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Abstract - When people or animals get hurt, they will 

usually compensate for minor injuries and keep limping along, 

except for robots, even slight damage can make them stumble 

and fall. Now a robot scarcely larger than a person's hand has 

demonstrated a novel ability: It can recover from damage -- an 

innovation that could make robots more independent. 

The new robot, which seems like a splay-legged, four-footed 

starfish, deduces the form of its own body by performing a 
series of playful movements, swiveling its four limbs. By 

using sensors to record resulting changes within the angle of 

its body, it gradually generates a computerized image of itself. 

The robot then uses this to plan out the way to walk forward. 

The researchers hope similar robots will someday respond not 

only to wreck to their own bodies but also to changes in the 

surrounding environment. Such responsiveness could lend 

autonomy to robotic explorers on other planets like Mars -- a 

helpful feature, since such robots can't always be in touch 

with human controllers on earth. apart from practical value, 

the robot's abilities suggest a similarity to human thinking 

because the robot tries out various actions to figure out the 
shape of its world. 

 

Key Words: Error recovery, self-healing, algorithm 

implementation, theory to reality. 

 

 

1.INTRODUCTION 

 
1.1 Robots 

A robot may be a mechanical or virtual, artificial agent. it's 

usually an electromechanical system, which, by its appearance 

or movements, conveys a way that it has intent or agency of 

its own. 
A typical robot will have several, though not necessarily all of 

the subsequent properties: 

• Is not 'natural' i.e., has been artificially created. 

• Can sense its environment. 

• Can manipulate things in its environment. 

• Has a point of intelligence or ability to make choices based 

on the environment or automatic control / pre-programmed 

sequence. 

• Is programmable. 

• Can travel along one or more translational or rotational axes. 

• Can make dexterous coordinated movements. 

• Appears to possess intent or agency (reification, 
anthropomorphisation or Pathetic fallacy). 

Robotic systems are of growing interest due to their many 

practical applications as well as their ability to help 

understand human and animal behavior, cognition, and 

physical performance. Although industrial robots have long 

been used for repetitive tasks in structured environments, one 

among the long-standing challenges is achieving robust 

performance under uncertainty. Most robotic systems use a 

manually constructed mathematical model that captures the 

robot’s dynamics and is then wont to plan actions. Making 

accurate models for complex machines is challenging, 

especially when attempting to account for potential 
topological changes to the body, such as changes brought on 

by damage. Despite the existence of some parametric 

identification methods for automatically improving these 

models, this is especially true for complex machines. 

 

 
Figure 1: Robot 

 

1.2 Error Recovery 

Recovery from error, failure or damage may be a major 

concern in robotics. A majority of effort in programming 

automated systems is devoted to error recovery. the necessity 

for automated error recovery is even more acute in the field of 

remote robotics, where human operators cannot manually 

repair or provide compensation for damage or failure. 

Here, it's detailed how the four-legged robot, through minimal 

but self-directed interaction, spontaneously creates a 

predictive model of its own topology (where and the way its 
body parts are connected) with its environment, then uses this 

model to synthesize successful new locomotive behavior 

before and after damage. These findings may help develop 

more robust robotics, also as shed light on the relation 

between curiosity and cognition in animals and humans. 

 

2.LITERATURE REVIEW 
1. S Terryn 

The intrinsic compliance of sentimental robots provides 
safety, a natural adaptation to its environment, allows to soak 

up shocks, and protects them against mechanical impacts. 

However, a literature study shows that the soft polymers used 

for his or her construction are susceptible to various types of 

damage, including fatigue, overloads, interfacial debonding, 

and cuts, tears and perforations by sharp objects. An economic 

and ecological solution is to construct future soft robotic 

systems out of self-healing polymers, incorporating the power 

to heal damage. This review paper proposes criteria to guage 

the potential of a self-healing polymer to be used in soft 

robotic applications. supported these soft robotics 
requirements and on defined performance parameters of the 

materials, linked to the mechanical and healing properties, the 
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various types of self-healing polymers already available in 
literature are critically assessed and compared. 

 

2. Richard McWilliam 

this text reviews the existing work in self-healing and self-

repairing technologies, including add software engineering, 

materials, mechanics, electronics, MEMS, self-reconfigurable 

robotics, et al. . It suggests a terminology and taxonomy for 

self-healing and self-repair, and discusses the varied related 

types of other self-* properties. The mechanisms and methods 

resulting in self-healing are reviewed, and customary elements 

across disciplines are identified. 

 
3. R. Adam Bilodeau 

Advances in soft robotics are going to be crucial to the next 

generation of robot–human interfaces. Soft material systems 

embed safety at the fabric level, providing additional 

safeguards which will expedite their placement alongside 

humans and other biological systems. However, so as to 

function in unpredictable, uncontrolled environments 

alongside biological systems, soft robotic systems should be 

as robust in their ability to get over damage as their biological 

counterparts. There exists an excellent 

 
deal of labor on self-healing materials, particularly polymeric 

and elastomeric materials which will self-heal through a wide 

variety of tools and techniques. Fortunately, most emerging 

soft robotic systems are constructed from polymeric or 

elastomeric materials, so this work are often of immediate 

benefit to the soft robotics community. Self-healing and 

damage robust systems are beginning to be included into the 

three major support pillars that are enabling the future of soft 

robotics: actuators, structures, and sensors, despite the fact 

that the sector of soft robotics is still in its infancy as a whole. 

