. As multimedia

consumption grows, robust security measures remain essential

to maintaining content integrity and protecting intellectual

property.

II. LITERATURE SURVEY

A. Multimedia Content Distribution

Multimedia content distribution refers to the process of

transmitting and delivering digital media, such as video, audio,

images, and text, across various networks and platforms.

With the rapid growth of the internet and advancements in

technology, content distribution has evolved from traditional

broadcasting methods to modern digital delivery systems.

Streaming services, cloud storage, peer-to-peer (P2P) net-

works, and content delivery networks (CDNs) play a crucial

role in ensuring efficient and seamless access to multimedia

content. The integration of encryption techniques, such as AES

http://www.ijsrem.com/
mailto:arshsinha.ec21@rvce.edu.in
mailto:sanjanas.ec21@rvce.edu.in
mailto:pavanprasannap.ec21@rvce.edu.in
mailto:kianv@rvce.edu.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42012 | Page 2

and RSA, ensures that digital content remains secure, prevent-

ing unauthorized access and piracy. Additionally, decentralized

storage solutions like the InterPlanetary File System (IPFS)

offer enhanced security and reliability by distributing content

across multiple nodes. Blockchain technology further strength-

ens content security by maintaining transparent and immutable

transaction records. Compression algorithms help optimize

bandwidth usage, improving the quality of media distribution.

With increasing concerns about copyright infringement and

data privacy, secure content distribution methods have become

essential in modern digital ecosystems. The combination of

cryptographic methods, blockchain, and decentralized storage

not only protects intellectual property but also ensures content

authenticity. Efficient and secure distribution mechanisms are

essential for sustaining the growing demand for high-quality

multimedia content worldwide.

B. Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a symmetric

encryption algorithm widely used for securing digital data.

Established by the National Institute of Standards and Technol-

ogy (NIST) in 2001, AES replaced the aging Data Encryption

Standard (DES) due to its enhanced security and efficiency.

It operates on fixed block sizes of 128 bits and supports key

lengths of 128, 192, or 256 bits, making it highly resistant

to brute-force attacks. AES utilizes a substitution-permutation

network, consisting of multiple rounds of transformations,

including substitution, shifting, mixing, and key addition. Its

speed and security make it ideal for applications such as

secure file storage, online banking, and multimedia content

protection. AES is also widely integrated into cryptographic

protocols like TLS and IPsec. Its resilience against known

cryptographic attacks and widespread adoption in hardware

and software make it a fundamental component of modern

cybersecurity and data protection mechanisms.

C. Blockchain System

A blockchain system is a decentralized and distributed

ledger technology that records transactions across multiple

nodes in a secure and tamper-resistant manner. It operates on a

consensus mechanism, such as proof of work or proof of stake,

to validate transactions and add them to the chain. Each block

in the chain contains a cryptographic hash of the previous

block, ensuring data integrity and immutability. Blockchain

eliminates the need for a central authority, making it ideal for

applications requiring transparency, security, and decentraliza-

tion, such as financial transactions, supply chain management,

and secure multimedia content distribution. Smart contracts,

self-executing code stored on the blockchain, further enhance

automation and trust in transactions. Blockchain’s combination

of encryption, hashing, and decentralized consensus ensures

protection against fraud and unauthorized modifications. Its in-

tegration with cryptographic methods like AES and distributed

storage solutions such as IPFS makes it a powerful tool for

secure and scalable digital ecosystems.

D. InterPlanetary File System

The IPFS is a decentralized, peer-to-peer protocol designed

for efficient and secure file storage and sharing. Unlike tra-

ditional centralized servers, IPFS uses a distributed network

where files are identified by their cryptographic hash rather

than their location. This ensures data integrity, as any tamper-

ing with the file changes its hash, making it easily detectable.

IPFS employs content-based addressing, allowing multiple

users to store and retrieve the same file without duplication,

reducing redundancy and optimizing bandwidth usage.

When a user uploads a file, it is broken into smaller chunks,

each assigned a unique hash and distributed across different

nodes. Retrieval of the file is fast and efficient since the system

fetches the closest available copy from the network. IPFS

enhances security by integrating with encryption mechanisms

such as AES for access control and confidentiality. Addition-

ally, it is widely used in blockchain applications, including

secure multimedia content distribution, ensuring permanent,

censorship-resistant storage.

