
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 10 | October - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26147 | Page 1

SECURE SOFTWARE DEVELOPMENT BASED ON A

COMPREHENSIVE FRAMEWORK

MOHAIDEEN.A 1

Department of CSE (Data Science)

Malla Reddy College of Engineering,

Dhulapally, Secunderabad

Telangana,India

mohaideenamqtr@gmail.com

V.SREETHARAN2

Department of Computer Science and

Engineering, St Martin’s Engineering

College, Dhulapally, Secunderabad,

Telangana, India

sreetharannerist@gmail.com

E.PAVITHRA3

Department of CSE (Data Science)

Malla Reddy College of Engineering,

Dhulapally, Secunderabad

Telangana,India

pavielango@gmail.com

Abstract: - To design, build and deploy secure

systems, we must integrate security into our

application development life cycle and adapt

current software engineering practices and

methodologies to include specific security-related

activities. Developers enforces security measures

during design phase of software development

processes which may end up in specifying security

related architecture constraints that are not really

necessary. To eliminate this problem, we propose a

Framework for Security Engineering Process that

involves converting security requirements and

threats into design decisions to mitigate the

identified security threats. The identified design

attributes are prioritized and a security design

template is prepared.

Keywords- Security engineering process, Security

requirement engineering, Security design

engineering, Security design template,

Cryptographic techniques, Cryptographic attacks

I. INTRODUCTION

Processes and techniques for implementing

security in software and related systems are the main

emphasis of security engineering.

A growing focus on how to create secure software

has been sparked by the quick development of

internet-based software systems that store sensitive

data and perform essential functions [1]. The security

requirements that are enforced by current software

development procedures during the design phase may

lead to the specification of unnecessary security-

related architectural constraints. The final software

system may therefore employ less effective

mechanisms at higher expense.

Fire smith [2] defined security requirement as

high level requirements that gives specification of

system behavior and distinguish these from security

related architectural constraints so that requirement

engineers can discover true security requirements. A

number of proposals have been made for finding and

eliciting security requirements, including attack trees

[7], misuse cases [8, 9], common criteria [10], and

abuse cases [3, 4]. Based on well-established secure

software development practice standards from

organizations like BSA, OWASP, and SAFE Code,

the Secure Software Development Framework (SSDF)

is a collection of fundamental, solid, and secure

software development principles. Software security is

rarely explicitly covered in detail in software

development life cycle (SDLC) models, therefore

principles from the SSDF must be added to and

incorporated into every SDLC implementation.

By using the SSDF techniques, software

developers can lessen the amount of vulnerabilities in

their products, lessen the potential effect of exploiting

undiscovered or untreated flaws, and deal with the

underlying causes of vulnerabilities to stop them from

happening again. Software developers and buyers can

improve their communication for procurement

procedures and other management tasks by using the

SSDF, which offers a consistent vocabulary for

discussing safe software development methods. Our

earlier work [19–21] proposed a framework for secure

software development, where security engineering

activities like (i) Security requirements elicitation,

analysis & prioritization, specification and

management; (ii) Appropriate design decision; and

(iii) Implementation of all functionalities

incorporating design decision should be carried out.

http://www.ijsrem.com/
mailto:mohaideenamqtr@gmail.com
mailto:sreetharannerist@gmail.com
mailto:pavielango@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 10 | October - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26147 | Page 2

A technique for developing software that integrates

security at each stage of the software development life

cycle (SDLC) is known as secure software

development. These design choices for security

requirements call for a systems-level modeling of the

software environment. We focus on design decision

issue (ii) in this work. Following the elicitation and

prioritization of security needs, the best design choices

will take into account security threats. This is essential

for today's software projects. These initiatives must find

a cost-effective solution without compromising the

requisite availability of necessary services because of

their tight schedules.

In our method, design choices are made to mitigate

the identified security dangers once security needs and

threats are determined during the security requirement

elicitation step. The various security services are

matched to the many sorts of security requirements. A

security design template (SDT) is created based on the

collection of critical security attributes that affect design

decisions at different tiers of the security engineering

process after the identified design attributes are

prioritized. By removing unneeded design constraints in

a given case, we finally learn about the precise

cryptographic procedures that will eventually aid in the

latter stages of the design process. The repository houses

a variety of cryptography methods together with their

analytical properties. We use a relevant case study from

the Web to demonstrate our process.