This paper examines the most recent advancements in self-
healing and damage resilience technologies as they relate to 

these three pillars. Future uses for soft robots that have self-

healing capabilities are also covered in this review. 

 

4. Joost Brancart 

Soft robots are nearly entirely constructed of flexible, soft 

material, making them suited for applications in uncertain, 

dynamic task contexts, including secure human-robot 

interactions. They are inspired by the compliance seen in 

many creatures. They are protected from mechanical 

collisions and shocks by their inherent compliance. However, 

the soft materials used for his or her construction are highly 
susceptible to damage, like cuts and perforations caused by 

sharp objects present in the uncontrolled and unpredictable 

environments they operate in. during this research, we 

propose to construct soft robotics entirely out of self-healing 

elastomers. On the idea of healing capacities found in nature, 

these polymers are given the power to heal microscopic and 

macroscopic damage. Diels-Alder polymers, being thermo 

reversible covalent networks, were wont to develop three 

applications of self-healing soft pneumatic actuators (a soft 

gripper, a soft hand, and artificial muscles). Soft pneumatic 

actuators commonly experience perforations and leaks thanks 
to excessive pressures or wear during operation. Finite 

element modelling was used to create all three prototypes, 

which were then mechanically characterised. The 

manufacturing method of the actuators exploits the self-

healing behavior of the materials, which may be recycled. 

3. SELF MODELLING ROBOTS 
When people or animal get injured, they catch up on minor 

injuries and keep limping along. But within the case of robots, 

even a small injury can make them stumble and fall. Self-

healing robots have a capability to adapt to minor injuries and 

continue its job. A robot is in a position to indirectly infer its 

own morphology through self- directed exploration and then 

use the resulting self-models to synthesize new behaviors. If 

the robot’s topology unexpectedly changes, the identical 

process restructures its internal self-models, resulting in the 
generation of qualitatively different, compensatory behavior. 

In essence, the method enables the robot to continuously 

diagnose and recover from damage. Unlike other approaches 

to wreck recovery, the concept introduced here doesn't 

presuppose built-in redundancy, dedicated sensor arrays, or 

contingency plans designed for anticipated failures. Instead, 

our approach is predicated on the concept of multiple 

competing internal models and generation of actions to 

maximize disagreement between predictions of these models. 

 

3.1 Researchers 

 
Figure 2: Victor Zykov, Josh Bongard, and Hod Lipson 

 

The Computational Synthesis Lab at Cornell University 

conducted the study. Hod Lipson, Viktor Zykov, and Josh 
Bongard are the members of the team. Josh Bongard 

conducted this research as a postdoctoral scholar at Cornell 

before moving on to the University of Vermont, where he is 

currently an assistant professor. Hod Lipson is a professor at 

Cornell and the director of the Computational Synthesis Lab, 

while Victor Zykov may be a Ph.D. candidate at CCSL. The 

National Science Foundation's Engineering Design Program 

and the NASA Program on Intelligent Systems both provided 

funding for this study. 

 

3.2 The Starfish Robot 

 

3.2.1 Characterizing the Target System 

The target system during this study is a quadrupedal, 

articulated robot with eight actuated degrees of freedom. The 

robot consists of an oblong body and four legs attached to it 

with hinge joints on each of the four sides of the robot’s body. 

Each leg successively is composed of an upper and lower leg, 

attached along with a hinge joint. Airtronics 94359 high 

torque servomotors are used to move the robot's eight hinge 

joints. However, within the current study, the robot was 

simplified by assuming that the knee joints are frozen: all four 

legs are held straight when the robot is commanded to 
perform some action. the subsequent table gives the overall 

dimensions of the robot’s parts. 

 

 

http://www.ijsrem.com/
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Table 1: Overall dimensions of robot 

 
 

All eight servomotors are controlled using an on-board PC-

104 computer via a serial servo control panel SV-203B, which 

converts serial commands into pulse-width modulated signals. 

Servo drives are capable of manufacturing a maximum of 200 

ounce- inches of torque and 60 degrees per second of speed. 
The actuation ranges for all of the robot’s joints are 

summarized within the following table. 

 

Table 2: Actuation ranges 

 
 

This four-legged robot can automatically synthesize a 

predictive model of its own topology (where and the way its 

body parts are connected), then successfully move around. It 

also can use this "proprioceptive" sense to determine if a 

component has been damaged, then model new movements 
that take the damage into account. 

The robot is provided with a suite of different sensors polled 

by a 16-bit 32- channel PC-104 Diamond MM-32XAT data 

acquisition board. For the present identification task, three 

sensor modalities were used: an external sensor was wont to 

determine the left/right and forward/back tilt of the robot; four 

binary values indicated whether a foot was touching the 

ground or not; and one value indicated the clearance distance 

from the robot’s underbelly to the ground, along the 

traditional to its lower body surface. All sensor readings were 

conducted manually, however all three sorts of signals will be 

recorded in future by on-board accelerometers, the strain 
gauges built into the lower legs, and a belly-mounted optical 

distance sensor for the robot. 