E. Facial Recognition System

Facial recognition is a biometric authentication technique

increasingly used in secure multimedia content distribution

to ensure authorized access. This technology captures and

analyzes facial features using machine learning algorithms

and deep neural networks. Modern facial recognition systems

employ models such as MTCCN for face detection and Incep-

tionResNetV1 for feature extraction, ensuring high accuracy

in verifying users.

In content distribution, facial recognition acts as a security

layer, granting access only to registered users. It prevents

unauthorized access by matching real-time facial scans with

stored biometric templates. When integrated with crypto-

graphic techniques like AES encryption and blockchain log-

ging, it enhances security by ensuring that only verified users

can decrypt and access multimedia content.

Facial recognition improves usability by eliminating

password-based authentication, which is susceptible to hack-

ing. By combining it with decentralized storage solutions

like IPFS, content authenticity and integrity are further safe-

guarded. This approach strengthens digital rights management,

preventing piracy and unauthorized distribution.

III. METHODOLOGY

The design methodology for secure multimedia content

distribution using blockchain and cryptographic methods inte-

grates multiple technologies to ensure security, efficiency, and

authenticity. The system is designed with a layered approach,

combining encryption, distributed storage, authentication, and

blockchain logging to create a secure and decentralized frame-

work.

The first step in the methodology involves facial

recognition-based authentication. The system employs the

Multi-task Cascaded Convolutional Network for face detection

and the InceptionResnetV1 model for facial feature extrac-

tion. This ensures that only authorized users can access and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42012 | Page 3

Fig. 1. Data Processing Flowchart

distribute multimedia content. The extracted facial features are

converted into embeddings and stored securely for verification

purposes. Authentication is required before any encryption or

decryption process can be initiated.

The next stage is data encryption, where the Advanced

Encryption Standard is used to encrypt multimedia files before

storage or transmission. AES operates with a symmetric key

mechanism, ensuring that only users with the correct key can

decrypt the content. This protects the data from unauthorized

access and maintains confidentiality. A hash of the encrypted

file is generated using the SHA-256 algorithm, ensuring data

integrity and preventing unauthorized modifications.

Once encrypted, the multimedia content is stored using the

InterPlanetary File System. IPFS provides a decentralized ap-

proach to content storage, reducing dependency on centralized

servers, and enhancing resilience against attacks. Files are

broken into smaller chunks, each with a unique cryptographic

hash, allowing efficient retrieval and verification. The hash of

the stored file is then recorded on the blockchain to maintain

an immutable log of transactions, ensuring that the content

remains tamper-proof.

Blockchain technology plays a crucial role in this sys-

tem by maintaining a transparent and verifiable record of

content distribution. Each transaction, including encryption,

storage, and retrieval, is recorded on a blockchain ledger.

Smart contracts are used to automate access control, ensuring

that only authenticated users with valid keys can retrieve

content. The decentralized nature of the blockchain prevents

data manipulation and improves trust among users.

The graphical user interface is designed using Tkinter

to provide an interactive and user-friendly experience. The

interface allows users to upload, encrypt, store, and retrieve

multimedia content seamlessly. A text box is included for

the receiver to enter their decryption key, ensuring that only

authorized individuals can access the content. The system

also provides real-time notifications and logs for user actions,

increasing transparency and usability.

The project implementation also includes threading to han-

dle multiple processes simultaneously, improving efficiency

and performance. Computationally intensive tasks such as

facial recognition and encryption run in separate threads to

prevent interface lag. In addition, subprocess modules are used

to execute external blockchain-related operations, ensuring

smooth integration with blockchain networks.

Security measures such as hash-based file retrieval and

authentication logs enhance the robustness of the system.

The combination of cryptographic techniques, decentralized

storage, and blockchain logging provides a highly secure

framework for the distribution of multimedia content. The

methodology ensures that only authorized users can access

the content while maintaining data integrity and preventing

unauthorized modifications. By integrating multiple security

mechanisms, the project achieves a balance between accessi-

bility and security, offering a reliable solution for the secure

distribution of multimedia.

IV. SOFTWARE REQUIMENTS

Anaconda is an open source Python and R distribution,

widely used for data science, machine learning, and sci-

entific computing. It comes with pre-installed libraries like

NumPy, Pandas, and Matplotlib, making it ideal for analytics

and AI development. Spyder is an integrated development

environment (IDE) within Anaconda, designed for Python

programming. It offers features like syntax highlighting, de-

bugging, and variable exploration, catering to researchers and

developers. The Spyder interactive interface supports scien-

tific workflows, integrating with the Jupyter Notebook and

IPython. The Anaconda package manager, Conda, simplifies

dependency management, making it a powerful tool for the

distribution of secure multimedia content and cryptographic

applications.

