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Abstract: As BANs have limited processing power and
memory availability, securing body area networks or
body sensor networks is problematic. Due to the
impracticality of implementing high-end encryption in
resource-constrained body sensor networks,
heartbeat-based security is preferable. To simulate
real heartbeats from electrocardiogram (ECG) data,
the suggested method uses a deep Markov model to
generate random bit sequences (RBS). The interpulse
interval (IPI) is defined by the information retrieved
from the RR interval, the SS interval, and the QRS
complex. The MIT-BIH database (MIT-BIHdDb) is the
source of the extracted data. Both the entropy and the
hamming distance are used to the
performance of the suggested method. Results
demonstrate that, in comparison to prior work, the
suggested method achieves a greater hamming
distance for the amount of bits extracted per IPI. The
entropy is somewhat greater than the prior method,
fluctuating between 0.95 and 1. The receiving end's
ability to accurately and distinguishably detect the
received binary sequence for authorization is shown

evaluate

by the rise in hamming distance..
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I. INTRODUCTION

Off late, body area networks and body sensor networks
have gained popularity. Hence, their security has become
an active area of research. wireless body sensor networks
(WBSNs) have emerged as a promising and effective
approach for remote healthcare applications due to the
rapid development of wearable medical devices and
wireless technologies. Since WBSNs are wireless in
nature, so secure transmission of medical data becomes
one of the essential requirements for its deployment.[1]
The Health Insurance Portability and Accountability Act
(HIPAA) has stated that security must be applied within
WBSNS to restrict the availability of critical data to the
unauthorized entities[8]. Additionally, tiny nodes in
WBSNs are resource constrained regarding battery,
computation capability, and memory. Therefore, it is

necessary to provide a balance between medical data
security and resource consumption of sensor nodes in
WBSNs. In recent times, the objectives of ECG
monitoring have gone beyond mere heart rate and rhythm
measurement to the analysis of chronic diseases including
complex arrhythmias, stress management, and sleep
disorders among others. The significance of ECG in
clinical applications is because it offers a non-invasive
means to evaluate the Autonomic Nervous System (ANS)
which can be helpful in diagnoses of cardiac related
diseases. Additionally, it has been remarkably explored in
several previous studies that ECG signals possess unique
characteristics to be utilized for biometric security
purposes in WBSNs [9-14]. One of the significant
benefits of ECG based security methods is that they are
robust against false attacks. Moreover, ECG signal can
provide the evidence by signifying that specific
application should ensure that the particular person who
is posing the biometric security is certainly the same
individual who is carrying it [1].

Thus, ECG signal plays an essential role in developing
security mechanisms to provide secure communication
between patients and physicians in real-time healthcare
scenarios. However, the main limitation of WBSNSs is that
it should be operated under stringent constraints. Thus, to
provide a balance between security and resource
efficiency a biometric trait such as inter-pulse intervals
(IPIs) has been widely considered. IPIs are the time
intervals between two successive heartbeats also referred
as RR-intervals. In order to initiate communication within
sensor nodes of WBSNs, time synchronization is an
essential factor.

II. FEATURE EXTRACTION

The regular motion of the human heart is often referred to
as the cardiac cycle. The presence of sodium and
potassium ions in the blood stream produces very weak
electrical signals (voltages) when blood flows in and out
of the heart. It has been observed that the ECG signals
follow a repetitive or periodic pattern. Based on the
trajectory of the ECG curve, certain fundamental features
have been identified. The section that follows explains
the cardiac cycle. ECG is the graphical representation of
the cyclic rhythm of contraction and relaxation activity
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generated by the heart. An ECG is composed of the P
wave, QRS complex, T and U waves.
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Fig 1 ECG signal showing P, Q, R, S, T and U waves.

They are denoted by the capital letters P, Q,R,S, and T
and U. The P wave is the contraction of the atria, while
the QRS complex is associated with the contraction of the
ventricles. The T wave is due to the relaxation of the
ventricles. The P, Q, R, S, T and U waves of the ECG
signal contain all the important features that characterize
the activity in the heart. A typical ECG signal
waveform of a normal heart beat is shown in figure
1. The ECG signal is measured through a number of
electrodes that are normally attached to a patient’s body.
ECG recordings usually contain high and low frequency
noise. Amplitudes within beats vary from person to
person.

a) Data Pre-Processing prior to Feature Extraction
Prior to the feature extraction stage, proper pre processing
stage in very crucial for the correct extraction of features.
In some ECG signals the noise level is very high and it is
not possible to recognize it by single recording, it is
important to gain a good understanding of the noise
processes involved before one attempt to filter or
preprocess a signal. The ECG signal is very sensitive in
nature, and even if small noise mixed with original signal
the characteristics of the signal changes. The most
difficult problem faced by an automatic ECG analysis is
the large wvariation in the morphologies of ECG
waveforms, it happens not only for different patients or
patient groups but also within the same patient. Since the
ECG signal is the most affected by 50-60 Hz power line
noise also called baseline drift, therefore we need to
employ high pass filtering for its removal.

b) Extraction of Morphological Features

This stage consists of extraction of salient features which
can give conclusive results for different heartbeat cases..
The heartbeat detection module attempts to locate all
heartbeats .The feature extraction module forms a feature
vector from each heartbeat. The feature extraction
modules are required, because
performance is often achieved if a smaller number of
discriminating features are first extracted from the
ECG.[7].[9] The Feature Extraction Parameters:

greater classification

. RR interval evaluation.
. SS interval evaluation.
. QQ interval evaluation.
. QRS complex evaluation.