 

 
Figure 3: The starfish robot with reflection 

3.3 Self Modelling Briefly 
Here, its explained how the four-legged robot automatically 

synthesizes a predictive model of its own topology (where and 

the way its body parts are connected) through limited yet self-

directed interaction with its environment, then uses this model 

to synthesize successful new locomotive behavior before and 

after damage. These findings may help develop more robust 

robotics, also as shed light on the relation between curiosity 

and cognition in animals and humans 

A constantly shifting and unclear environment is a robot's 

worst nemesis. Typically, robots depend upon internal maps 

(either provided or learned), and sensory data to orient 

themselves with reference to that map and to update their 
location. If the environment is changing or noisy, the robot 

has got to navigate under uncertainty, and constantly update 

the possibilities that a particular action will achieve a 

particular result. things become’s even worse if the robot’s 

own shape and configuration can change, that is, if its internal 

model becomes inaccurate. In most cases, such an occasion 

constitutes the end of that particular robot’s adventure. 

The ability of robotic systems to model their surroundings on 

their own has advanced significantly, but nothing is known 

about how a robot may learn its own morphology, which 

cannot be deduced by direct observation or retrieved from a 
database of previous experiences. Robotic systems without 

internal models can synthesis increasingly complicated 

behaviors or recover from damage through physical trial and 

error, but this requires hundreds or thousands of tests on the 

physical machine and is typically too slow, expensive to run, 

or hazardous. Here, we describe a lively process that allows a 

machine to sustain performance through an autonomous and 

continuous process of self-modeling. A robot is in a position 

to indirectly infer its own morphology through self-directed 

exploration and then use the resulting self-models to 

synthesize new behaviors. If the robot’s topology 
unexpectedly changes, the identical process restructures its 

internal self-models, resulting in the generation of 

qualitatively different, compensatory behavior. In essence, the 

method enables the robot to continuously diagnose and 

recover from damage. Unlike other approaches to wreck 

recovery, the concept introduced here doesn't presuppose 

built-in redundancy, dedicated sensor arrays, or contingency 

plans designed for anticipated failures. Instead, our approach 

is predicated on the concept of multiple competing internal 

models and generation of actions to maximize disagreement 

between predictions of these models. the method is composed 

of three algorithmic components that are executed 
continuously by the physical robot while moving or at rest 

(Fig. 2.3): Modeling, testing, and prediction. 

 

The robot first executes an arbitrary motor activity and 

collects the resulting sensory data as the first phase of self-

healing (Fig. 2.3A). The model synthesis component (Fig. 

2.3B) then synthesizes a group of 15 candidate self-models 

using stochastic optimization to explain the observed sensory-

actuation causal relationship. The action synthesis component 

(Fig. 2.3C) then uses these models to seek out a new action 

most likely to elicit the most information from the robot. this 
is often accomplished by searching for the actuation pattern 

that, when executed on each of the candidate self models, 

causes the foremost disagreement across the predicted sensor 

signals. This new action is performed by the physical robot 

(Fig. 2.3A), and therefore the model synthesis component now 

http://www.ijsrem.com/
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reiterates with more available information for assessing model 
quality. After 16 cycles of this process have terminated, the 

foremost accurate model is used by the behavior synthesis 

component to create a desired behavior (Fig. 2.3D) which will 

then be executed by the robot (Fig. 2.3E). 

If the robot detects unexpected sensor-motor patterns or an 

external signal as a result of unanticipated morphological 

change, the robot reinitiates the alternating cycle of modeling 

and exploratory actions to supply new models reflecting the 

change. The new most accurate model is now wont to 

generate a new, compensating behavior to recover 

functionality. an entire sample experiment is shown in Fig. 

2.4. 

 
Figure 4: Self-Healing Robot 

 

 
Figure 5: Outline of the Algorithm 

 

 
Figure 6: Robot modelling and behavior 

A four-legged physical robot with eight motorized joints, 
eight joint angle sensors, and two tilt sensors was used to 

evaluate the suggested procedure. Any planar topological 

arrangement with eight limbs was included in the space of 

potential models, including chains and trees (for examples, 

see Figs. 2.3 and 2.4). After damage occurs, the space of 

topologies is fixed to the previously inferred morphology, but 

the dimensions of the limbs can be scaled (Fig. 2.4, N and O). 

The desired angles that the motors were instructed to achieve 

were included in the space of potential actions. The specific 

simulations used here might be replaced by a variety of other 

self-model representations, such as artificial neural or 

Bayesian networks, and additional sense modalities, such as 
pressure and acceleration, could be utilised (here the joint 

angle sensors were used only to verify achievement of desired 

angles and orientation of the main body was used only for 

self-model synthesis). Nonetheless, the utilization of implicit 

representations such as artificial neural networks—although 

more biologically plausible than explicit simulation—would 

make the validation of our theory more challenging, because it 

might be evaluating the model's accuracy is challenging 

(which can be done by visual inspection for explicit 

simulations). More important, without a particular 

representation, it's difficult to reward a model for a task such 
as forward locomotion (which requires predictions about 

forward displacement) when the model can only predict 

orientation data. 

 

Table 3: Results of baseline algorithms 

 
 
The proposed process (Model-driven algorithm) was 

compared with two baseline algorithms, both of which use 

random instead of self-model–driven data acquisition. All 

three algorithm variants used an identical amount of 

computational effort (~250,000 internal model simulations) 

and therefore the same number (16) of physical actions (Table 

2.3). within the first baseline algorithm, 16 random actions 

were executed by the physical robot (Fig. 1A), and therefore 

the resulting data were supplied to the model synthesis 

component for batch training (Fig. 2.3B). within the second 

baseline algorithm, the action synthesis component output a 
random action, instead of searching for one that created 

disagreement among competing candidate self-models. The 

actions related to Fig. 2.3, A to C, were cycled as within the 

proposed algorithm, but Fig. 2.3C output a random action, 

instead of an optimized one. 

