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Abstract— Cyber-physical systems (CPSs) are critical in 

sectors like healthcare, smart grids, and transportation, 

making their security against cyber threats, such as blackhole 

attacks, essential. Current detection methods often fail to 

distinguish between legitimate and malicious behaviors 

effectively, leading to insufficient protection. This paper 

introduces GBG-RPL, a novel approach combining the Gini 

index and blockchain technology to detect and mitigate 

blackhole attacks in smart healthcare CPSs. By analyzing data 

distribution with the Gini index and ensuring data integrity 

using blockchain, GBG-RPL enhances security and reliability. 

The proposed solution significantly reduces packet loss, energy 

consumption, and detection time while improving accuracy 

and network performance. These results demonstrate its 

potential to provide a secure and efficient CPS solution. 
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I. INTRODUCTION 

 
 Cyber-physical systems (CPSs) combine computational 
elements and physical processes, driving advances in the 
healthcare industry, smart grids, and transportation. These 
systems enable real-time monitoring and decision-making 
through interconnected devices, sensors, and actuators. In 
healthcare, CPSs transform patient care with innovations like 
remote monitoring and smart medical devices, improving 
patient outcomes, resource management, and overall system 
efficiency [3]. However, as CPSs integrate more deeply into 
critical infrastructures, they become more vulnerable to 
cyber threats. 

 Smart healthcare powered by Cyber-Physical Systems 
(CPS) is reshaping medical care by integrating real-time 
monitoring, interconnected devices, and advanced data 
analytics. These systems enable early detection of health 
issues and the development of personalized treatment plans. 
They also improve healthcare operations by optimizing 
resource allocation, lowering costs, and strengthening system 
resilience. Furthermore, CPS facilitates seamless information 
sharing among healthcare stakeholders, fostering timely and 
coordinated interventions. For instance, Tele-ICU programs 
leverage interconnected medical devices to monitor critical 
patients in real-time, enabling proactive care while bridging 
geographical gaps and improving patient outcomes. 

 Among the most concerning of these threats are 
blackhole ones, which tend in high risks to CPS availability 
and integrity. These attacks involve malicious nodes that 
disrupt data flow and communication in the system, either by 
intentionally dropping or selectively manipulating data. 
Despite detecting and mitigating these threats, current 
methods often fall short in distinguishing malicious behavior 
from legitimate actions, resulting in weakened system 
security. 

Fig. 1. Smart healthcare cyber-physical systems. 

 This paper addresses these challenges by proposing 
GBG-RPL, a novel solution that leverages the analytical 
strength of the Gini index alongside the security features of 
blockchain technology to detect and counter blackhole 
attacks in smart healthcare CPSs [3]. 

 By integrating these technologies, the system 
significantly improves its ability to detect anomalies, 
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preserve data integrity, and enhance reliability and 
performance. This paper demonstrates the effectiveness of 
GBG-RPL in boosting security, optimizing energy 
efficiency, and streamlining network management, making it 
superior to existing methods [10]. 

II. LITERATURE REVIEW 

 
 Tariq et al. [1] overcome the limitations of traditional 
trust models by employing blockchain to securely and 
immutably store trust data, improving the accuracy and 
security of internal attack detection. Sivaganesan [6] 
proposes a robust, data-driven approach to effectively detect 
and mitigate cyberattacks. Guo et al. [2] examine blockchain 
applications across various industries, highlighting its 
benefits and associated challenges. Liu et al. [4] delve into 
the integration of blockchain in IoT environments, 
emphasizing the challenges of incorporating it into trust-
management systems. Gong and Navimipour [7] provide an 
in-depth review of the potential advantages and obstacles of 
merging blockchain with cloud computing while discussing 
its future applications. Alzoubi et al. [8] address security 
issues in fog computing, proposing blockchain as a solution 
to enhance both security and privacy. Finally, Khan et al. [5] 
offer a detailed exploration of related topics.  

The literature on blockchain-based trust management in 
IoT, fog, and cloud computing highlights significant 
advancements and challenges. In 2020, a study [1] 
demonstrated the potential of blockchain for integrated trust 
information storage, though it lacked real-world validation. 
Similarly, in 2021, a data-driven approach to attack 
mitigation in IoT systems was proposed [6], emphasizing its 
theoretical promise but requiring practical implementation 
and evaluation. Another 2021 study [8] explored blockchain-
based solutions for fog computing security concerns but fell 
short of providing detailed implementations. 

