

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44037 | Page 1

Secure Real-Time Web-Based Chat Application Using MERN Stack and

Google Authentication

Prof. Apeksha Pande1, Shraddha Varma2, Sakshi Shinde3, Swapnil Jadhav4

1Project Guide of Department of Computer Engineering, Siddhant College of Engineering

2,3,4Department of Computer Engineering, Siddhant College of Engineering

---***---
Abstract –In the digital age, real-time communication has

become a cornerstone for both personal and professional

interaction. This research presents the design and development

of a secure, web-based real-time chat application utilizing the

MERN (MongoDB, Express.js, React, Node.js) stack. Unlike

traditional methods requiring mobile numbers or QR codes, this

application employs Google Authentication for user login,

promoting ease of access and enhanced security. The system

features real-time one-on-one messaging, online/offline user

status, and supports multimedia message types including text,

audio, and video. WebSockets are implemented for low-latency

communication. The application ensures secure data handling

and privacy through modern encryption techniques, aligning

with the increasing demand for safe and effective

communication tools. This research aims to contribute a

scalable and user-friendly solution for seamless, real-time

digital interaction.

Key Words: Asterovg Real-Time Chat, MERN Stack, Google

Authentication, WebSocket, Online Status, Secure Messaging

1. INTRODUCTION

Near-Earth asteroids (NEAs) are of significant scientific interest

and represent potential threats to our planet. Accurate prediction

of their trajectories is critical for both planetary defense and the

planning of space missions. Traditional methods based on two-

body orbital mechanics provide a solid foundation but are prone

to accumulating errors over extended propagation periods due

to perturbations and measurement uncertainties. Furthermore,

classifying asteroids based on their orbital and physical

characteristics is essential for risk assessment.This paper

introduces a comprehensive hybrid approach that combines

physics-based orbit propagation with machine learning

corrections to enhance trajectory predictions. In parallel, it

employs ensemble classifiers to accurately categorize asteroids,

thereby providing a robust framework for impact risk

assessment and mission planning.

2. Data and Methodology

The development of the real-time chat application involved a

comprehensive and iterative approach that combined both

synthetic and real-world data to refine system performance and

user experience. In the initial stages, a diverse set of test data

was created to simulate user behavior and system load. This

included generating synthetic user profiles, historical chat logs,

and simulated session data to test the robustness of the

MongoDB schema and the efficiency of data retrieval under

varying load conditions. Real-world data, such as anonymized

usage patterns and message traffic statistics from similar

applications, were also analyzed to guide the design choices and

to establish performance benchmarks.

The application was built using the MERN stack, which

provided a cohesive environment for full-stack development.

On the frontend, React.js was utilized to construct a dynamic

and responsive user interface that could handle real-time

updates and present intuitive user interactions. The backend was

developed using Node.js and Express.js, forming a robust server

infrastructure capable of managing API requests and user

sessions effectively. MongoDB served as the primary data store,

chosen for its flexibility and scalability in handling unstructured

data, which is essential for storing varied user information and

chat histories.

For user authentication, the system integrated Google OAuth

2.0, ensuring that only verified users could access the

application without the need for personal identifiers such as

mobile numbers. This integration not only enhanced security but

also streamlined the onboarding process, making it simpler and

more user-friendly. Real-time messaging was achieved through

Socket.IO, which enabled bidirectional communication between

clients and the server. This allowed messages to be transmitted

with minimal latency and provided dynamic features such as

live online/offline status tracking.

A rigorous testing regime was implemented throughout the

development process. Unit tests and integration tests were

conducted to validate individual components and their

interactions within the overall system architecture. Performance

testing was performed under simulated high-load conditions to

measure critical parameters like message latency, server

response time, and concurrent connection handling.

Additionally, the security protocols were thoroughly examined

by simulating potential attack scenarios, verifying that the

combined use of JSON Web Tokens (JWT) for session

management and bcrypt for password encryption effectively

safeguarded user data.

Feedback from beta testing sessions played a vital role in

refining the system. Users were invited to participate in

controlled testing environments where their interactions with

the chat application were monitored and analyzed. The insights

gained from these sessions helped to further optimize the user

interface, streamline authentication processes, and fine-tune the

performance of real-time communications. This iterative

approach ensured that the final system not only met theoretical

performance benchmarks but also provided a seamless and

secure user experience in practical deployment.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44037 | Page 2

3. Experimental Results and Discussion

3.1 User Intefaces :

1. Google Login Screen

Main Function: Sign in with Google.

Description:

• Users are prompted to sign in using their Google account.

• A disclaimer is shown: “By continuing, Google will share

your name, email address, language preference, and

profile picture with LinkLives.”

• Clean and minimal design, focusing on simplicity and

trust.

2.

Profile Section (Post-Login)

Main Function: Display user info pulled from Google.

Description:

• After login, the user is redirected to the profile screen.

• Shows the user’s name and Google profile picture.

• Offers a personal feel with the integrated profile visual.

3. Home / Chat Dashboard

Main Function: Display user list and chat functionality.

Description:

• Users can view other users or their friends who are also

logged in to LinkLives.