Before damage, the robot began each experiment with a group 

of random models; after damage, the robot began with the 

simplest model produced by the model-driven algorithm (Fig. 

2.4F). it had been found that the probability of inferring a 

topologically correct model was notably higher for the model-

http://www.ijsrem.com/
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driven algorithm than for either of the random baseline 
algorithm (Table 2.3), which the final models were more 

accurate on average in the model-driven algorithm than in 

either random baseline algorithm (Table 2.3). Similarly, after 

damage, the robot was better ready to infer that one leg had 

been reduced in length using the model-driven algorithm than 

it could, using either baseline algorithm. this means that 

alternating random actions with modeling, compared with 

simply performing several actions first then modeling, doesn't 

improve model synthesis (baseline 2 does not outperform 

baseline 1), but a robot that actively chooses which action to 

perform next on the idea of its current set of hypothesized 

self-models has a better chance of successfully inferring its 
own morphology than a robot that acts randomly (the model-

driven algorithm outperforms baseline algorithms 1 and 2). 

Because the robot is assumed to not know its own 

morphology a priori, there's no way for it to determine 

whether its current models have captured its body structure 

correctly. it had been found that disagreement among the 

current model set (information that is available to the 

algorithm) is a good indicator of model error (the actual 

inaccuracy of the model, which isn't available to the 

algorithm), because a direct correlation exists between model 

disagreement and model error across the (n = 30) experiments 
that use the model-driven algorithm (Spearman rank 

correlation = 0.425, P < 0.02). Therefore, the experiment that 

resulted within the most model agreement (through 

convergence toward the correct model) was determined to be 

the most successful from among the 30 experiments 

performed, and therefore the best model it produced (Fig. 2F) 

was selected for behavior generation. This was also the 

starting model that the robot used when it suffered unexpected 

damage (Table 2.3). 

The behavior synthesis component (Fig. 2.3D) was executed 

repeatedly with this model, starting whenever with a different 
set of random behaviors. The anticipated distance and actual 

distance are not exactly in line, but there is a definite upward 

trend that is missing from the random behaviors. This means 

that this automatically generated self-model was sufficiently 

predictive to allow the robot to consistently develop forward 

motion patterns without further physical trials. The transferal 

from the self-model to reality wasn't perfect, although the 

gaits were qualitatively similar; differences between the 

simulated and physical gait were presumably due to friction 

and kinematic bifurcations at symmetrical postures, both 

difficult to predict. Similarly, after damage, the robot was 

ready to synthesize sufficiently accurate models (an example 
is given in Fig. 2.4 O) for generating new, compensating 

behaviors that enabled it to continue moving forward. 

 

4. ALGORITHM 

For both robotics and electronic circuits, a number of 

techniques based on iterative testing for mistake recovery 

have been developed and demonstrated. Repeated hardware 

trials take a lot of time, may necessitate quick repair (such as 

when solar panels are covered in rain), and continuously alter 
the robot's state, making damage diagnosis challenging. For 

these reasons, repeated generate-and-test algorithms for 

robotics are not recommended. 

Recent developments in simulation have made it possible to 

automatically evolve the controller and morphology of 

simulated robots in tandem to produce certain behaviours. We 

employ evolutionary algorithms to co-evolve robot bodies and 

brains in this case, but we do so in reverse: rather than 
developing a controller given robot morphology, we evolve a 

root morphology given a controller. Also, instead of evolving 

to reach a high fitness as a form of design, we evolve towards 

an observed low fitness (caused by some unknown failure) as 

a form of diagnosis. The evolutionary algorithm can adjust for 

damage or failure of the robot's mechanics, its sensory or 

motor apparatus, the controller itself, or some combination of 

these failure types by not distinguishing between the robot's 

morphology and controller. This contrasts with all existing 

automated recovery methods up to this point, which can only 

account for a few pre-specified faults. 

In addition, qualitatively distinct behaviours (such hopping 
instead of walking) emerge in reaction to failure when 

recovery is accomplished via an evolutionary algorithm. The 

behaviours that are produced in response to minor damage by 

more conventional analytical methods are only marginally 

altered. 

 

4.1 Algorithm overview 

 

4.1.1 Estimation-Exploration Algorithm 

The estimation-exploration algorithm is actually a co-

evolutionary process comprising two populations. One 
population is of candidate models of the target system, where 

a model’s fitness is decided by its ability to correctly explain 

observed data from the target system. the opposite population 

is of candidate unlabelled sentences, each of whose fitness is 

decided by its ability to cause disagreement among model 

classifications (thereby elucidating model uncertainties), or by 

exploiting agreement among models to realize some desired 

output (thereby capitalizing on model certainties). 

The estimation-exploration algorithm performs two tasks: 

controller evolution and damage hypothesis evolution (the 

exploration phase). The algorithm also maintains a database, 
which stores pairs of data: an evolved controller and therefore 

the fitness produced by the ‘physical’ robot when that 

controller is used. Two separate evolutionary algorithms—the 

estimation EA and therefore the exploration EA–are used to 

generate hypotheses regarding the failure incurred by the 

physical robot, also as controllers for the simulated and 

‘physical’ robot, respectively. Figure 3 outlines the flow of the 

algorithm, together with a comparison against an algorithm 

for evolving function recovery all on a physical robot. 

