
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Securing Data Transfer Using Parallel Encryption Based on Different Metadata

Dr. T. Amalraj Victoire1, M. Vasuki2, K. Narmatha3

1 Professor, Department of MCA, Sri Manakula Vinayagar Engineering College, Puducherry-605107,

India.

2 Associate Professor, Department of MCA, Sri Manakula Vinayagar Engineering College,

Puducherry-605107, India.

3PG Student, Department of MCA, Sri Manakula Vinayagar Engineering College, Puducherry-605107

India.

amalrajvictoire@gmail.com1, dheshna@gmail.com2, narmathak379@gmail.com3

ABSTRACT:

In the digital age, the security of

multimedia data on disk drives is

increasingly vital, as data volumes grow

rapidly and security threats evolve. Current

cryptographic methods, such as RSA-2048,

though widely used, present significant

limitations. RSA-2048 is computationally

intensive, resulting in slow encryption and

decryption speeds, which can be

impractical for large volumes of multimedia

data. Additionally, the RSA-2048

algorithm has vulnerabilities that may

allow tampering, posing a threat to data

integrity and confidentiality. The proposed

system aims to solve these issues by

introducing the XChaCha20 algorithm, a

more advanced cryptographic approach.

XChaCha20 is known for its high speed,

lightweight nature, and ability to handle

large-scale data encryption more

efficiently. By leveraging parallel

encryption and decryption processes, this

algorithm significantly reduces the time

needed for securing data, making it

more

suitable for real-time applications. In addition to

improving speed, XChaCha20 provides stronger

encryption, reducing the risk of tampering and

enhancing data confidentiality. Its design allows

for better scalability and performance, especially

when dealing with the increasing demands of

multimedia storage. Overall, the XChaCha20-

based system provides a more secure, efficient,

and user- friendly alternative to RSA-2048,

meeting the demands of modern data security

challenges while reducing the computational

burden.

Keywords: XChaCha20, RSA-2048, encryption,

decryption, efficient, user- friendly.

INTRODUCTION:

Multimedia data, such as images and videos, are

becoming increasingly central in society, with

vast quantities of such data being stored on disk

drives and removable storage media. This has

led to growing interest in research

http://www.ijsrem.com/
mailto:amalrajvictoire@gmail.com1
mailto:dheshna@gmail.com2
mailto:narmathak379@gmail.com3

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

aimed at developing advanced protection

methods to secure such sensitive data. Among

the most effective solutions is storage

encryption, which ensures the confidentiality

and privacy of stored multimedia content.

However, the development of cryptographic

techniques for multimedia data is far from

straightforward due to the unique

characteristics of these files, including their

large size, redundancy, and complex file

formats. Furthermore, the computational

intensity of cryptographic operations for such

data poses additional challenges, making

encryption and decryption time-consuming

processes.

Fig 1: The Concept of Differential Privacy

In response to these challenges, modern

cryptographic file systems have evolved to

offer more dynamic and efficient solutions for

managing encryption, decryption, and key

management. These systems can integrate

directly with the operating system's file

systems, providing seamless and transparent

cryptographic operations without requiring

constant user interaction. Cryptographic file

systems come in two primary forms: those

implemented in the kernel space and those in

the user space. Kernel-level systems can

operate as middleware, encrypting individual

files or directories, while block device layers

provide encryption at the storage level,

securing entire disk partitions. Such solutions

offer significant improvements in both

security and performance, helping to

overcome many of the limitations of

traditional encryption applications.

XChaCha20 is an advanced stream cipher

built upon the ChaCha20 algorithm, which

was designed for high performance and

security in cryptographic applications.

