

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43782 | Page 1

Securing Cloud Storage Using Homomorphic Encryption

B M Sahana Rohith S Sandhiya C Padalingam

Department of Computer Science Department of Computer Science Department of Computer Science Department of Computer Science

and Engineering (Cyber Security) and Engineering (Cyber Security) and Engineering (Cyber Security) and Engineering (Cyber Security)

Sri Shakthi Institute of Engineering Sri Shakthi Institute of Engineering Sri Shakthi Institute ofEngineering Sri Shakthi Institute of Engineering

and Technology and Technology and Technology and Technology

Coimbatore-India Coimbatore-India Coimbatore-India Coimbatore-India

sahanabm23cys@srishakthi.ac.in rohiths23cys@srishakthi.ac.in sandhiyac23cys@srishakthi.ac.in padalingams23cys@srishakthi.ac.in

Mr. P Balaji

Associate Professor

Department of Computer Science

and Engineering (Cyber Security)

Sri Shakthi Institute of Engineering

and Technology

balajipcys@siet.ac.in

Abstract — This paper focuses on a secure, efficient solution for processing, encrypting, compressing, and storing files

in the cloud using Python. The system starts by converting a user-provided text file into ASCII values, which are then

encrypted using the CKKS (Cheon-Kim-Kim-Song) homomorphic encryption scheme provided by the TenSEAL library.

This encryption ensures that the data remains confidential and protected throughout the entire process. Once encrypted,

the file is compressed using Python's gzip module, reducing its size for faster uploads and minimizing storage space. The

final step uploads the compressed file to Dropbox, ensuring secure cloud storage. By combining encryption, compression,

and cloud integration, this project provides a robust method for securely managing sensitive data, making it ideal for

scenarios where both privacy and storage efficiency are paramount. The seamless flow from file conversion to cloud

storage offers a practical solution for securely handling large volumes of data.

Keywords — Cloud computing, Security, Cloud storage, Sensitive data, Homomorphic encryption.

1 INTRODUCTION

In today's digital age, the security of sensitive data is of paramount importance, especially with the rise of cloud computing,

where vast amounts of personal and business data are stored and processed remotely. The challenge of maintaining data

confidentiality, integrity, and privacy while leveraging the benefits of cloud storage requires advanced security techniques.

This project addresses these concerns by integrating homomorphic encryption, compression, and cloud storage to provide a

comprehensive and secure solution for data processing and storage. The primary objective is to ensure that sensitive data

remains encrypted and protected throughout its lifecycle—from the initial processing phase to final storage in the cloud.

At the heart of this project is homomorphic encryption, specifically the CKKS (Cheon-Kim-Kim-Song) scheme, which

allows computations to be performed on encrypted data without decrypting it. In traditional encryption methods, data must

be decrypted before it can be processed, exposing it to potential risks. However, homomorphic encryption allows operations

to be carried out directly on the encrypted data, ensuring that sensitive information remains private even while it is being

manipulated or analyzed. This technique is particularly valuable in cloud environments, where data is often processed by

third-party servers. By using the CKKS encryption scheme, the project ensures that even if data is accessed during

processing, it remains unreadable and secure.

Once the data is encrypted, the program moves to the next critical phase: compression. Encrypted data tends to be much

larger than its unencrypted counterpart, which can create storage and transmission challenges. To address this, the encrypted

data is compressed using Python’s gzip module. Compression reduces the size of the encrypted file, optimizing storage

efficiency and minimizing upload times. This step is essential for cloud storage, as it allows for faster data transfer and helps

conserve storage space, particularly when dealing with large files. By compressing the data before uploading it to cloud

storage, the project ensures that the encrypted files are both space-efficient and more manageable in terms of upload time.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43782 | Page 2

Finally, the compressed, encrypted file is uploaded to a cloud storage platform, such as Dropbox, using the Dropbox API.

Cloud storage has become an essential tool for modern data management, offering scalable, remote storage that can be

accessed from anywhere. However, this also raises security concerns, as cloud data is susceptible to unauthorized access

and breaches. To mitigate these risks, the project ensures that the data remains encrypted throughout the entire process, even

during transfer to and storage in the cloud. By integrating encryption, compression, and cloud storage, this project provides

a secure and efficient solution for managing sensitive data, ensuring that it remains protected from potential threats while

benefiting from the convenience and scalability of cloud platforms.