In 2022, several studies extended these efforts. One [2] 
focused on the applications, benefits, and challenges of 
blockchain, but noted that some discussed security aspects 
might become outdated. Another [7] examined the 
combination of blockchain and cloud computing, with cloud 
computing, highlighting its benefits but pointing out a lack of 
empirical validation. Additionally, a study [5] provided an 
overview of blockchain-based IoT security solutions, using 
case studies to demonstrate potential effectiveness while 
acknowledging the need for further real-world evaluations. 

More recently, in 2023, researchers analyzed the 
integration of blockchain into trust management systems [4]. 
This work underscored the disputes posed by the fast-rising 
nature of blockchain along with IoT technologies, 
necessitating frequent updates to maintain relevance. Across 
all these studies, while blockchain's theoretical advantages 
and future potential in enhancing trust and security are well-
recognized, practical implementations and real-time 
applications remain areas requiring substantial development 
and validation. 

 Sharma et al. [9] proposed BCPS-RPL to secure 
communication within 6LoWPAN RPL-based wireless 
sensor networks (WSNs). Blackhole attacks pose a threat by 
maliciously discarding packets, and disrupting network 
operations. BCPS-RPL strengthens trust by identifying and 

countering these attacks, thereby maintaining seamless data 
transmission in Cyber-Physical Systems (CPS). 

 Arshad et al. [11] proposed a lightweight trust-enabled 
routing protocol aimed at mitigating Sybil attacks, which 
involve the creation of numerous fake identities to 
compromise IoT networks. This protocol enhances system 
reliability and effectively reduces malicious activity in RPL-
based IoT environments. 

 Groves and Pu [12] suggested the Gini index to be used 
when measuring inequality, to identify Sybil attacks by 
evaluating irregularities in network traffic. This novel 
application strengthens IoT security through statistical 
analysis. 

Chinnaraju and Nithyanandam [13] proposed trust-based 
methods along with routing protocols to detect greyhole 
attacks, which selectively drop packets to compromise the 
network. Their work highlights both challenges and solutions 
for securing CPSs against these threats. 

 Savoudsou et al. [14] provided a detailed taxonomy of 
CPS attacks, exploring their detection, prevention methods, 
and impacts. This comprehensive analysis facilitates a deeper 
understanding of vulnerabilities in CPS and IoT 
environments. These works collectively contribute to the 
field by addressing specific threats and suggesting strategies 
to build more secure and resilient CPS and IoT systems. 

III.  GINI INDEX-BASED TRUST MODEL 

 
 The Gini index is a statistical tool used to measure 
inequality within a dataset. Traditionally applied to assess 
income distribution, its values range from 0 to 1, where 0 
represents perfect equality (all elements are uniform) and 1 
signifies maximum inequality (elements are unevenly 
distributed). This concept is also applied to Gini impurity, 
which measures the probability of random misclassification 
within a system. A system is deemed "pure" when all 
elements belong to a single category, with any deviation 
introducing "impurity." Gini impurity is widely used in 
decision-making algorithms to evaluate splits and optimize 
classification accuracy. 

 In the proposed framework, the Gini index has been 
adapted to detect and mitigate blackhole and greyhole 
attacks. These attacks compromise system performance by 
selectively dropping or misdirecting network packets, often 
leading to significant disruptions in communication. By 
examining fluctuations in received DAO (Destination 
Advertisement Object) messages, the Gini index identifies 
abnormal patterns indicative of potential malicious behavior. 
Once such activities are detected, mitigation strategies are 
deployed to minimize their impact and ensure the network's 
reliability and integrity. 

  Mathematically, the Gini index 𝐼, representing inequality 
in flow distribution across the CPS network, is calculated 
using the formula: 
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Where, ai  represents the proportion of flow associated with a 
specific element 𝑖 within the network. The parameter n 
denotes the total number of elements or nodes in the 
network, reflecting the number of entities contributing to 
the overall flow. 

Fig.  2. Trust approach for Gini index in CPS. 
 

The Gini countermeasure promptly activates mitigation 
measures to reduce the impact of detected attacks. In the 
context of attack detection within a CPS, the Gini index is 
characterized by the following: 

1. Range (0 to 1): The Gini index spans from 0 to 1, 
quantifying the degree of inequality. 

2. Value of 0 (Pure State): A Gini index of 0 indicates 
complete uniformity, where all elements belong to a single 
category, reflecting a pure and orderly system. 