XChaCha20 offers enhanced features,

particularly its ability to work with a larger

nonce size (192 bits) compared to

ChaCha20's 96-bit nonce, which provides

increased security in cases where random

nonces might overlap. This makes

XChaCha20 particularly suitable for

encrypting large volumes of data, such as

multimedia files, by reducing the risk of nonce

reuse, a critical vulnerability in encryption

systems. Like its predecessor, XChaCha20 is

designed to be fast and efficient on a wide

range of platforms, from low-power devices to

modern CPUs. It avoids the computational

complexity of traditional cryptographic

algorithms like RSA, using lightweight

operations that enable parallel processing,

thereby accelerating encryption and

decryption tasks. This makes XChaCha20 an

excellent choice for securing multimedia

data

 in real-time applications while maintaining

robust security guarantees.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

RELATED WORK:

Dynamic multimedia encryption using a

parallel file system based on multi-core

processors [1] Osama a. Khashan, Nour m.

Khafajah [1] securing multimedia data is

challenging due to the high computational

costs of traditional cryptographic schemes and

their limited usability. To address this, a

dynamic fuse-based encryption file system

called parallelfs was developed, which

leverages the parallelism of multi-core

processors to enhance performance. By

implementing a hybrid encryption method

combining symmetric and asymmetric

ciphers, parallelfs automates encryption,

decryption, and key management with

minimal user input. Experimental results

show that parallelfs improves reading

performance by 35% and writing performance

by 22% compared to sequential encryption

approaches, making it highly efficient for

multimedia data storage. [2] A hybrid

encryption approach for efficient and

secure data transmission in iot devices

limin zhang & li wang [2] Security in the IoT

ecosystem is challenging due to the limited

resources of devices. This study proposes a

hybrid encryption method combining

Blowfish for efficient data encryption and

elliptic curve cryptography (ECC) for

securing the private key. The approach

optimizes performance by balancing

symmetric and asymmetric encryption,

reducing execution time by over 15% and

improving overall efficiency, making it ideal

for IoT devices with minimal impact on

processing resources.

 [3] ENHANCING SECURITY

PERFORMANCE WITH PARALLEL

CRYPTO OPERATIONS IN SSL BULK

DATA TRANSFER PHASE

Hashem Mohammed Alaidaros; Mohd

fadlee a. Rasid [3] This paper proposes a

parallel algorithm for bulk data transfer in

Secure Socket Layer (SSL) to improve

performance without compromising security.

Unlike the current sequential method, which

first calculates the Message Authentication

Code (MAC) and then encrypts the data, the

new approach performs encryption and MAC

calculation simultaneously on two processors

using Message Passing Interface (MPI).

Simulations show a speedup of 1.74 and 85%

efficiency compared to the existing sequential

method, making the process significantly

faster while maintaining security. [4] Image

parallel encryption technology based on

sequence generator and chaotic

measurement matrix Jiayin Yu, Shiyu Guo,

Xiaomeng Song, Yaqin Xie and Erfu Wang

[4] This paper presents a parallel image

encryption transmission algorithm that

enhances efficiency using compressed sensing

and improves security with chaotic

cryptography. Compressed sensing reduces

data sampling rates, while chaotic

cryptography enhances encryption through

sensitive chaotic signals. Simulations

demonstrate improved transmission efficiency

and robust security against attacks. [5] Secure

Data Storage And Sharing Techniques For

Data Protection In Cloud Environments: A

Systematic Review, Analysis, And Future

Directions Ishu Gupta, Ashutosh Kumar

Singh, Chung-Nan Lee [5] This article

provides a comprehensive and systematic

analysis of key techniques for secure data

sharing and protection in the cloud

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

environment, addressing the primary concern

of data protection in cloud computing. Despite

the cloud’s many advantages, such as

scalability and minimal upfront costs, data

security remains a significant challenge. The

article reviews various existing solutions,

examining their functioning, potential, and

innovations. It includes detailed discussions

on each technique’s workflow, achievements,

limitations, and future directions, offering

insights into their effectiveness. A

comparative analysis highlights the strengths

and weaknesses of each approach, identifying

research gaps and suggesting future avenues

for exploration. The authors aim for this work

to serve as a foundation for researchers

seeking to advance data protection in cloud

environments.