A hybrid force-motion controller and a cycloidal motion path 

are proposed to deal with shape exploration. An adaptive 

exploration algorithm for segmentation of surface features and 
a predictor-corrector algorithm for exploration of deep 

features are introduced supported discrete impedance 

estimates. These estimates are derived from localized 

excitation of tissue including simultaneous force 

measurements. Shape estimation is validated in ex-vivo 

bovine tissue and attains surface estimation errors of but 2.5 

mm with force sensing resolutions achievable with current 

technologies in minimally invasive surgical robots. 
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Figure 7: Flow chart of estimation-exploration phases  

 

Exploration Phase: Controller Evolution. 

The exploration EA is employed to evolve a controller for the 

simulated robot, such it is able to perform some task. the 

primary pass through this phase generates the controller for 

the intact physical robot: subsequent passes attempt to evolve 

a compensatory controller for the damaged physical robot, 

using the present best damage hypothesis generated by the 

estimation phase. When the exploration EA terminates, the 

simplest controller from the run is transferred to and used by 

the physical robot. 

Physical Robot Failure: The physical robot uses an evolved 
controller to steer forwards. An unanticipated failure occurs to 

the robot, and therefore the broken robot records its own 

forward displacement for a period of time. The physical robot 

is then stopped, and therefore the recorded forward 

displacement (fitness) is inserted into the database along with 

the evolved controller on-board the robot at that time: these 

become an Input-output pair wont to reverse engineer the 

damage suffered by the robot. The damaged robot tries to 

function utilizing the compensating evolved controller created 

during the exploration phase throughout subsequent iterations 

of the algorithm. 

Estimation Phase: Damage Hypothesis Evolution. 

The estimation EA is employed to evolve a hypothesis about 

the actual failure incurred by the physical robot. The 

assessment EA tests the accuracy of each diagnosis 

represented by the estimation EA's genomes using the forward 

displacements created by the damaged physical robot and the 

related controllers operating on the physical robot at the 

moment. When the estimation EA terminates, the foremost fit 

damage hypothesis is supplied to the exploration EA. The 

robot simulator is updated to model this damage hypothesis: 

for instance if the hypothesis is that one of the legs has fallen 
off, that leg is broken off of the simulated robot. The 

investigation EA uses this revised approach to develop a 

compensatory controller. 

 

4.2 Experimental Setup 

The recovery of locomotion of badly damaged legged robots 

was accomplished using the suggested technique. A robot 

simulator is employed to evolve controllers for the ‘physical’ 

robot: here the ‘physical’ robot is also simulated. The physical 

robot receives evolved controllers from the simulation, and 

the simulation receives performance data from the physical 

robot.  The robot simulator is predicated on Open Dynamics 
Engine, an open-source 3D dynamics simulation package. The 

simulated robot consists of a series of three-dimensional 

objects, connected with one degree-of freedom rotational 
joints. 

 

4.2.1 The Robots 

The two hypothetical robots tested in this preliminary work—

a quadrupedal and hexapedal robot—is shown in Figure 4.2.  

There are eight mechanical degrees of freedom in the 

quadrupedal robot. Per leg, there are two rotational joints with 

one degree of freedom each: one at the shoulder and one at the 

knee. Four binary touch sensors, one in each of the lower legs 

of the quadrupedal robot, are present. The touch sensor 

returns, 1.0 if the lower leg is on the bottom and −1.0 

otherwise. There also are four angle sensors in the shoulder 
joints, which return a sign commensurate with the flex or 

extension of that joint (−1.0 for max flexure up to 1.0 for max 

extension). Eight joints are controlled by a torsional motor. 

The joints have a maximum flex of 30 degrees from their 

original setting (shown in Figure 3), and a maximum 

extension of 30 degrees. The hexapedal robot has 18 

mechanical degrees of freedom: each leg features a one 

degree-of-freedom rotational joint at the knee, and one two 

degree-of-freedom rotational joints connecting the leg to the 

spine. Each joint is actuated by a torsional motor, and 

therefore the joint ranges are the same as for the quadrupedal 
robot. The hexapedal robot contains six touch sensors, one per 

lower leg, and 6 angle sensors, placed on the joints connecting 

the legs to the spine. 

 
Figure 8: The simulated robots used for experimentation. 

 

4.2.2 The Controllers 

The robots are controlled by a neural network, which receives 

sensor data from the robot at the start of each time step of the 

simulation into its input layer, propagates those signals to a 
hidden layer, and eventually propagates the signals to an 

output layer. The neural specification and connectivity is 

shown in Figure 3.3. Neuron values and synaptic weights are 

scaled to dwell the range [−1.00, 1.00]. The neurons receive a 

threshold activation function. There's one output neuron for 

each of the motors actuating the robot: the values arriving at 

the output neurons are scaled to desired angles for the joint 

corresponding to that motor. For both robots here, joints can 

flex or reach π/ 4 away from their default starting rotation, π/ 

2. The angles are translated into torques employing a PID 

controller, and therefore the simulated motors then apply the 

resultant torques. The physical simulator then updates the 
position, orientation and velocity of the robot supported these 

torques, together with external forces such as gravity, friction, 

momentum and collision with the bottom plane. 
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Figure 9: The neural network architecture used for the 

quadrupedal robot. 