II. RELATED WORKS

Selection of inappropriate software package and

security modules may be very costly. Adversely affect

business processes and functioning of the organization

inversely [22]. The common security goal is to keep the

assets of the organization securely. The organizations

are needs protect from intruder or accidental detriment

by recognized actors of the system. Conventionally it is

known as security of information and is expressed as

confidentiality, integrity and availability of information

in an organization which is called as CIA triad.

⦁ Security engineering

Complex security-related processes, including

security engineering, are involved. Identification,

management, and implementation of security

requirements, security design, implementation of

security mechanisms, and security testing are among

the security-related activities [13]. Design decisions

may be made that are most suitable when actual security

needs are defined. In addition to proposing an overall

structure for the software from a security standpoint, the

design phase defines how the identified needs (gathered

from the security requirement engineering phase) might

be implemented in a specific context. The major

objective of this phase is to obtain an orderly and

systematic framework for security functionality and the

design choices made for it.

Complex security-related processes, including

security engineering, are involved. Identification,

management, and implementation of security

requirements, security design, implementation of

security mechanisms, and security testing are among

the security-related activities [13]. Design decisions

may be made that are most suitable when actual security

needs are defined. In addition to proposing an overall

structure for the software from a security standpoint, the

design phase defines how the identified needs (gathered

from the security requirement engineering phase) might

be implemented in a specific context. The major

objective of this phase is to obtain an orderly and

systematic framework for security functionality and the

design choices made for it.

In 2002, an aspect oriented design technique is

proposed to model and integrate security concerns into

design by weaving the aspects in a primary model [12].

A design aspect can be modelled from a variety of

perspective. In this paper only static and interaction

aspects views are considered. This paper describes

steps for weaving an aspect in primary model. But the

technique fails to address the impact of the security

concern on each design unit with respect to a given

application environment. Also it does not focus on any

well-defined framework through which developers can

make design decisions to develop efficient cost

effective secure system.

A design technique employing security patterns and the

PICO design model using UMLsec are proposed by

Apvrilla et al. in 2005 [13]. The PICO program has

three separate services, including a subscription service

for handling initial user registration, a presence service

for maintaining a list of online users, and an instant

messaging service for sending the user's instant

message to the recipients. The design of the presence

service using security patterns and the design of the

instant messaging service using UMLsec are the main

topics of this paper. These topics are only a portion of

the development process and do not constitute a whole

solution to the issue. ''Trustworthy Computing Security

creation Lifecycle (or SDL)'' is a procedure that

Microsoft has established for the creation of software

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 10 | October - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26147 | Page 3

that must survive hostile assault, according to Lipner et

al.'s [14] discussion. The high-level principles of secure

by design, secure by default, and secure in deployment

are described in this article, along with experiences with

their use in Microsoft software. However, the software

must be architected, built, and deployed in order to

safeguard both the data it processes and itself, as well

as to fend off assaults in a specific application context.

A secure software development policy is not only

advised, but in some circumstances, it is actually

required. Organizations complying with SOC 2 Type 2

or ISO 27001, for instance, are required to establish a

secure development policy. Your team may create a

custom policy from start or draw inspiration from tools

like the ISO 27001 template manual.

Data security using cryptography is a methodical

defense against outsiders. To prevent unauthorized

change, a sensitive item (asset) needs encryption,

authentication, and access control. The term

"symmetric" or "secret key cryptography" refers to any

type of text encryption or decryption that uses the same

key for both operations. Table 1 below lists a few

symmetric algorithms along with their block and key

sizes.

Where symmetric key methods of cryptography are

utilized, the sharing of the secret key—which is

necessary for both encryption and decryption—can be

a serious security risk. This is not a problem in the same

manner in asymmetric or public key encryption. The

employment of two mathematically linked keys—

public and private—ensures that plain text encrypted

with one key can only be unlocked by using the other.

The solution reduces the chance of security being

compromised because the private key is not provided

by the user. The most cutting-edge methods are founded

on HECC [26] and ECC [25]. Table 2 below lists the

timings of several operations for a few asymmetric

algorithms.