PREPARATIONS

A. MOTIVATION:

The rapid growth of multimedia data and the

increasing reliance on digital storage have

created a pressing need for advanced

encryption techniques that can protect large

volumes of sensitive information efficiently.

Traditional encryption methods, such as RSA-

2048, have been widely used but struggle to

meet the modern demands of speed and

performance, particularly when securing

massive data sets like multimedia files. With

the expansion of data volumes, the trade-off

between security and speed has become more

apparent, as conventional cryptographic

schemes introduce significant computational

overhead, slowing down real-time

applications. These limitations motivate the

search for more effective encryption

techniques that can deliver both robust

security and efficient performance.

XChaCha20 offers a promising solution to

these challenges by combining high-speed

encryption with lightweight processing,

making it ideal for securing large-scale data

without compromising performance. Its

ability to handle encryption in parallel is a

major advantage, particularly in real-time

scenarios where rapid data processing is

critical. This parallelism not only reduces the

time taken to secure large files but also allows

the system to scale effectively with increasing

data loads. As multimedia data continues to

grow in both volume and importance, the need

for encryption algorithms like XChaCha20,

which can adapt to these demands, becomes

essential. Moreover, XChaCha20 provides

stronger encryption than many traditional

algorithms, including RSA-2048, offering

enhanced protection against tampering and

unauthorized access. The algorithm’s

 advanced cryptographic design ensures that

sensitive data remains confidential, even in

the face of sophisticated attacks. This level of

security is crucial in today's digital

environment, where cyber threats are

becoming more complex and frequent. By

adopting XChaCha20, systems can achieve a

higher standard of security while maintaining

the flexibility and efficiency needed to handle

real-time data encryption.

B. PRELIMINARY:

The preliminary study for implementing the

XChaCha20 algorithm with parallel

encryption focuses on enhancing data security

and encryption speed. XChaCha20, an

extended version of the ChaCha20 cipher,

offers enhanced security by utilizing a 192-bit

nonce, providing stronger protection against

nonce reuse attacks. In this system,

XChaCha20 is applied in a parallel encryption

framework, which splits data into smaller

chunks and processes them simultaneously

across multiple threads or cores. The system’s

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

parallel processing capability makes it well-

suited for large datasets and real-time

encryption needs, ensuring both efficiency

and robust protection of sensitive multimedia

or disk-stored data.

c. Weighted Concept Hierarchy:

The Weighted Concept Hierarchy for

XChaCha20 with parallel encryption provides

a structured framework to optimize the

encryption process by organizing data into

hierarchical layers based on their relative

importance or frequency of access. In the

context of XChaCha20, a stream cipher

designed for high-speed encryption, this

hierarchy allows for the prioritization of

sensitive data blocks during parallel

encryption. By employing a weighted

approach, more critical data can be encrypted

first or with more computational resources,

while less sensitive information is handled

with lower priority. This parallel encryption

method, powered by XChaCha20's inherent

speed and security features, ensures not only

efficient data protection but also improved

performance in handling large datasets, such

as those encountered in multimedia or real-

time applications. The Weighted Concept

Hierarchy thus balances data sensitivity and

encryption performance, leading to a faster and

more secure encryption process.

d. CHACHA20 BLOCK FUNCTION:

The ChaCha20 block function operates on a

512-bit state, consisting of a 256-bit key, a 96-

bit nonce, a 32-bit block counter, and a

constant. It processes the input through 20

rounds of mathematical operations (additions,

XORs, and bitwise rotations) to generate a

512-bit output, which is then used as a

keystream. This keystream is XORed with the

plaintext to produce the ciphertext for

encryption. The process ensures speed,

simplicity, and security in both encryption and

decryption.

e. XCHACHA20 INITIALIZATION:

XChaCha20 initialization begins by extending

the ChaCha20 cipher to support a longer 192-

bit nonce, improving security and reducing the

risk of nonce reuse. The initialization phase

starts with the key setup, where a 256-bit key

is combined with a 192-bit nonce and a

constant. Unlike ChaCha20, XChaCha20 uses

an extended nonce by running a subkey

generation step via HChaCha20, which

produces a 256-bit subkey from the original

key and the first 128 bits of the nonce. This

subkey, along with the remaining 64 bits of

the nonce, is then used to initialize the

ChaCha20 block function. The process

ensures stronger encryption with enhanced

resistance to nonce-related vulnerabilities.

f. HChaCha20 Function:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

The HChaCha20 function is based on the

ChaCha20 block function but operates on a

128-bit nonce instead of the regular 96-bit

nonce:

HChaCha20 produces a 256-bit subkey that is

then used for the ChaCha20 block function

with the second part of the nonce. HChaCha20

is a cryptographic function derived from the

ChaCha20 stream cipher, designed to generate

a subkey from a given key and nonce. It

operates by taking a 256-bit key and a 128-bit

nonce as inputs, applying the ChaCha20 block

function in a manner that produces a 256-bit

output. This output serves as the subkey for

subsequent encryption or authentication

processes. The HChaCha20 function performs

a series of transformations, including a fixed

number of rounds of permutation and mixing

operations, which enhance the diffusion and

security of the generated subkey. By enabling

the use of extended nonces, HChaCha20

contributes to the overall robustness of the

XChaCha20 cipher, ensuring that even if the

same key is reused, the generated subkeys

remain unique and secure.

SCHEME DESCRIPTION:

A. Index building:

Index building is a crucial process in database

management systems that enhances the speed

and efficiency of data retrieval operations. It

involves creating an index structure that allows

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 7

for faster searches through large datasets. The

most common types of indexes include B-

trees, hash indexes, and inverted indexes.

While the specific formula for index building

can vary based on the type of index used, a

general representation can be described in the

context of a B-tree index, which is one of the

most widely used indexing structures:

1. Node Splitting: When a node exceeds

its capacity, it splits into two nodes, and the

median key is promoted to the parent node.

The operation can be represented as:

2. Searching: The time complexity for

searching in a balanced B-tree is:

Where b_ is the branching factor (the

maximum number of children per node) and

nnn is the number of keys in the tree.

3. Insertion: The process of inserting a

new key involves finding the appropriate leaf

node and possibly splitting it, which can be

represented as:

4. Deletion: Deleting a key may involve

merging nodes or redistributing keys, which

can be depicted as:

Index building significantly improves query

performance by allowing the database

system to quickly locate the desired records.

By utilizing structures like B-trees, the

efficiency of search, insertion, and deletion

operations is greatly enhanced, making it a

fundamental aspect of database optimization.

B. GENERATING A TRAPDOOR:

In the context of XChaCha20, generating a

trapdoor relates to the secure key

management and encryption process it

employs. XChaCha20, a stream cipher based

on the ChaCha20 algorithm, utilizes a unique

initialization that involves creating a 256-bit

subkey through the HChaCha20 function.

This process ensures that even if the same

key is used across different sessions, the

nonce's extended length (192 bits) enhances

security by providing a fresh key stream for

each encryption operation. The trapdoor

concept here involves the difficulty of

deriving the original plaintext from the

ciphertext without access to the key and

nonce. Specifically, while generating the

subkey is straightforward, reversing the

encryption—where the ciphertext is

produced by XORing the plaintext with the

key stream generated from the subkey—

requires knowledge of the initial key and

nonce, thus creating a secure trapdoor that

prevents unauthorized

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 8

decryption and maintains data

confidentiality.

C. Encryption using XCHACHA20:

XChaCha20 encrypts data by XORing the

plaintext with the key stream.

Encryption using XChaCha20 involves a

process that combines the strengths of the

ChaCha20 cipher with an extended nonce,

enhancing security and flexibility. The

encryption begins by initializing the

XChaCha20 state with a 256-bit key and a

192-bit nonce, which is longer than the

standard ChaCha20 nonce. This extended

nonce allows for a larger number of unique

initialization vectors, reducing the risk of

nonce reuse in applications where multiple

messages are encrypted with the same key.