V. IMPLEMENTATION

A. Blockchain

This Python code defines a simple blockchain system us-

ing the ‘Block‘ and ‘Blockchain‘ classes. The ‘Block‘ class

represents an individual block in the chain, storing attributes

such as index, previous block hash, timestamp, data, nonce,

and its hash. The ‘calculate hash‘ method generates a unique

hash for the block using SHA-256 encryption by encoding

the concatenated block attributes. The ‘Blockchain‘ class

initializes a blockchain with a genesis block, which is the

first block in the chain. It maintains a list of blocks and

has a ‘difficulty‘ attribute to control mining complexity. The

‘create genesis block‘ method generates the first block with

a predefined previous hash. The ‘get latest block‘ method

retrieves the most recent block in the chain. New blocks are

added using the ‘add block‘ method, which sets the previous

block’s hash and recalculates the new block’s hash. The ‘is

chain valid‘ method verifies blockchain integrity by ensuring

each block’s hash remains unchanged and correctly references

the previous block’s hash. This implementation establishes a

basic, immutable ledger where each block securely links to

the previous one. It ensures data integrity and security, making

it useful for applications such as secure content distribution,

financial transactions, or decentralized authentication systems.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42012 | Page 4

B. Facial Recognition for Authentication

This Python code implements a facial recognition system

using ‘MTCNN‘ for face detection and ‘InceptionResnetV1‘

for face encoding. The ‘detect and encode‘ function detects

faces in an image using ‘mtcnn.detect()‘ and extracts their

features. Detected faces are cropped, resized to 160x160

pixels, normalized, and converted into a tensor. The ‘resnet‘

model then generates a unique numerical encoding for each

face, which is stored as a flattened NumPy array.

The ‘encode faces from directory‘ function scans a specified

directory for image files (‘.jpg‘, ‘.jpeg‘, ‘.png‘), reads them,

converts them to RGB format, and applies ‘detect and encode‘

to extract facial encodings. These encodings, along with the

corresponding file names (without extensions), are stored

in separate lists: ‘known face encodings‘ and ‘known face

names‘.

The ‘recognize faces‘ function compares test face encodings

against known encodings using the Euclidean distance. The

smallest distance is identified, and if it is below a defined

threshold (0.6), the associated name is assigned; otherwise,

the face is labeled as ”Unknown.” This process enables real-

time or batch facial recognition for authentication or security

applications, making it suitable for multimedia content distri-

bution, access control, and secure identity verification.

C. Cryptography

This Python code provides encryption and decryption func-

tions using the AES algorithm in CFM to secure file storage

and transfer. The ‘encrypt file‘ function reads a file’s contents,

encrypts it using AES with a key derived from the SHA-256

hash of a predefined string (‘”securekey12345”‘), and then

writes the encrypted data to a new file with a ‘.enc‘ extension

in a designated encrypted folder. The encryption process uses

a 16-byte initialization vector (‘”0123456789ABCDEF”‘) for

CFB mode, ensuring that identical plaintexts do not produce

the same ciphertext.

After encryption, the function computes a SHA-256 hash of

the encrypted file path, storing it in a mapping file (‘HASH

MAPPING FILE‘) along with the file path for later retrieval.

This hash ensures file integrity and can be used for verification

or tracking.

The ‘decrypt file‘ function reverses the encryption process.

It reads the encrypted file, applies the same AES decryption

with the predefined key and IV, and restores the original

plaintext. The decrypted data is then saved to the specified

output location.

This approach ensures secure file handling while allowing

easy retrieval and decryption. However, using a hardcoded

key and IV poses a security risk and should be replaced with

dynamic, user-generated keys for enhanced security.

D. Identity Verification

This Python code provides two main functions: ‘capture

photo‘ and ‘verify identity‘, both utilizing OpenCV and

FaceNet for facial recognition. The ‘capture photo‘ func-

tion captures a photo using a webcam, detects a face using

MTCNN, and saves the image to a predefined directory. It

continuously reads frames from the webcam and detects faces.

If a face is detected, it is highlighted with a green rectangle.

The user can press ’C’ to capture the image, but only if a face

is detected. Otherwise, a warning message appears. The user

can exit by pressing ’Q’.