III. CRYPTOGRAPHIC ATTACKS

Usually a system is designed to protect against certain

threats, while other threats might not have been

addressed [24]. A threat is a harm that can happen to an

asset, composed of a threat agent and an attack method

[17]. Thus a good authentication scheme should

provide protection from different attacks relevant to

that protocol. Here we have identified some of the

possible attacks for password based authentication and

short formed (as UA1, UA2 etc.) them. These

cryptographic attacks are listed below.

Name of

algorithm

Block size (bits) Key size (bits) Encryption

speed (on 33

MHZ 486SX)
(Kb/s)

DES 64 56 35

Blowfish 64 128 182

3DES (Triple
DES)

64 168 12

IDEA 64 128 70

AES 128 128 60

CAST 64 128 53

RC5 64 128 86

RC4 (Stream
cipher)

One byte at a time 256 164

SEAL (Stream
cipher)

One byte at a time 160 381

PIKE (Stream
cipher)

One byte at a time 160 62

Table 1: Some popular asymmetric ciphers [32]

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 10 | October - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26147 | Page 4

Name of

algorithm

Encryption (ms) Decryption (ms) Decryption (ms) Verify (ms)

RSA (512 bits) 30 160 160 20

RSA (768 bits) 50 480 520 70

RSA (1024 bits) 80 930 970 80

ECDSA (160 bits) 797 281 150 230

ECDSA (233 bits) 882 385 250 521

ECDSA (283 bits) 928 400 25 580

HECDSA (81 bits) 668 191 60 31

HECDSA (83 bits) 893 224 56 32

ElGamal (512 bits) 330 240 250 1370

Table 2: Some popular hash functions [32]

⦁Man-in-the-middle attack (UA1)

The attacker intercepts the message sent between the

client and the server and replay these intercepted

messages within a valid time with recorded messages.

⦁Denial of service attack (UA2)

The attacker updates password verification

information on smart card to some arbitrary value so

that legal user cannot login successfully in subsequent

login request to server.

⦁Replay attack (UA3)

The passive capture of data and its subsequent

retransmission to show unauthorized effect. Any

unauthorized malicious user can send duplicate data

repeatedly to the receiver which is already sent.

⦁Perfect forward secrecy (UA4)

The user’s password is compromised, it never allows

the adversary to determine the session key for past

sessions and decrypt them.

⦁Impersonation attack (UA5)

The attacker impersonates legitimate client and forges

the authentication messages using the information

obtained from the authentication scheme.

⦁Dictionary attack (UA7)

There are two types of dictionary attacks named as

Offline dictionary attack and online dictionary attack.

In Offline dictionary attack, the attacker can record

messages and attempts to guess user’s identity and

password from recorded messages. In Online

dictionary attack, the attacker pretends to be legitimate

client and attempt to login on to the server by guessing

different words as password from a dictionary.

⦁Stolen verifier attack (UA8)

An attacker who steals the password-verifier (e.g.,

hashed passwords) from the server can use the stolen-

verifier to impersonate a legal user to log in the

system.

⦁Smart card loss attack (UA9)

When the smart card is lost or stolen, unauthorized

users can easily change the password of the smart card,

can guess the password of the user by using password

guessing attacks.

⦁Insertion attack (UA10)

In this type of attack, the attacker modifies or inserts

some messages on the communication channel with

the hope of discovering client’s password or gaining

unauthorized access.

IV. PROPOSED FRAMEWORK FOR

SECURITY ENGINEERING

Security engineering deals with security-related

activities which include identifying security

requirements, prioritizing and management of security

requirements, security design, implementing security

mechanisms, security testing. The proposed

framework for overall security engineering process

(SEP) is shown in Fig. 1.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 10 | October - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26147 | Page 5

The concept of this framework for security

engineering process is an attempt to propose a design

framework taking the view of stakeholders as well as

environmental constraints in the earlier software

development phases [21]. We now discuss in detail

each activity of this proposed framework.

A. Security requirement engineering

This phase involves security discovery requirements,

eliciting, analyzing and managing them. It consists of

four different stages: Security Requirement

Elicitation, Security Requirement Analysis, Security

Requirement Prioritization and Security Requirement

Management. All the different activities perform in

each stage of this process are explained below:

i. Step 1: security requirement elicitation

In Security Requirement Elicitation phase different

tasks are performed as explain below:

⦁Identifiy the various abstract classes of actors as

direct and indirect actors. Direct actors are those who

directly interact with the system such as human,

software system and hardware devices. Indirect actors

refer to developers who develop software and people

who regulate application domain.