During the encryption process, the

XChaCha20 function generates a keystream

by applying the ChaCha20 block function

multiple times. This keystream is then XORed

with the plaintext data to produce the

ciphertext. The output is both efficient and

secure, making XChaCha20 suitable for

various applications, including secure

communications and file encryption, while

maintaining resistance against known

cryptographic attacks.

D. Decryption using XChaCha20:

Decryption in XChaCha20 is the inverse of

encryption, done by XORing the ciphertext

with the key stream.

To encrypt data using XChaCha20, the

process begins by generating a 256-bit subkey

through the HChaCha20 function, utilizing

the original key and the first 128 bits of the

nonce. This subkey is critical for the

subsequent steps, as it ensures the security of

the encryption process. Next, the ChaCha20

algorithm is employed with the newly derived

subkey, the remaining portion of the nonce,

and a block counter to generate a keystream.

This keystream is then XORed with the

plaintext, producing the ciphertext.

Conversely, during decryption, the same

keystream is XORed with the ciphertext to

retrieve the original plaintext. The

enhancement of XChaCha20 lies in its use of

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 9

a longer nonce, which significantly

reduces the risk of nonce reuse attacks

while retaining the speed and simplicity

characteristic of the original ChaCha20

algorithm. This combination makes

XChaCha20 a robust choice for secure

encryption in various applications.

SECURITY AND PERFORMANCE

ANALYSIS:

A. SECURITY ANALYSIS:

1) Confidentiality of Documents and

Concepts:

Confidentiality in XChaCha20 is crucial

for protecting sensitive documents and

concepts. This stream cipher utilizes a

secret key combined with a nonce (number

used once) to generate a unique key stream

for each encryption, preventing identical

ciphertexts from being produced for the

same plaintext. This approach helps

obscure patterns that attackers could

exploit.

XChaCha20 enhances security by deriving

a 256-bit subkey through the HChaCha20

function, which uses the original key and

the first 128 bits of the nonce. This allows

for longer nonces, reducing risks

associated with nonce reuse—a common

vulnerability in encryption methods.

During encryption, the plaintext is XORed

with the generated key stream, resulting in

ciphertext that can only be decrypted with

the correct key and nonce. This mechanism

ensures the original documents

remain secure, making XChaCha20 suitable for

various applications, including secure

communications and file encryption, while

prioritizing confidentiality and data integrity.

2) Index and Trapdoor Privacy:

Index and trapdoor privacy are critical concepts

in secure data retrieval systems, especially when

using encryption methods like XChaCha20. An

index serves as a structured representation of

encrypted data, allowing for efficient searching

and access while keeping the data itself

confidential. In such systems, a trapdoor function

is employed to facilitate secure queries. The

trapdoor is a piece of information that enables a

user to retrieve specific data from the index

without revealing the underlying plaintext.

Fig 2: Time of index Construction

When a query is made, the system uses the

trapdoor to generate a search key, which can

then be matched against the encrypted index.

This mechanism ensures that even if the index is

exposed, the actual content remains secure, as

the trapdoor prevents unauthorized users

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 10

from deciphering the data. By leveraging the

strengths of XChaCha20, which provides

strong encryption and resistance to various

attacks, index and trapdoor privacy

significantly enhance the security of data

retrieval systems, ensuring that sensitive

information can be accessed safely and

efficiently.

2. QUERY GENERATION:

Query generation in the context of encrypted

data retrieval involves creating search queries

that can effectively access and retrieve

information from an encrypted database

without compromising the security of the

underlying data. When using encryption

algorithms like XChaCha20, the process

typically begins with a user's request for

specific information, which is transformed into

a structured query. This query is then

combined with a trapdoor, a piece of

information that allows authorized users to

retrieve the relevant encrypted data from the

index.