 

4.3 Algorithm Implementation 

 

The Exploration EA: The exploration EA is employed to 

generate sets of synaptic weights for the robot’s neural 

network (Figure 3.3). The fitness function awards robots for 

advancing as far as they can during the simulation's 1000 time 

steps. The fitness function is defined as f(gi) = d(t1000) - 

d(t1), where f(g) is the robot's fitness, expressed in metres, 
and whose neural network controller is labelled with the 

values contained in genome g. At the first time step of the 

simulation, the robot's forward displacement, or d(t1), was 

measured in metres. At the last time step of the simulation, 

d(t1000), it was measured in metres once more. The 

exploratory EA's genomes are a series of floating point data 

that encode. 

The synaptic weights. For the quadrupedal robot, there are a 

complete of 68 synapses, giving a genome length of 68. For 

the hexapedal robot, there are a complete of 120 synapses, 

giving a genome length of 120. The encoded synaptic weights 

are represented to 2 decimal places, and dwell the range [-
1.00, 1.00]. At the start of each run a random population of 

100 genomes is generated. If there are any previously evolved 

controllers stored within the database, these are downloaded 

into the starting population. A genome is evaluated as follows: 

the encoded weights are wont to label the controller; the robot 

is then evaluated in the simulator for 1000 time steps using 

that controller; and the resulting fitness value is returned. 

Once all of the genomes within the population have been 

evaluated, they're sorted in order of decreasing fitness, and 

therefore the 50 least fit genomes are deleted from the 

population. Fifty new genomes are selected to exchange them 
from the remaining 50, using tournament selection, with a 

tournament size of three . Selected genomes undergo 

mutation: each floating-point value of the copied genome 

features a 1 per cent chance of undergoing a point mutation. 

12 couples of the 50 newly created genomes are randomly 

chosen and go through one-point crossover. 

 

The Estimation EA: The assessment EA develops theories 

for the failure that the physical robot experienced. 

The genomes of the estimation EA, just like the exploration 

EA, are strings of floating-point values. Each genome within 
the estimation EA is composed of four genes: each gene 

denotes a possible failure. during this preliminary study, the 

particular robot can undergo three different types of 

damage—joint breakage, joint jamming, and sensor failure—

and can incur zero to four of those damages simultaneously. 

In joint breakage, any single joint of the robot can break 
completely, separating the 2 parts of the robot connected by 

that joint. In joint jamming, the 2 objects attached by that joint 

are welded together: actuation has no effect on the joint’s 

angle. In sensor failure, any sensor within the robot (either 

one among the touch or angle sensors) feeds a zero signal into 

the neural network during subsequent time steps. Any sort of 

failure that does not conform to one of these types is referred 

to henceforth as an unanticipated failure: so as to compensate 

for such cases, the estimation EA has got to approximate the 

failure using aggregates of the encoded failure types. 

Each of the four genes encoded within the estimation EA 

genomes is comprised of four floating-point values, giving a 
complete genome length of 16 values. just like the exploration 

EA, each of the values is represented to 2 decimal places, and 

lies in [−1.00, 1.00]. the primary floating-point value of a 

gene is rounded to an integer in [0, 1] and denotes whether the 

gene is dormant or active. If the gene is dormant, the damage 

encoded by this particular gene isn't applied to the simulated 

robot during evaluation. Which of the three damage kinds 

should be administered to the simulated robot depends on 

whether the gene is active; this is indicated by the second 

floating point value, which is rounded to an integer in the 

range [0, 2]. The third value is scaled to an integer in the 
range [0, j 1], where j is the number of mechanical degrees of 

freedom of the robot (j = 8 for quadrupedal robots and j = 12 

for hexapedal robots), depending on the damage type. The 

fourth value is currently not utilized in this preliminary study, 

but are going to be used for additional damage types that are 

not binary, but occur with a lesser or greater magnitude (i.e. a 

sensor that experiences 80% damage, rather than completely 

failing). The simulated robot is initially broken for each 

genome in the estimation EA in line with the failure scenario 

encoded in the genome. Then, the broken robot is appraised 

using the controller that was just developed by the exploration 
EA and tested on the "real" robot. The estimation's fitness 

function EA aims to reduce the discrepancy between the 

forward motion achieved by the 'real' robot using that 

controller and the forward motion achieved by the simulated 

robot utilising the encoded damage hypothesis. This is often 

based on the observation that the closer the damage 

hypothesis encoded in the genome is to the actual damage, the 

lesser the difference between the 2 behaviors. 

During subsequent passes through the estimation phase, there 

are additional pairs of evolved controllers and forward 

displacements within the database: the controllers evolved by 

the exploration EA and therefore the fitness values attained by 
the ‘physical’ robot when using those controllers, 

respectively. In these cases, the simulated robot is evaluated 

once for every of the evolved controllers, and therefore the 

fitness of the genome is then the sum of the errors between the 

forward displacementsWhen the estimation EA terminates, the 

simplest evolved damage hypothesis is stored in a database: 

these hypotheses are used to seed the random population at 

the beginning of the next run of the estimation EA, instead of 

starting each time with all random hypotheses. 

The estimation EA is analogous to the exploration EA, apart 

from the length of the genomes, what those genomes encode, 
and therefore the fitness function: in the exploration EA, 

forward displacement is maximized; within the estimationEA, 

error between the simulated and ‘physical’ robots’ forward 

displacements is minimized. 
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Table 4: Damage scenarios tested 

 
 

4.4 Results of Estimation-Exploration Algorithm 

This study looks at techniques that would let surgical slave 

robots examine the contours and stiffness of surgical fields on 

their own. The methods for determining the form and 

impedance properties of tissue are discussed in the paper, as 

well as techniques for independently examining perceived 

impedance during tool interaction inside a tissue cleft.  