⦁Identify the functionalities of each actor

conceptualized in the previous step and also determine

associated non-functional requirements.

⦁Identify the threats associated with each of the

functional requirements or data which is used by the

functionality.

⦁Define the security requirements such as

authentication, integrity, non-repudiation etc. to

mitigate these threats.

ii. Step 2: security requirement analysis

The various tasks perform in analyzing the security

requirements are as follows:-

⦁Checking for completeness we make a check list to

check that the elicited security requirements have

mitigated all the threats to the functionality of the

system.

In the first step, we will evaluate the threats based on

the estimated risk value. For this we have to perform

the following tasks:

⦁Threat assembling after identifying the threats, a

repository of the threats will be developed as in

common criteria based approach [6, 30]. Actor profiles

will be maintained also in this repository. Thus

predefined threats can be retrieved from the repository

according to the profile of the actor.

⦁Threat rating after threat assembling, we have

assigned a value of each threat according to CRAMM

[11].

⦁Vulnerability measurement Assigning value to

corresponding vulnerability.

⦁Asset rating identify the concerned affected asset and

give them a value.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 10 | October - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26147 | Page 6

⦁Estimate the value of risk we can measure risk as Risk

= value based on measure of (Threat, Vulnerability,

Asset). After threat rating, assigning vulnerability

value and asset value, we will use the table given by

the CRAMM [11].

In the second step, we will prioritize the security

requirement after identifying threats. Initially we have

identified the measures of risk to all the threats and

prioritize them based on value of risk. After finding

out the high prioritized assets that are involved with

the particular security requirements, we calculate the

priority of security requirement just from the value of

threat priority.

iii. Step 4: security requirement management

As security requirement also evolve along with

functional and nonfunctional requirements, it is

necessary to maintain the information about traces of

each security requirements and its associated attributes

in this phase. The techniques for requirement

management presented in [31] can be used for this

activity. There are different types of traceability

information that must be maintained for the

management of security requirements.

iv. Step 3: security requirement prioritization

As security requirements are to mitigate threats and

avoid vulnerability and risk, they will be prioritized on

the measure of threat, vulnerability and risk. So

prioritization is done in following two steps:

Evaluation of threats Prioritization of security

requirement. Cryptographic services, design

structuring and finally design decisions. The steps of

this process are explained below.

B. Security design engineering

This phase deals with designing a software

structure that realizes the specification. So depending

upon the identified security requirements, we identify

the cryptographic services to mitigate the identified

security threat of the system. Bad decisions made

during the design phase can lead to design flaws that

can leave the system vulnerable to security threats, so

we focus on the design phase through a set of

systematic design activities mainly identification of

⦁Conflict resolution we resolve the contradictions that

may exist in the security requirements elicited from

different viewpoints.

⦁Grouping of requirements this step consists of

identifying the security requirements that can be

grouped together.

i. Step 1: mapping of security requirements with

security services

After the security requirements have been identified,

we proceed to the design phase of the security

engineering process i.e. prioritized security

requirements are mapped with security services like

confidentiality, integrity, authentication and non-

repudiation services. The different types of security

requirements proposed by Fire smith [2] are mapped

to the different security services provided by

cryptography. This would eventually help in the later

stages of the design process, by specifying which

crypto- graphic techniques would be suitable in a

particular scenario. After the security services have

been identified for the particular security requirement,

we proceed to the next activity i.e. security design

analysis.

ii. Step 2: security design analysis

This step will define what the prioritized threats

are and which assets are affected by these threats. This

step consists of two sub steps as explained below:

(2a) Mapping of the Prioritized threats with related

attacks. In security requirement prioritizing process

we identify different threats and prioritized the

security requirements according to threat analysis.

Now in this step, we first identify the threats which

affect the assets with high value. Then we identify

what type of attacks can be caused by these threats.

(2b) Mapping of attacks to security mechanism

(cryptographic techniques). In this step we map the

security attacks with the available techniques of

cryptography and calculate the impact of these attacks.

From our literature survey, the security analysis result

is shown in Table 5, for a password based

authentication in wireless network.