Fig 3: Time of query generation

3. TIME-EFFICENCY:

Time efficiency in cryptographic systems,

such as those utilizing the XChaCha20

algorithm, refers to the speed at which

encryption and decryption processes can be

performed while maintaining security.

XChaCha20 is designed for high

performance, providing fast encryption

speeds due to its streamlined structure and

efficient operations. It operates on blocks of

data, using a combination of addition,

rotation, and bitwise operations, which are

computationally inexpensive and allow for

rapid processing.

In practical applications, time efficiency is

critical, especially for systems that require

real-time data transmission or processing,

such as secure communications and online

transactions. XChaCha20's ability to handle

larger nonce sizes without sacrificing

performance enhances its suitability for

various applications, including those

involving streaming data. Moreover, its

lightweight design allows it to be

implemented effectively on devices with

limited processing power, such as IoT

devices.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 11

Fig 3: Xchacha20 Encryption Time

Efficiency

4. Comparison of xchacha20 and

RSA-2048:

The comparison between XChaCha20 and

RSA-2048 highlights significant

differences in efficiency, particularly in the

context of symmetric versus asymmetric

encryption. XChaCha20, a stream cipher,

is designed for high-speed encryption and

decryption, making it exceptionally

efficient for encrypting large amounts of

data. Its use of a 256-bit key and 192-bit

nonce allows for fast processing without

compromising security. In contrast, RSA-

2048, an asymmetric encryption algorithm,

involves more computational overhead due

to its reliance on complex mathematical

operations, such as large integer

factorization. This results in slower

performance, especially for encrypting

large payloads. In practical scenarios,

XChaCha20 typically demonstrates significantly

faster encryption times compared to RSA-2048,

making it more suitable for applications

requiring real-time data encryption. Therefore,

when considering performance and efficiency,

XChaCha20 is often favoured for scenarios

demanding rapid encryption, while RSA-2048 is

primarily used for secure key exchange and

digital signatures, highlighting the strengths of

each algorithm in their respective domains.

CONCLUSION:

In conclusion, the transition from RSA-2048 to

the XChaCha20 algorithm represents a

significant advancement in the field of

cryptographic security for multimedia data.

While RSA-2048 has served as a foundational

technology, its limitations in speed, flexibility,

and vulnerability to tampering make it

increasingly inadequate for today's data-

intensive applications. XChaCha20 addresses

these challenges by offering high- speed

encryption and decryption, making it

particularly well-suited for large volumes of

multimedia data that require real-time

processing. Its robust security features enhance

data integrity and confidentiality, while its

scalability ensures that it can adapt to the

growing demands of modern storage solutions.

Overall, the implementation of XChaCha20

not only improves efficiency and performance

but also establishes a more secure framework for

safeguarding sensitive information, thereby

positioning itself as a preferred choice for

contemporary data security needs.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 12

FUTURE WORK:

The proposed XChaCha20-based

encryption system offers significant

advantages over RSA-2048 in terms of

speed, scalability, and security, there

remain several promising directions for

future research. One important area

involves integrating the encryption

mechanism directly into operating systems

and file systems to enable seamless, real-

time data protection without requiring

manual user intervention. Additionally,

combining XChaCha20 with asymmetric

encryption methods such as Elliptic Curve

Cryptography (ECC) could lead to more

robust hybrid frameworks, particularly

beneficial for secure key exchange. With

the anticipated rise of quantum computing,

it is also essential to explore the system's

adaptability to post- quantum

cryptographic standards, ensuring long-

term resilience. Furthermore, extending the

encryption system to support real-time

multimedia streaming while maintaining

low latency and high performance would

broaden its applicability in modern

communication platforms. Hardware-level

optimizations, such as implementation on

GPUs or FPGAs, could further enhance

performance, especially for large-scale or

cloud-based deployments.

From a usability standpoint, incorporating

intelligent, adaptive encryption mechanisms that

respond to file sensitivity or usage context could

improve both security and user experience.