Control experiments were performed which conforms to the 

algorithm outlined within the right-hand panel of Figure all 
evolution is performed on the ‘physical’ robot after damage. 

during this case, controller evolution is performed by the 

exploration EA until generation 30 on the quadrupedal robot. 

The controller is then transferred to the ‘physical’ robot, 

which then undergoes separation of 1 of its lower legs 

(damage case 1). The exploration EA then continues on the 

‘physical’ robot for an extra 70 generations. The algorithm 

proposed here was then applied several times to the 

quadrupedal and hexapedal robots. During each application of 

the algorithm, the robots suffered a special damage scenario: 

the 10 scenarios are listed in Table 3.1 
For each run of the algorithm, the exploration EA is run once 

to get the initial evolved controller, then both the estimation 

and exploration EAs are run three times each after physical 

robot failure. Each EA is run 30 generations, employing a 

population size of 100 genomes. Twenty runs of the algorithm 

were performed (10 damage cases for every of the two 

robots), during which both the exploration and estimation EAs 

were initialized with independent random starting populations 

seed with any previously evolved controllers or damage 

hypotheses. Damage scenarios 1, 2, 3, 5 and 6 are often 

described by a single gene in the genomes of the estimation 

EA.  
Scenarios 4, 7 and eight represent compound failures, and 

need more than one gene to represent them. Case 9 represents 

things when the physical robot signals that it has incurred 

some damage, when after all no damage has occurred. Case 

10 represents an unanticipated failure: hidden neuron failure 

can't be described by the estimation EA genomes. Figure 6 

shows the recovery of the quadrupedal robot after minor 

damage (scenario 3); after suffering unanticipated damage 

(scenario 10); and recovery of the hexapedal robot after 

severe, compound damage (scenario 8). The recovery of both 

robots for all 10 damage scenarios is shown in Figure. 
 

 
Figure 10: Three typical damage recoveries 

 

4.5 Analysis of Estimation-Exploration Algorithm 

It is often seen, that even after several generations have 

elapsed after the ‘physical’ robot suffers damage for the 

experiment , and 3550 hardware evaluations are performed, 

total function has not been restored. The degree of restoration 

(about 70%) is about the identical as that achieved by the 

quadrupedal robot suffering the same type of damage when 

the proposed algorithm is used to restore function. However 

the proposed algorithm only requires three hardware 

evaluations (more than two orders of magnitude fewer 

hardware trials) to revive function. 
Figure 3.4, shows that for 3 sample damage scenarios, much 

functionality is restored to the physical robot after only three 

hardware trials. within the case of sensor failure for the 

quadrupedal robot, the forward displacement of the physical 

robot after the third hardware trial exceeds its original 

functionality. Frequently, the compensating controller results 

in a gait that is very dissimilar from that of the original, 

uninjured robot. Example: After recovering from a sensor 

failure, a robot moves in a more steady but irregular gait as 

opposed to before the failure (notice the distinct arcs in the 

trajectory of its centre of mass in Figure 3.4d) (Figure 3.4b). 
The information-poor way of contrasting the behaviour of the 

physical robot with that of the simulated robot used in this 

paper, which compares behaviour only by measuring forward 

displacement, is thought to be the cause of the algorithm's 

intermittent failure. This method are going to be replaced in 

future with a more sophisticated method such as comparing 

sensor time series or measuring the differences in gait 

patterns. 

The algorithm performs equally well for both morphological 

and controller damage: function recovery for scenarios 1 and a 

couple of (morphological damage) and scenarios 3 and 5 
(controller damage), for both robots, approaches or exceeds 

original performance. Because the algorithm evolves the robot 

simulator itself supported the ‘physical’ robot’s experience, it 

might be straightforward to generalize this algorithm beyond 

internal damage: the estimation EA could evolve not only 

internal damage hypotheses but also hypotheses regarding 

environmental change, like increased ruggedness of terrain or 

high winds. 

 

4.6 Estimation-Exploration Algorithm Overview 

 

1. Characterization of the target system 
• Define a representation, variation operators and similarity 

metric for the space of systems. 

http://www.ijsrem.com/
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• Define a representation and variation operators for the space 
of inputs (tests) 

• Define a representation and similarity metric for the space of 

outputs 

2. Initialization 

• Create an initial population of candidate models (random, 

blank, or seeded with prior information) 

• Create an initial population of candidate tests (random, or 

seeded with prior information) 

3. Estimation Phase 

• Evolve candidate models; encourage diversity 

• Fitness of a model is its ability to explain all input-output 

data in training set 
4. Exploration Phase 

• Evolve candidate tests (input sets) 

• Fitness of a test is the disagreement it causes among good 

candidate models 

• Carry out best test on target system; add input/output data to 

training set 

5. Termination 

• Iterate estimation-exploration (steps 3-4) until the population 

of models converges on a sufficiently accurate solution, or the 

target system exhibits some desired behavior. 

• If no model is found, the search space may be inappropriate, 
or the target system may be inconsistent 

• If no good test is found, then either: 

– All good candidate models are perfect; 

– The search method for finding good tests is failing; 

or. 

– The target system may be partially unobservable. 