Applicability of the attacks on an algorithm shows

that whether the algorithm resists the attack (if resists

then applicability ‘N’ else ‘Y’) or not. For example,

AES does not resist the attack UA1 (Man-in-the-

middle attack), thus in Table 5, we have marked it as

‘Y’ that means this attack can be applicable for AES

when it is used in a password based authentication in

wireless network. In this mapping table we also

calculate the total impact which will help us to find out

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 10 | October - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26147 | Page 7

a set of algorithms which can protect the assets. In this

step the total impact shows the consequence of the

attacks that means if an attack is not applicable on an

algorithm then the impact of the attack is zero.

Accordingly we calculate the impact of all ten

identified attacks for an authentication scheme which

can be based on any one of the above specified

algorithm. On the next step we will consider the design

iii. Step 3: identifying security design constraints

A very common cause of protocol failure is that the

environment changes, so that assumptions that were

originally true no longer hold and the security

protocols cannot cope with new environment. A

security environment describes the context in which

the software is expected to evolve. The environment

affects the kind of threats the application is likely to

encounter. This is only because each environment has

some design constraints. So before design struck-

turning, first we have to find design constraints.

The Environmental Constraints of the target

deployment system is considered here depending on

whether the system would be implemented on a

wireless/mobile/mobile ad hoc environment. For a

web based system in wireless network, there are many

communicational constraints (like channel capacity,

bandwidth, power, through put etc.) and

computational constraints (like memory, encryption

speed, energy etc.). Suppose some important

information is transmitted from a mobile phone in a

mobile network. One of the design constraint

(encryption speed) here plays an important role for

selection of cryptographic technique. While

comparing the encryption speed of

symmetric/asymmetric ciphers (shown in Tables 1, 2)

on that device, some of the suitable crypto techniques

are DES, 3DES, CAST, RSA etc. Now the design

attributes will help us to select the best suitable

technique.

iv. Step 4: security design structuring

In this activity, different design attributes are

identified which affects the selection of cryptographic

protocols. The sub steps are explained below:

(4a) Identifying design attributes and prioritizing

them. While identifying them we have to first look

whether the system would be implemented on a

wireless/mobile/mobile ad hoc or any other

environment. The design attributes like cost,

implementation platform etc. greatly affect our design

choices because only a subset of cryptographic

algorithms can work efficiently on constrained

environments. Further, cryptographic algorithm would

differ depending upon the service requirement. For

example, symmetric key algorithms like AES, 3DES

would be more suitable for confidentiality service

requirement as they are 1000 times faster than

asymmetric key algorithms like RSA which are less

constraints to choose a particular security algorithm

which is best for a particular environment. Efficient

for large plain text encryption. But asymmetric key

algorithm like ECC is more suitable in constrained

devices with limited memory/processing

power/energy etc. for its short key size. Mainly we

separate the design attributes on the basis of the

devices used because their priorities are different for

High-end and Low-end devices. 4b) Preparation of

security design template (SDT). After the security

requirement and threats have been identified in the

requirement phase and security services and design

attributes identified in the first (phase of the design

process, we proceed with the next step in which a

security design template (SDT) is prepared to take care

of each security requirement. A design template is

shown in next section. This template will store each

specification of the design constraints and design

attributes of a particular environment for further

processing.

V. Conclusion

With a significant emphasis on security design

engineering, we have created a Framework for

Security Engineering Process. Every stage of the life

cycle has security considerations. The many security

services in our architecture are linked to the various

sorts of security requirements. To identify the specific

cryptographic algorithms in a given situation, the

discovered design criteria are prioritized, and a

security design template is created. The developers

may effectively discover and apply the right

cryptographic approach in a given context with the aid

of this framework. Eliciting security requirements and

security design become an inherent component of

system engineering and security engineering since this

approach is cohesive with the traditional software

engineering process.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 10 | October - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM26147 | Page 8

References

1. Anderson, R., Security Engineering: A Guide to Building

Dependable Distributed Systems. John Wiley & Sons, New

York, 2001.

2. Basin, D., Doser, J., Lodderstedt, T., Model Driven

Security for Process Oriented Systems. In Proceedings of the

8th ACM symposium on Access Control Models and

Technologies, Como, Italy, 2003

3. Bresciani, P. Giorgini, P., Giunchiglia, F., Mylopoulos, J.,

Perini, A., TROPOS: An Agent Oriented Software

Development Methodology. In Journal of Autonomous

Agents and Multi-Agent Systems, Kluwer Academic

Publishers Volume 8, Issue 3, Pages 203-236, 2004 62 H.