The ‘verify identity‘ function checks if a person’s face

matches known faces stored in a directory. It first encodes all

known faces using ‘encode faces from directory‘. Then, it con-

tinuously captures webcam frames, detects faces, and encodes

them using ‘detect and encode‘. The function compares the

captured face encoding with stored face encodings using ‘rec-

ognize faces‘. If the input name matches a recognized name,

verification is successful. The function runs for a maximum of

30 seconds, allowing the user to cancel verification by pressing

’Q’.

This system ensures secure authentication using facial

recognition, making it useful for secure access control in

multimedia content distribution or encrypted file management

applications.

E. Encryption

This code provides a GUI-based file encryption process with

facial recognition. The ‘browse encrypt‘ function allows users

to select a file for encryption. ‘start encryption‘ verifies that

a file and name are provided before initiating encryption in

a separate thread. The ‘process encryption‘ function captures

the user’s photo for identity verification, encodes known faces,

and encrypts the selected file. The encryption process logs the

action in a blockchain. If successful, the user receives a file

hash and a success message. The progress bar indicates status

updates, ensuring smooth user interaction. Errors are handled

with appropriate messages to maintain usability.

F. Decryption

This code handles secure file decryption with identity ver-

ification. ‘start decryption‘ checks if a file hash and name

are provided before launching the decryption in a separate

thread. ‘process decryption‘ first verifies the user’s identity

using facial recognition. If successful, it retrieves the encrypted

file path from a stored hash mapping. If the file is found,

the user selects a save location, and decryption begins. The

decrypted file is restored, and the action is logged in the

blockchain. Status updates and error handling ensure smooth

user experience, with a progress bar indicating the operation’s

status.

G. Hash Window

This code provides utility functions for displaying encryp-

tion hashes and accessing logs in a secure file encryption and

decryption system. The ‘show hash window‘ function creates

a pop-up window displaying the hash of an encrypted file,

allowing users to copy it easily. It initializes a new top-level

window with a label and an entry field containing the file hash.

The entry field supports click-to-copy functionality, where

clicking inside clears and copies the hash to the clipboard.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42012 | Page 5

The ‘view logs‘ function enables users to open the system’s

log file, which records encryption and decryption events. It

checks if the log file exists and, depending on the operating

system, opens it using Notepad on Windows or the default text

editor on Linux/macOS. Similarly, ‘open mappings‘ allows

users to open the file that stores hash mappings of encrypted

files. It follows the same OS-dependent approach to ensure

compatibility across platforms.

VI. RESULTS AND ANALYSIS

A. Authentication

The system captures and processes facial images of the users

for authentication before encryption or decryption. The capture

photo() function opens the webcam and detects faces using

Multi-Task Cascaded Convolutional Networks (MTCNN) as

shown in Figure 2. If a face is detected, the system saves the

captured image with the user’s name for future authentication.

Fig. 2. Stored Faces for Recognition

Fig. 3. Capture of Face to Recognise

During decryption, verify identity() compares the captured

image with stored face encodings. It loads known faces from a

directory, encodes the current frame using InceptionResnetV1,

and matches it against stored encodings. If a match is found

within a threshold, the user is authenticated. The output here

is a boolean value—either True (successful authentication) or

False (failed authentication).

B. Encryption and Storage

The user selects a file through the GUI’s browse encrypt()

function as shown in Figure 4. The start encryption() function

checks if a file is selected and starts encryption in a separate

thread. encrypt file() handles encryption using AES (Advanced

Encryption Standard) in CFB (Cipher Feedback) mode. The

encryption key is derived from a SHA-256 hash, ensuring

security.

Fig. 4. Encryption Inputs

Fig. 5. Encrypted Files Saved

The plaintext file is read and encrypted, producing an

encrypted file with a .enc extension. A unique hash value

(SHA-256) of the file path is generated, ensuring integrity.This

hash and the encrypted file path are stored in a mapping file.

The output of this process includes, An encrypted file saved

with a .enc extension and a file hash displayed in a pop-up

window, allowing users to store it for future decryption.

C. Blockchain Logging

Every encryption or decryption event is logged in a

blockchain as in Fig 6. This ensures transparency, immutabil-

ity, and traceability of actions performed in the system. A

new block is created with details such as operation type

(ENCRYPT or DECRYPT), username, and filename.

The hash of the previous block is linked to maintain a valid

chain. The is chain valid() function verifies the blockchain

integrity by checking hashes and previous hash links.

A new block added to the blockchain with operation details.

A log file updated with transaction records.