2 LITERATURE REVIEW

 Homomorphic encryption (HE) has become a promising solution for securing data during computation. It

allows computation on encrypted data without revealing sensitive information, thus ensuring privacy. Fully Homomorphic

Encryption (FHE) was a significant breakthrough introduced by Gentry (2009), which enabled arbitrary computation on

encrypted data, though its inefficiency in practice remained a key limitation. Since then, advancements in leveled

homomorphic encryption (LHE) and schemes such as CKKS (Cheon-Kim-Kim-Song) have improved its feasibility for

applications like privacy-preserving machine learning and data analytics. Recent studies such as Bachem et al. (2021)

discuss the use of CKKS for approximate computations over encrypted data, highlighting its use in real-world applications

where approximate results are acceptable. Kaya et al. (2023) further advance this by demonstrating how the TenSEAL

library has simplified the integration of homomorphic encryption for machine learning workflows, making it easier for data

scientists and engineers to apply encryption in secure data processing. Their work shows that CKKS can be used effectively

for encrypted data without compromising computational accuracy. Additionally, Mohammad et al. (2022) introduced

optimizations for homomorphic encryption schemes by leveraging GPU acceleration and parallel computing to improve

performance and reduce overhead, a significant concern in the practical application of HE. These innovations are critical

for implementing privacy-preserving computations at scale.

As cloud computing and storage services continue to grow, concerns about data privacy and security have emerged. In cloud

environments, data must be protected against unauthorized access, breaches, and data leakage. Zhang et al. (2022)

investigate the current state of cloud security and suggest that end-to-end encryption and access control mechanisms are

essential for ensuring confidentiality and privacy. They emphasize the importance of client-controlled encryption and

propose models for securing data without relying entirely on cloud service providers. Xie et al. (2021) introduced a hybrid

encryption model combining symmetric and asymmetric encryption to balance performance and security in cloud

environments. This approach ensures that cloud users' sensitive data remains confidential during storage and processing.

One of the significant contributions to cloud security is the integration of homomorphic encryption, which provides privacy-

preserving computations. Li et al. (2023) discuss how HE can be applied in cloud computing environments to prevent cloud

service providers from accessing raw data while enabling computations. By utilizing HE, data remains encrypted throughout

its lifecycle, from uploading to processing. However, key management in cloud environments remains an area of concern.

Zhao et al. (2024) address this issue by exploring secure key management protocols that enhance the security of encryption

keys, preventing unauthorized access to the keys that are critical for decrypting data. Their research highlights that even if

cloud service providers are compromised, the data remains

secure if the keys are properly managed. Data compression is another essential element in cloud storage systems, as it helps

reduce the volume of data that needs to be stored and transmitted, thus improving efficiency. Compressed files consume

less space, resulting in lower storage costs and faster upload/download speeds. However, when combined with encryption,

data compression becomes more challenging due to the randomness introduced by encryption algorithms. Encrypted data

typically has high entropy, which makes it resistant to compression, as there is little redundancy in the encrypted data to

exploit.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43782 | Page 3

Wang et. al.,(2021) discuss various methods of compressing encrypted data and the difficulties that arise when trying to

apply traditional compression techniques, such as gzip, to encrypted files. They suggest that encryption often reduces the

effectiveness of standard compression algorithms due to the lack of patterns in the encrypted data. To address this, they

propose using advanced techniques such as delta compression and dictionary-based compression specifically designed for

encrypted data. These methods aim to find patterns or redundancies within the encrypted data and compress it without

compromising its security. Khan et al. (2022) further expand on these methods by suggesting that a more tailored approach

to compression is needed for encrypted files. Their research focuses on optimizing compression algorithms based on the

encryption scheme used, as different types of encryption introduce different challenges for compression. They show that

applying such specialized algorithms can help reduce the size of encrypted files while maintaining data security, making

cloud storage more efficient and cost-effective. Furthermore, Singh et al. (2023) propose an integrated approach that

combines both encryption and compression to enhance the performance of cloud storage systems. Their work demonstrates

that by compressing data before encrypting it, cloud systems can achieve more efficient storage and faster data transmission.

Additionally, they discuss how incorporating these compression techniques with end-to-end encryption ensures that the data

remains secure during both storage and transfer. This integration of encryption and compression methods helps balance the

trade-offs between security and efficiency, offering practical solutions for cloud storage providers looking to enhance their

services.