Mouratidis, J. Jürjens, and J. Fox

4. CEPSCO, Common Electronic Purse Specifications,

Business Requirements ver. 7, Functional Requirements ver.

6.3, Technical Specification ver. 2.2. Available from

http://www.cepsco.com [2000].

5. Crook, R., Ince, D., Lin, L., Nuseibeh, B., Security

Requirements Engineering: When Anti-requirements Hit the

Fan, In Proceedings of the 10th International Requirements

Engineering Conference, pp. 203-205, IEEE Press, 2002

6. Cysneiros, L.M. Sampaio do Prado Leite, J.P.,

Nonfunctional Requirements: From Elicitation to

Conceptual Models. IEEE Trans. Software Eng. 30(5): 328-

350 (2004)

7. Devanbu, P., Stubblebine, S., Software Engineering for

Security: a Roadmap. In Proceedings of ICSE 2000 (“the

conference of the future of Software engineering”), 2000.

8. Giorgini, P., Massacci, F., Mylopoulos, J., Requirements

Engineering meets Security: A Case Study on Modelling

Secure Electronic Transactions by VISA and Mastercard, in

Proceedings of the International Conference on Conceptual

Modelling (ER), LNCS 2813, pp. 263-276, Springer-Verlag,

2003.

9. Hermann, G. Pernul, G., Viewing business-process

security from different perspectives. International Journal of

electronic Commence 3:89-103, 1999

10. Jürjens, J., Shabalin, P., Tools for Critical Systems

Development with UML (Tool Demo), UML 2004 Satellite

22. The Economist, Digital rights and wrongs, July 17, 1999

23. van Lamsweerde, A., Letier, E., Handling Obstacles in

Goal-Oriented Requirements Engineering, Transactions of

Software Engineering, 26 (10): 978-1005, 2000

Events, Nuno Jardim Nunes, Bran Selic, Alberto Silva,

Ambrosio Toval (eds.), LNCS, Springer-Verlag 2004E.

[Accessible at http://www.UMLsec.org. Protected content

can be accessed as user: Reader, with password:

Ihavethebook]. Available as open-source.

11. Jürjens, J., Secure Systems Development with UML,

Springer, March-Verlag, 2004

12. McDermott, J., Fox, C., Using Abuse Case Models for

Security Requirements Analysis. In Proceedings of the 15th

Annual Computer Security Applications Conference,

December 1999.

13. Mouratidis, H., A Security Oriented Approach in the

Development of Multiagent Systems: Applied to the

Management of the Health and Social Care Needs of Older

People in England. PhD thesis, University of Sheffield,

U.K., 2004

14. Mouratidis, H., Giorgini, P., Manson, G., Integrating

Security and Systems Engineering: towards the modelling of

secure information systems. In Proceedings of the 15th

Conference on Advanced Information Systems (CaiSE

2003), Velden –Austria, 2003

15. Object Management Group, OMG Unified Modeling

Language Specification v1.5, March 2003. Version 1.5.

OMG Document formal/03-03-01.

16. Saltzer, J., Schroeder, M., The protection of

information in computer systems. Proceedings of the IEEE,

63(9):1278– 1308, September 1975.

17. Schneider, F., editor. Trust in Cyberspace. National

Academy Press, Washington, DC, 1999. Available as

http://www.nap.edu/readingroom/books/trust/.

18. Schneier, B., Secrets & Lies: Digital Security in a

Networked World, John Wiley & Sons, 2000

19. Schumacher, M., Roedig, U., Security Engineering with

Patterns. In Proceedings of the 8th Conference on Pattern

Languages for Programs (PLoP 2001), Illinois-USA,

September 2001

20. Schumacher, M., Security Engineering with patterns. In

LNCS 2754, Springer-Verlag, 2003

21. Shamir, A., Crypto Predictions. In 3rd International

Conference on Financial Cryptography (FC 1999), 1999.

24. Viega, J., McGraw, G., Building a Secure Software.

Addison-Wesley, Reading, MA, 2002.

http://www.ijsrem.com/
http://www.cepsco.com/
http://www.umlsec.org/
http://www.nap.edu/readingroom/books/trust/