3. Value of 1 (Impure State): A Gini index of 1 signifies 
maximum inequality or randomness, where elements are 
widely scattered across categories, indicating an impure and 
disorganized state. 

4. Value of 0.5 (Balanced State): A Gini index of 0.5 
represents a balanced distribution of elements across multiple 
categories, suggesting moderate variability in the system. 

IV.  METHODOLOGY 

a.  Node Behaviour Monitoring (Direct Trust Calculation) 

 The methodology starts by monitoring the behavior of 
individual nodes within the network. This process involves 
evaluating several key parameters, such as energy 
consumption, packet delivery ratio, and packet loss, to 
compute direct trust values. These metrics offer 
comprehensive insights into the reliability of each node, 
derived from its direct interactions with neighboring nodes. 
 
b.  Nodes Joining/Leaving (RPL Trusted Routing & DODAG 
Reconstruction) 
 

At the root or sink node level, centralized processing is 
performed, consisting of two key operations: the dispatcher 
and the eliminator. The dispatcher allocates tasks to other 
nodes in the network based on their trust scores, ensuring 
that critical operations are assigned exclusively to reliable 

and trustworthy nodes. This mechanism enhances the 
efficiency and security of the overall system. 
Fig.  3. Flow diagram of methodology 

 
c. Root/Sink Node (Dispatcher and Eliminator) 

 
At the root or sink node level, centralized processing 

takes place. This stage involves two main operations: the 
dispatcher and the eliminator. The dispatcher assigns tasks to 
other nodes based on trust scores, ensuring that only reliable 
nodes handle critical operations. Meanwhile, the eliminator 
identifies and isolates malicious or faulty nodes to prevent 
them from impacting the network's performance. This 
centralized decision-making process ensures that the network 
operates efficiently while minimizing the influence of 
untrustworthy nodes. 
 
d. Trust Calculation (Direct + Indirect Trust) 

 
 Trust calculation is a key phase that combines direct and 
indirect trust metrics to compute a global trust score for each 
node. Direct trust comes from immediate interactions, while 
indirect trust is based on feedback from neighboring nodes. 
This hybrid approach ensures a well-rounded evaluation, 
considering both individual performance and the collective 
network perspective, enhancing trust accuracy. 
 
e. Trust Rating (Gini Logic: Legitimate/Malicious) 

 
Once the trust scores are calculated, they are analyzed by 

Gini Logic to classify nodes as either legitimate or malicious. 
Gini Logic, a statistical measure of fairness, identifies 
anomalies in the trust distribution and detects outliers that 
may represent malicious behavior. This classification plays a 
vital role in isolating untrustworthy nodes, ensuring the 
integrity and proper functioning of legitimate nodes 
within the network. The Fig. 3. Flow diagram of 
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methodology fairness ensured by Gini Logic minimizes 
biases in trust evaluation and enhances the integrity of the 
network. 

 
f. Blockchain Update (Update Trust Ledger) 

 
 After node classification, trust scores and classifications 

are securely stored on a blockchain. Serving as a 
decentralized and tamper-proof ledger, the blockchain 
ensures the transparency and immutability of trust data. Each 
update to the ledger reflects the network's current state, 
enabling stakeholders to verify node trustworthiness. This 
approach enhances security by preventing unauthorized 
modifications to the trust information, reinforcing the 
system’s reliability. 
 
g. Trust Propagation (Malicious Node List to Network) 

 
 The final step distributes the trust information, including 
identified untrustworthy nodes, across the network to 
enhance security and prevent harmful interactions. This is 
achieved through fog/edge servers, which distribute the data 
to all nodes, ensuring collective awareness of potential 
threats. By sharing this information, the network enables 
nodes to take proactive measures against malicious actors, 
such as avoiding communication or blocking access. This 
collaborative defense mechanism bolsters the security and 
dependability of the network.  