The combination of homomorphic encryption, cloud storage security, and data compression has proven to be an effective

approach for addressing the challenges of securely processing and storing sensitive data in cloud environments. CKKS-

based encryption offers a promising solution to enable privacy-preserving computations on encrypted data, while the

integration of compression techniques helps reduce storage and transmission costs without compromising security. Recent

advancements in cloud key management (Zhao et al., 2024) and optimizations for homomorphic encryption (Mohammad

et al., 2022) contribute to making these solutions more practical and scalable. As the demand for secure and efficient cloud

storage continues to grow, the integration of these technologies will play a crucial role in ensuring the confidentiality,

integrity, and privacy of data in the cloud.

3 PROPOSED SYSTEM

This research investigates the vulnerabilities associated with storing and processing encrypted data in cloud environments,

focusing on compliance with data protection laws (e.g., GDPR, HIPAA, PCI-DSS). By leveraging Python and the

TenSEAL library, researchers evaluate how homomorphic encryption methods can align with regulatory requirements,

highlighting compliance measures for secure cloud storage. The study also examines legal precedents and enforcement

actions related to data breaches involving unencrypted cloud data, understanding the potential penalties for organizations

that fail to secure sensitive data.

Fig 3.1 Working of homomorphic encryption

The Fig 3.1 illustrates the process of Homomorphic Encryption, a method for securely processing data while keeping it

encrypted. In this process, a user (User 1) begins with plain text data that they wish to keep confidential. This data is

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

 © 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43782 | Page 4

encrypted on the user's side, converting it into ciphertext, which protects it from unauthorized access. The encrypted data

is then sent to a third party, referred to as the Model Owner (often a cloud service provider or computational model owner),

for processing. The unique aspect of homomorphic encryption is that the Model Owner can perform operations, such as

searches or computations, directly on the encrypted data without needing to decrypt it, ensuring that the content remains

confidential throughout. The Model Owner does not require the encryption key, which means they can process the data

without compromising its privacy. After processing, the encrypted results are sent back to the user, who then decrypts the

results to access the meaningful output. This approach provides significant privacy and security benefits by allowing

computations on sensitive data without exposing it, and by ensuring that the Model Owner never accesses the raw data or

the decryption key.

Fig 3.2 Securing cloud storage using homomorphic encryption

The Fig 3.2 illustrates the process of securing cloud storage using Homomorphic Encryption. It begins with a user

providing a text file containing data that they want to securely store in the cloud. Once the file is received, it undergoes

homomorphic encryption, transforming the file’s content into an encrypted format. Homomorphic encryption is a

cryptographic technique that allows data to remain encrypted even as it is stored, transmitted, or processed, ensuring

privacy and security. After the file is encrypted, it is saved in a designated folder. This step organizes the encrypted data

and prepares it for cloud storage. Next, the encrypted file is uploaded to a cloud storage platform—specifically Dropbox—

using the Dropbox Python library. This integration with Dropbox allows for automated uploading and storage of the

encrypted file in a cloud environment, enhancing the security of data storage by keeping the information encrypted at all

stages. With homomorphic encryption, even if unauthorized parties access the stored file, they would be unable to interpret

the data without the appropriate decryption keys. This secure storage process ensures data confidentiality, as the encryption

remains intact throughout. The flowchart concludes after the file is successfully stored in Dropbox, showing a simple yet

effective approach to secure sensitive information using cloud storage with homomorphic encryption.

 Fig 3.3 Performance over level of protection graph

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

 © 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43782 | Page 5

The Fig 3.3 illustrates the relationship between escalating protection levels and corresponding processing times in a cloud

storage environment, as demonstrated by project outcome. The process begins with converting data to ASCII values,

offering minimal security with minimal processing overhead, represented by the lowest point on the graph. The next phase,

applying CKKS homomorphic encryption, significantly enhances security but incurs additional computational demands,

leading to a moderate increase in processing time. Finally, compressing the encrypted data and uploading it to Dropbox

achieves the highest level of security at the cost of the longest processing time. This trend reflects a fundamental trade-

off in secure cloud storage systems: as data protection measures become more robust, the associated computational and

processing requirements increase. The graph underscores the balance that must be maintained between data security and

system performance in cloud environments, particularly when utilizing advanced encryption techniques.

4 EXPERIMENTAL RESULT

The first step of the workflow is to take an input text file provided by the user (Fig 4.1) and convert its content into a

series of ASCII values (Fig 4.2). This is accomplished by reading the file line by line and then converting each character

in the line to its corresponding ASCII value using Python's built-in ord() function. When the user is prompted to enter the

path of the text file, the program reads the file's contents into memory. It processes each line of the file, converts every

character into its ASCII equivalent, and stores the resulting ASCII codes as strings. These strings are then written to an

output file, output_ascii.txt, with each line of ASCII values written on a new line. This file serves as a plaintext

intermediary that holds the ASCII representation of the original content. This step is particularly useful for applications

that require working with numerical data rather than raw text, such as cryptographic processes or data compression. The

conversion to ASCII essentially maps each character of the original text to its numerical representation, and by storing

this mapping, the program lays the groundwork for the encryption and compression processes that follow.