D. Decryption Process

The process follows these steps: verify identity() is executed

to confirm user identity. The system searches the HASH MAP-

PING FILE for the entered hash. If found, the corresponding

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42012 | Page 6

Fig. 6. Blockchain Logs

encrypted file path is retrieved. The user selects a save location

for the decrypted file as shown in Figure 7. decrypt file() uses

the same AES encryption key and mode to decrypt the file.

efficiently encrypts and decrypts files while maintaining user

authentication through facial recognition, minimizing security

risks. The implementation of a SHA-256-based hash mapping

mechanism enables reliable file tracking and verification, pre-

venting unauthorized access. The user-friendly GUI enhances

accessibility, making encryption and decryption straightfor-

ward.

VIII. FUTURE WORK

The future scope of this project includes several advance-

ments that can enhance security, efficiency, and scalability.

One potential improvement is the integration of quantum-

resistant encryption algorithms, ensuring protection against

future quantum computing threats. Advanced biometric au-

thentication methods, such as iris or fingerprint recognition,

can further strengthen identity verification. Additionally, in-

corporating zero-knowledge proofs can enable authentication

without revealing sensitive data. Enhancing IPFS with edge

computing can reduce latency and improve file retrieval per-

formance.

Fig. 7. Decryption Interface

The decrypted content is saved to the specified location.

The decrypted file restored to its original format. A success

message displayed in the GUI. Blockchain updated with the

decryption log.

Fig. 8. Main Interface

VII. CONCLUSION

This project successfully implements a secure multime-

dia content distribution system using blockchain and crypto-

graphic methods, ensuring data confidentiality and access con-

trol. By integrating AES encryption with facial recognition-

based authentication, it enhances security by restricting de-

cryption to verified users. Blockchain logging ensures trans-

parency and immutability, preventing unauthorized file modi-

fications. The use of IPFS facilitates decentralized file storage,

reducing reliance on traditional centralized servers. The system

REFERENCES

[1] Y. Zhang, J. Ren, and W. Zhang, “Blockchain-based efficient and
secure data sharing for Internet of Things,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 5794–5805, Jun. 2019, doi:
10.1109/JIOT.2019.2902685.

[2] M. S. Kiruthika, T. Subramani, and K. Venkatesh, “Secured mul-
timedia distribution using blockchain and cryptographic techniques,”
IEEE Access, vol. 9, pp. 132718–132728, Sep. 2021, doi: 10.1109/AC-
CESS.2021.3116418.

[3] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security
of blockchain systems,” Future Generation Computer Systems, vol. 107,
pp. 841–853, Jun. 2020, doi: 10.1016/j.future.2017.08.020.

[4] G. Zyskind, O. Nathan, and A. Pentland, “Decentralizing privacy: Using
blockchain to protect personal data,” in Proc. IEEE Security and Privacy
Workshops (SPW), San Jose, CA, USA, May 2015, pp. 180–184, doi:
10.1109/SPW.2015.27.

[5] H. Yin, J. Zhang, and Y. Wang, “A blockchain-based framework for data
security in multimedia content distribution,” in Proc. IEEE Int. Conf.
Big Data (BigData), Seattle, WA, USA, Dec. 2018, pp. 4577–4584, doi:
10.1109/BigData.2018.8621982.

[6] M. Conti, S. Kumar, C. Lal, and S. Ruj, “A survey on security
and privacy issues of blockchain technology,” IEEE Communica-
tions Surveys and Tutorials, vol. 21, no. 2, pp. 102–137, 2019, doi:
10.1109/COMST.2018.2842460.

[7] X. Xie, “An overview of blockchain technology,” in Proc. IEEE Int.
Conf. Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu,
China, Apr. 2019, pp. 144–149, doi: 10.1109/ICCCBDA.2019.8729903.

[8] J. Shen, D. Liu, and Q. Wu, “Blockchain-based secure multimedia
content distribution system with watermarking technique,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 19, no. 5, pp. 3395–
3408, Sep. 2022, doi: 10.1109/TDSC.2021.3076880.

[9] M. Mollah, J. Zhao, and D. Niyato, “Blockchain for future smart grid:
A comprehensive survey,” IEEE Internet of Things Journal, vol. 8, no.
1, pp. 18–43, Jan. 2021, doi: 10.1109/JIOT.2020.3006820.

[10] J. Huang, Q. Zhang, and L. Sun, “A secure and efficient
blockchain-based multimedia copyright protection scheme,” IEEE
Transactions on Multimedia, vol. 23, pp. 2118–2130, 2021, doi:
10.1109/TMM.2020.3037123.

http://www.ijsrem.com/