V.   RESULT AND ANALYSIS   

 

 Our experimental evaluation compared the end-to-end 

delay performance of two routing protocols: BCPS-RPL 

(Blockchain-enabled CPS RPL) and GBG-RPL (Gini-index 

Based Geographic RPL). The results demonstrate that both 

protocols exhibit similar performance characteristics at lower 

network densities (5-15 nodes), with delays ranging from 0.6 

to 1.1 milliseconds. However, interesting performance 

patterns emerge as the network scales up (20-30 nodes). The 

BCPS-RPL protocol shows slightly higher end-to-end 

delays, reaching approximately 2.0 milliseconds at 30 nodes, 

compared to GBG-RPL's 1.9 milliseconds. The slight 

increase in delay for BCPS-RPL is due to the additional 

overhead from blockchain operations and smart contract 

validations during node registration and data transmission. 

Nevertheless, this slight performance trade-off is justified by 

the enhanced security features provided by blockchain 

integration, including automated node validation, transparent 

auditing capabilities, and tamper-resistant transaction 

logging. The GBG-RPL's competitive performance can be 

credited to its efficient usage of the Gini index for 

distribution analysis and attack detection, which helps 

maintain optimal routing paths while ensuring security. Both 

protocols demonstrate acceptable scalability, maintaining 

end-to-end delays below 2.5 milliseconds even at higher 

node densities, indicating their suitability for deployment in 

smart healthcare CPS applications where both security and 

timely data delivery are crucial. 

 

 This section presents a comprehensive analysis of our 

performance metrics and their graphical representations. 

Each subsection provides a comprehensive analysis of the 

experimental results, presenting detailed interpretations 

alongside accompanying graphs and thorough explanations 

to enhance understanding. 

 

 

a. End-to-End Delay 

 

 Analyzing end-to-end delay reveals that GBG-RPL 

significantly outperforms BCPS-RPL in data packet 

transmission efficiency. GBG-RPL achieves a 28.34% 

reduction in delay, thanks to optimized configurations that 

minimize latency and streamline communication. In contrast,  

BCPS-RPL experiences longer delays due to continuous trust 

evaluations, leading to network congestion. Overall, GBG-

RPL enhances both speed and reliability in the network. 

 Fig.  4. End-to-End Delay 

 

b. Attack Detection Rate 

 

 The attack detection rate measures the effectiveness of a 

security mechanism by calculating the proportion of actual 

attacks that are correctly detected and flagged as threats. This 

rate is crucial for evaluating the performance of various 

detection methods, ensuring that malicious events are 

promptly recognized and mitigated. A higher attack-

detection rate indicates a more effective security system, as it 

reflects the system's ability to discern between legitimate and 

malicious activities within the network. 
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 Fig.  5. Attack Detection Rate 

 

c. Attack Detection Time 

 
The time it takes to detect an attack in a cyber-physical 

system (CPS) network is influenced by the ability to identify 
nodes with abnormal behavior. BCPS-RPL's reliance on 
limited nodes for trust processing leads to longer detection 
times and lower accuracy. Consequently, GBG-RPL enables 
faster attack detection, enhancing the reliability and 
efficiency of the CPS network. 

Fig.  6. Attack Detection Time 

 

d. Message Overhead 

 

This illustrates an increasing trend in message overhead 

over time for both the BCPS-RPL and GBG-RPL 

mechanisms. Throughout the simulation, GBG-RPL 

consistently exhibits lower message overhead compared to 

BCPS-RPL, indicating a lighter communication load and 

reduced network congestion. Initially, both techniques have 

similar overhead as the network initializes and trust 

calculations are performed. However, after 20 minutes, 

GBG-RPL significantly decreases message overhead because 

it forwards only trust parameters from the device layer while 

performing trust calculations at the fog layer. Additionally, 

the improved attack detection time and rate contribute to this 

reduction by minimizing the need for frequent 

retransmissions of data and control packets. 

Fig. 7. Message Overhead 

 

 

VI. CONCLUSION 

 
 This research tackles security gaps in existing trust-based 
methods for detecting blackhole attacks in Cyber-Physical 
Systems (CPS). The proposed framework integrates the Gini 
index for precise attack detection and blockchain for 
maintaining immutable trust data. Trust scores are computed 
using key parameters such as packet drop ratio, energy 
consumption, and latency. Blockchain-based smart contracts 
secure the global trust list, while the fog layer enhances 
attack detection and mitigation processes. Simulations reveal 
that the proposed GBG-RPL mechanism surpasses BCPS-
RPL in metrics like attack detection rate, energy efficiency, 
packet loss ratio, and end-to-end delay. These results 
highlight the framework's potential in bolstering CPS 
security, though further real-world testing is suggested to 
optimize its application and performance. 
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