 Fig 4.1 Input Text File (.txt format) Fig 4.2 ASCII Conversion of Input text file

The encrypt_file function follows, employing the CKKS homomorphic encryption scheme, as implemented in the

TenSEAL library, to securely encrypt the ASCII values. Homomorphic encryption supports computation on encrypted

data, making it invaluable for privacy-preserving data analysis, particularly in untrusted environments such as cloud

computing. In this function, each ASCII integer is converted to a floating-point number, as required by CKKS. A TenSEAL

encryption context is established, defining key parameters such as the scale, which regulates precision in encrypted

computations. Each ASCII value is then encrypted individually, serialized, and encoded in Base64 to facilitate text storage.

The resulting encrypted and encoded values are written line by line to a new file (Fig 4.3), preserving the structure while

transforming the data into a securely encrypted form. This encrypted file is now suitable for secure storage and

transmission, with its contents obscured from unauthorized access.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

 © 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43782 | Page 6

Fig 4.3 Homomorphic encryption of converted text file

Next, the compress_encrypted_file function optimizes the encrypted file for storage and transfer by removing extraneous

whitespace and compressing it into a .gz format. This compression step is not merely a matter of storage efficiency but is

also critical for minimizing file size and transmission time when uploading to the cloud. The function reads each line of

the encrypted file, strips unnecessary whitespace, and removes blank lines to produce a compact version. The resulting

compressed file significantly reduces storage requirements and facilitates faster network transmission (Fig 4.4), which is

particularly advantageous when handling large datasets or constrained network environments.

Fig 4.4 Encrypted file compression

The upload_to_dropbox function completes the workflow by securely transferring the compressed, encrypted file to

Dropbox. Utilizing the Dropbox API, the function authenticates with an access token, allowing access to the user’s

Dropbox account while ensuring secure file handling. Before uploading, the function verifies the file’s existence, thereby

preventing errors due to missing or inaccessible files. The file is then uploaded to Dropbox’s root directory, retaining its

local filename. This cloud-based storage of the encrypted file provides a secure and accessible solution for long-term data

retention, enabling users to manage sensitive files securely from any location.

To conclude, this Python program provides an effective and secure workflow for handling sensitive data by integrating

ASCII conversion, homomorphic encryption, file compression, and cloud storage. By encoding data to ASCII and then

applying CKKS homomorphic encryption with the TenSEAL library, it ensures that data confidentiality is maintained

even when stored in cloud environments. Compressing the encrypted data with gzip enhances storage efficiency and

reduces upload times, while the Dropbox integration allows for convenient and secure cloud storage. Each function

operates together cohesively, ensuring sensitive information remains protected throughout the entire process. This

program serves as a powerful tool for anyone needing to safeguard data, with potential for further enhancements such as

advanced security measures and more comprehensive error handling. As a result, it provides a versatile and reliable

solution for secure data management from local environments to cloud storage.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

 © 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43782 | Page 7

5 CONCLUSION :

In conclusion, this paper introduces a comprehensive, secure data-handling system that combines ASCII conversion,

homomorphic encryption, file compression, and cloud storage using a Python-based workflow. Designed with data privacy

at its core, this system ensures security across all stages, beginning with ASCII transformation and progressing through

CKKS encryption with the TenSEAL library. By enabling encrypted computations, CKKS encryption preserves data

confidentiality, making it suitable for privacy-preserving applications. The integration of gzip compression reduces file

size, enhancing storage efficiency, while Dropbox integration provides a secure and accessible cloud storage solution.

This paper has broad implications for fields requiring secure data handling, including remote data analytics, cloud-based

processing, and privacy-preserving machine learning. Future research directions could focus on optimizing the uploading

speed, particularly through alternative compression algorithms that maintain encryption integrity while reducing latency.

Additionally, integrating parallel processing for file handling, or exploring more direct upload protocols compatible with

encrypted data, could significantly improve performance. Further improvements could also include optimizing encryption

schemes for computational efficiency and expanding compatibility with other cloud platforms. This project lays a

foundation for secure, scalable data management solutions, addressing key challenges in cybersecurity and secure cloud

storage.