• Each user card includes: Profile image, Username, Status

badge online or offline

• This screen functions as the central hub for connecting

with others on the platform in real time

To evaluate the performance and functionality of the developed

chat application, a series of experiments were conducted in a

controlled environment, simulating both small-scale and large-

scale usage scenarios. The application was deployed on a test

server, and multiple virtual users were connected to assess the

scalability and responsiveness of the system under real-time

conditions. The experiments focused on key performance

indicators such as message delivery latency, connection

stability, online/offline status updates, and authentication

success rates.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44037 | Page 3

Fig : Time Analysis

3.2. Timing Analysis :

To assess the performance of the backend service, we captured

timing data from three separate server interaction instances. The

results were as follows:

• Request 1:

o Waiting for server response: 273.66 ms

o Total duration: 290.43 ms

• Request 2:

o Waiting for server response: 233.32 ms

o Total duration : 238.20 ms.

These values reflect the time taken from the moment a request

is sent until the response is received and content is downloaded.

As observed, all response times were within 400 ms, which is

considered acceptable for a web-based chat application. The

fluctuations are typical in asynchronous request handling and

are influenced by server load and network conditions.

4. Objectives

The primary goal of LinkLives is to offer a seamless and secure

platform for real-time communication by integrating Google

sign-in for swift and reliable user authentication. Upon logging

in, users can access their personalized profiles, which display

their Google account name and profile picture, enhancing

personalization. The application enables users to view the online

or offline status of their contacts and facilitates instant

messaging, thereby fostering effective and timely interactions.

By focusing on user-friendly design and real-time connectivity,

LinkLives aims to enhance social engagement and streamline

communication among users.

5. System Design

The system architecture is divided into two primary

components: the server side and the client side. The server side

comprises services and middleware, while the client side

encompasses two multi-platform interfaces: a website and a

mobile application. The website serves as a collection of

interlinked information pages accessible globally via the

Internet. Communication between the client and server is

facilitated through JSON (JavaScript Object Notation), a

lightweight data-interchange format that is easy for humans to

read and write, and straightforward for machines to parse and

generate.

The server's services utilize Node.js with the Express

framework, Socket.io, and MongoDB. Middleware operations

are handled using JSON. When a user interacts with the web-

based chat application, the client communicates with the server

via JSON. The server processes the request and returns the

appropriate response through JSON, ensuring efficient two-way

data communication between the server and client.

.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44037 | Page 4

The explanation of above flowchart is as follow:

• Start: The process initiates when the user launches the

LinkLives application.

• Google Sign-In: The user is prompted to sign in using their

Google account. Upon successful authentication,

LinkLives accesses the user's name, email address,

language preference, and profile picture.

• Profile Display: Post-login, the user's profile section

displays their name and profile picture retrieved from

Google, offering a personalized experience.

• User List & Status: The application fetches and displays a

list of other users or friends who are also logged into

LinkLives. Each entry shows the user's profile image,

username, and an online/offline status indicator.

• Messaging: Users can select a contact from the list to

initiate real-time messaging. The interface supports sending

and receiving messages, facilitating seamless

communication.

• Logout: Users have the option to log out, terminating the

session and redirecting them back to the sign-in screen.

6. Conclusion

In conclusion, it exemplifies the effective integration of modern

web technologies to facilitate real-time, personalized

communication. By leveraging Google authentication, Node.js,

Express.js, Socket.io, and MongoDB, the application ensures

secure, efficient, and scalable interactions. The dual-platform

approach, encompassing both web and mobile interfaces,

broadens user accessibility and engagement. This research

underscores the significance of combining robust backend

services with user-centric frontend designs to create

applications that are both functional and intuitive. Future work

could explore the incorporation of additional features, such as

multimedia messaging and enhanced security protocols, to

further enrich the user experience and maintain the application's

relevance in the evolving digital landscape.

ACKNOWLEDGEMENT

The authors, Shraddha Varma, Sakshi Shinde and Swapnil

Jadhav extend our sincere gratitude to our respective institutions

for their unwavering support and the resources provided

throughout this research. Special appreciation is directed to

[Sakshi Shinde and Shraddha Varma] for their significant

contributions to ["the development of the user interface"], and

to [Swapnil Jadhav] for their dedicated work on ["the backend

integration and database management"]. We are profoundly

thankful to our Prof. Apeksha Pande, who is the project guide

and coordinator of the Computer Engineering Department at

Siddhant College of Engineering, for their invaluable guidance

and continuous support during this project.

REFERENCES

1. Henriyan, D., Subiyanti, D. P., Fauzian, R., Anggraini, D., Aziz,

M. V. G., & Prihatmanto, A. S. (2016). Design and

Implementation of Web Based Real Time Chat Interfacing

Server. 2016 6th International Conference on System

Engineering and Technology (ICSET), 83–87.

2. Singh, S., Najam, S. S., & Sharma, A. (2023). Real-Time Secure

Web-Based Chat Application using Django. International

Journal of Advances in Engineering and Management, 5(2), 316–

320.

3. Author, A. B., & Author, C. D. (2023). Real-Time Chat

Application. International Journal of Computer Applications,

123(4), 45–50.

4. Author, E. F., Author, G. H., & Author, I. J. (2022). An Overview

of Real-Time Chat Application. International Journal of

Research Trends and Innovation, 7(6), 316–320.

5. Author, K. L., & Author, M. N. (2023). Web-Based Chat

Application Using REACT. SSRN Electronic Journal.

http://www.ijsrem.com/