Finally, rigorous security evaluations under

advanced threat models, including side-channel

attacks and fault injection, are necessary to

ensure the robustness of the system in practical,

real- world environments. Addressing these

future directions will help evolve the proposed

solution into a comprehensive and resilient

framework for multimedia data security.

REFERENCES:

⮚ Zhang, Y., & Li, J. (2020). "Efficient

Privacy-Preserving Data Mining Techniques," in

IEEE Transactions on Knowledge and Data

Engineering, vol. 32, no. 3, pp. 567-580.

⮚ Chen, H., Wang, X., & Liu, Y. (2020).

"Secure Data Sharing in Cloud Computing: A

Survey," in Journal of Cloud Computing:

Advances, Systems and Applications, vol. 9, no.

1, pp. 1-

16.

⮚ Kim, S., & Park, H. (2021). "A Survey

on Homomorphic Encryption: Challenges and

Applications," in IEEE Access, vol. 9, pp.

146219-146234.

⮚ Liu, Z., Wang, Y., & Zhang, L. (2021).

"Blockchain-Based Secure Data Sharing for

IoT," in IEEE Internet of

Things Journal, vol. 8, no. 7, pp. 5748-

5760.

⮚ Gupta, A., & Sharma, R. (2022). "A

Novel Approach for Secure Image Transmission

Using Encryption Techniques," in Journal of

Information Security and Applications, vol. 64,

pp. 103034.

⮚ Xu, W., & Zhao, Y. (2022).

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 13

"Advancements in Secure Multi-Party

Computation," in IEEE Transactions on

Information Forensics and Security, vol.

17, pp. 1845-1856.

⮚ Huang, T., & Zhang, Q. (2023). "A

Survey of Secure Machine Learning

Techniques," in ACM Computing Surveys,

vol. 55, no. 1, pp. 1-35.

⮚ Kim, J., & Choi, M. (2023).

"Encrypted Search Techniques: A Review

and Future Directions," in IEEE

Transactions on Dependable and Secure

Computing, vol. 20, no. 2, pp. 455-470.

⮚ Patel, S., & Joshi, A. (2023).

"Secure Data Management in Cloud

Computing: Challenges and Solutions," in

Journal of Cloud Computing: Advances,

Systems and Applications, vol. 12, no. 2,

pp. 34-50.

⮚ Wang, F., & Liu, M. (2024).

"Emerging Trends in Privacy- Preserving

Machine Learning," in IEEE

Transactions on Neural Networks

and Learning Systems, vol. 35, no. 1, pp.

200-212.

⮚ Liu, J., & Zhang, Y. (2024). "Data

Encryption and Its Implications for Cloud

Security," in International Journal of

Information Security, vol. 23, no. 1, pp. 1-

16.

⮚ Ahmed, K., & Bhatia, M. (2024).

"Secure Searchable Encryption: A

Comprehensive Survey," in Journal of

Computer and System Sciences, vol. 133,

pp. 30-49.

⮚ Zhao, L., & Chen, Y. (2024).

"Comparative Study of Encryption

Algorithms for Secure Data Sharing," in

IEEE Access, vol. 12, pp. 10234- 10249.

⮚ Gupta, R., & Sen, P. (2024).

"Security in Big Data: Techniques and

Applications," in Journal of Big Data, vol.

11, no. 1, pp. 1-21.

⮚ Kumar, P., & Singh, A. (2024).

"Advancements in Secure Data Transmission

Protocols," in IEEE Transactions on

Communications, vol. 72, no. 2, pp. 823-837.

⮚ Sharma, N., & Gupta, D. (2024). "A

Review of Cryptographic Techniques in

Blockchain," in Journal of Cryptographic

Engineering, vol. 14, no. 1, pp. 55-72.

⮚ Roy, T., & Saha, D. (2024). "Trends in

Secure Cloud Computing: A Review," in ACM

Transactions on Internet Tech.

http://www.ijsrem.com/