 REFERENCES

[1] Potey, Manish & Dhote, Chandrashekhar & Sharma, Deepak. (2016). Homomorphic Encryption for Security of Cloud

Data. Procedia Computer Science. 79. 175-181. 10.1016/j.procs.2016.03.023.

[2] Gentry, Craig. (2009). Fully Homomorphic Encryption Using Ideal Lattices. Proceedings of the Annual ACM

Symposium on Theory of Computing. 9. 169-178. 10.1145/1536414.1536440.

[3] Bhargavi, Peyakunta & Srilakshmi, K.. (2020). Efficient dual compression and encryption technique for enhanced

cloud security. Journal of Green Engineering. 10. 8721-8735.

[4] Wiryen, Yancho & Vigny, Noumsi & Mvogo Ngono, Joseph & Fono, Louis. (2024). Leveraging TenSEAL:.

International Journal of Information Security and Privacy. 18. 1-17. 10.4018/IJISP.356402.

[5]Wainakh, Asndar. (2018). Homomorphic Encryption for Data Security in Cloud Computing.

[6] Gladston, Angelin & Naveenkumar, S. & Sanjeev, K. & Gowthamraj, A.. (2024). An Accelerator to Additive

Homomorphism to Handle Encrypted Data. International Journal of Business Data Communications and Networking. 19.

1-25. 10.4018/IJBDCN.341589.

[7] Kumar, Shantanu. (2024). Enhancing cloud storage efficiency and accessibility with artificial intelligence: A

comprehensive review. International journal of advanced research in engineering & technology.15. 183-196.

10.17605/OSF.IO/9DC2J.

[8] Qasim, Nameer & Bodnar, Natalia & Salman, Hayder & Mustafa, Salama & Rahim, Fakher. (2024). Data Management

Challenges and Solutions in Cloud-Based Environments. Radioelectronics. Nanosystems. Information Technologies.16.

157-170. 10.17725/j.rensit.2023.16.157.

[9] Bhat, Aaqib & Kumar, Rajiv. (2024). Efficient Hybrid Encryption Algorithm for Securing Data in Cloud Environment.

10.21203/rs.3.rs-4233929/v1.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

 © 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43782 | Page 8

[10] Sengupta, Shubhashis & Kaulgud, Vikrant & Sharma, Vibhu Saujanya. (2011). Cloud Computing Security--Trends

and Research Directions. Proceedings - 2011 IEEE World Congress on Services, SERVICES 2011. 524-531.

10.1109/SERVICES.2011.20

[11] Xiao, Zhifeng & Xiao, Yang. (2013). Security and Privacy in Cloud Computing. Communications Surveys &

Tutorials, IEEE. 15. 843-859. 10.1109/SURV.2012.060912.00182.

[12] Vankudoth, Biksham & Vasumathi, D.. (2017). Homomorphic Encryption Techniques for securing Data in Cloud

Computing: A Survey. International Journal of Computer Applications. 160. 1-5. 10.5120/ijca2017913063.

[13] Mohialden, Yasmin & Mahmood Hussien, Nadia & Salman, Saba & Aljanabi, Mohammad. (2023). Secure Federated

Learning with a Homomorphic Encryption Model. 4. 001-007. 10.47667/ijpasr.v4i3.235.

[14] Ananthakrishna, V. & Yadav, Dr. (2023). Advancements in Cloud Security: An Enhanced Auth Privacy Chain-Based

Hybrid Encryption Technique for Scalability. Migration Letters. 20. 485-497. 10.59670/ml.v20iS13.6478.

[15] Huang, Chun-Ting & Huang, Lei & Qin, Zhongyuan & Yuan, Hang & Zhou, Lan & Varadharajan, Vijay & Kuo, C.-

C. Jay. (2014). Survey on securing data storage in the cloud. APSIPA Transactions on Signal and Information Processing.

3. 10.1017/ATSIP.2014.6.

[16] Lee, Joon-Woo & Kang, Hyungchul & Lee, Yongwoo & Choi, Woosuk & Eom, Jieun & Deryabin, Maxim & Lee,

Eunsang & Lee, Junghyun & Yoo, Donghoon & Kim, Young-Sik & No, Jong-Seon. (2022). Privacy-Preserving Machine

Learning With Fully Homomorphic Encryption for Deep Neural Network. IEEE Access. 10. 30039-30054.

10.1109/ACCESS.2022.3159694.

http://www.ijsrem.com/