ECG Feature Extraction plays a significant role in
diagnosing most of the cardiac diseases. One cardiac
cycle in an ECG signal consists of the P-QRS-T waves.
This feature extraction scheme determines the amplitudes
and intervals in the ECG signal for subsequent analysis.
The amplitudes and intervals value of P-QRS-T segment
determines the functioning of heart of every human.
I11. RANDOM BIT GENERATION

The random bit generation has been implemented using
the Markov process. A Markov process is a random
process indexed by time, and with the property that the
future is independent of the past, given the present.
Markov processes, named for Andrei Markov, are among
the most important of all random processes. In a sense,
they are the stochastic analogs of differential equations
and recurrence relations, which are of course, among the
most important deterministic processes. The complexity
of the theory of Markov processes depends greatly on
whether the time space T is N (discrete time) or [0,00]
(continuous time) and whether the state space is discrete
(countable, with all subsets measurable) or a more
general topological space.
When T = [0, o] 1)
or when the state space is a general space, continuity
assumptions usually need to be imposed in order to rule
out various types of weird behaviour that would
otherwise complicate the theory. When the state space is
discrete, Markov processes are known as Markov chains.
The general theory of Markov chains is mathematically
rich and relatively simple. Any process is a Markov
Process if:

P(Xs4€A|Fg) = P(Xs11€A|X)VS, T €U (2)
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Here,

X represents a state

s is the time metric

t is a delayed metric

P is the probability space

A is the state space

Xs is a previously existent state
U is the universal state of spaces

IV. PROPOSED ALGORITHM

The data is extracted from MIT-BIH db. Then the ECG
signal is displayed. The signal is then passed through a
high pass filter the output of which is displayed again.
The baseline drift is seen to be removed from the ECG
signal due to filtering.
Let y(t) denote the output of the filter, x(t) denote the raw
ECG signal and h(t) denote the impulse response of the
filter. Then:

y(t) = x(t) * h(t) 3
where * denotes convolution in the time domain.

It should be noted that the sampling frequency of the
filter should follow the Nyquist criteria i.e.
fs=22fm “)
Where Fs denotes the sampling frequency and fm denotes
maximum frequency of the signal. Subsequently squaring
the signal is done to accurately detect R peaks as R peaks

are much larger in amplitude compared to other peaks.
Sqrsig = [y(t)]z )]
Where Sqr_sig denotes square of the filtered signal.
It should be noted that squaring is done only for detection
of R peaks as other peaks cannot be discriminated after
squaring and may introduce errors.
Peaks are detected after setting a threshold which varies
adaptively with the concerned peak and signal under
consideration. Peaks are detected using the difference
operation that a sample is a peak if it is greater in
magnitude compared to previous and subsequent values
ie.
Sk-1 < Sk > Sk+1 (©)
Then the locations of the peaks are stored and through
subsequent differences, the features are extracted. The
inter-pulse interval (IPI) is computed from the features
using either R-R interval or QRS complex interval. This

is necessary to render reliability to the system with
highest amplitude. Subsequently generate the random bit
stream based on the Discrete Markov Chain given by:
X=[X1,X2 i . X ™
Subsequently, compute the hamming distance (H) and
Entropy (E)
Given two vectors u, v € F n, the hamming distance
between u and v, d(u, v), to be the number of places
where u and v differ. Mathematically,

H=|Ul—-|V| ®

The entropy is computed for the random process as:

HX) £ = Yyex Px(0)log[P,(x)] 10)
Here,

H is the entropy

X is the random variable

X is any value that the random variable can attain

P is the probability

log represents the logarithm to the base 2.

V. RESULTS:

The results obtained are enunciated subsequently.

original signal

ampitude

hime in samples 1

Fig.2 Original Data Sample
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Hamming Distance vs. bits extraction per heart beat
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Fig.9 Variation of Hamming Distance w.r.t. No. of
extracted bits/IPI
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Figure.10 Comparative Hamming Distance Analysis
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Figure.11 Comparative Entropy Analysis

Conclusion: It can be concluded from previous
discussions that body area networks and body sensor
networks have gained popularity. Hence, their
security has become an active area of research.

Wireless body sensor networks (WBSNs) have
emerged as a promising and effective approach for
remote healthcare applications due to the rapid
development of wearable medical devices and wireless
technologies. Since WBSNs are wireless in nature, so
secure transmission of medical data becomes one of
the essential requirements for its deployment. In this
paper, a secure heartbeat based random bit sequence
generation mechanism has been proposed using the
Markov Process. It has been shown that the proposed
technique achieves better results in terms of hamming
distance and entropy compared to previous work. In
crease in Hamming distance ensures higher chances of
accurate detection and reliability at the receiving end.
Higher entropy ensures higher information content of
the bit stream.
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