6.Validation 

• Validate best model(s) using unseen inputs 

• If validation fails, add new data to training set and resume 

estimation phase. 

 

5. FROM THEORY TO REALITY 
Here, we present validation of our algorithm on a physical 

articulated robot (shown in Figure 1a): the robot evolves a 

particular model of its body using sensor data from different 

modalities. this is often the first time explicit, predictive robot 

models are intelligently synthesized based on physical 

interactions. In previous section, we've demonstrated that the 

EEA can synthesize both the topology and parameters of a 

hidden system, during which no model is required a priori 

(Bongard and Lipson, 2005a). 
In order to apply the EEA to a new target system, like the 

physical robot used in this work, three preparatory steps must 

be first carried out: characterization of the system to be 

identified, how models are to be represented and optimized, 

and the way controllers are to be represented and optimized. 

Self-repair mechanisms in robots also means they're less of a 

risk to the humans that may be working with or near them, 

since they're unlikely to cause any real damage due to their 

gentle, flexible nature. This makes work environments with 

increasingly high populations of robotic ‘workers’ much safer 

for human workers and therefore the products. 
By developing soft, safe materials embedded with polymers 

which may sense and locate damages and trigger the healing 

process without human interference, robots traditionally found 

as automated workers in factories and labs will soon begin to 

maneuver into more environments, like agriculture, and into 

the typical household. Users or owners of such robots will 

avoid the necessity to seek out costly repairs for damages 

sustained and can instead take advantage of this safe, 
sustainable alternative, putting this at the forefront of 

developing a replacement generation of robotics. 

The cost of robot repairs and replacements is incredibly high, 

therefore the introduction of self-healing technology is not 

only game-changing, but can help to scale back the need for 

time-consuming, complex, and expensive repairs. It also has 

implications for sustainability, as robots will need to be 

replaced with new models less often, since they will perform 

standard maintenance independently and autonomously. 

 

5.1 Characterizing the Target System  

The target system in this study is a quadrupedal. The Details 
of the target system has been explained in section 2.2.1 

 

5.2 Characterizing the Space of Models 

 

Models are considered to be three-dimensional simulations of 

the physical robot (see Figure 5 for three model examples). 

The simulations are created within Open Dynamics Engine, a 

three-dimensional dynamics simulator. However in the current 

work only static identification is performed: the physical robot 

is commanded to achieve a static pose, and then hold still 

while sensor data is taken. Every candidate model (as well as 
the target robot) is assumed to start as a planar configuration 

of parts; when it begins to move, it can assume a three-

dimensional configuration. The geometry and physical 

properties of the main body part is assumed to be known; the 

eight upper and lower leg parts are represented as solid 

cylinders. Each model is evaluated for an arbitrarily set time 

of 300 time steps of the simulator, which is enough time for 

most models to come to rest given an arbitrary motor 

program. 

Models are encoded as either vectors or matrices, and these 

data structures are used to construct a possible articulated 
robot in the simulation environment. In the first set of 

experiments, it was assumed that everything about the 

physical robot is known except the lengths of its four legs. 

Models are therefore encoded as vectors containing eight real-

valued parameters in [0, 1], with each value encoding the 

estimated length of one of the eight leg parts. We constrain 

the estimation about the minimum and maximum length of a 

leg to be between 2 and 40 centimeters, so each value is 

scaled to a real-value in [1,20]cm. 

 

 

In the second set of results, we assume that less information 
about the robot is known: how the eight body parts attach to 

each other or the main body, and how the hinge joints 

connecting them are oriented. In that case, models are 

encoded as 8×4 real-valued matrices. Each row corresponds to 

one of the eight parts. The first value in row i is scaled to an 

integer in [0, i−1], indicating which of the previous body parts 

it attaches to; the second value is scaled to an integer in [0,3], 

indicating whether the current part attaches to the left, front, 

right, or back side of the parental part. The third value is 

scaled to an integer in [0,5], and indicates how the hinge joint 

connecting the current part to its parent operates: 0 and 1 
cause the part to rotate leftward or rightward in response to a 

positive commanded joint angle (and rightward and leftward 

in response to a negative commanded angle); 2 and 3 cause 

the joint to rotate upward or downward in response to a 

positive commanded angle; and 4 and 5 cause the part to 
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rotate leftward or rightward around its own axis in response to 
a positive commanded angle. The fourth value is scaled to a 

value in [1, 20] cm to represent the length of the leg part. 

In both types of experiments, a genetic algorithm using 

deterministic crowding (Mahfoud, 1995) is used to optimize 

the models. Genomes in the population are simply the vectors 

or matrices described above. The subjective error of encoded 

models is minimized by the genetic algorithm. Subjective 

error is given as the error between the sensor values obtained 

from the physical robot, and those obtained from the 

simulated one. 

In the first pass through the estimation phase, a random 

population of models is generated, and optimized for a fixed 
number of generations. On the second and subsequent passes 

through the estimation phase, the previously optimized 

population of models is used as the starting point, but they are 

re-evaluated according to the new error metric with the 

additional set of sensor data. 

 

5.3 Characterizing the Space of Controls 

This paper presents a procedure for designing a strong 

controller which is able to stabilize a multivariable system 

with interval uncertainties in the system parameters. It is 

assumed that the uncertain parameters fall within 
predetermined ranges. 

In this work a motor program is a set of four joint angles that 

either the target robot, or a model robot, is commanded to 

achieve2. Both the target and model robots begin during a 

planar configuration, with the joint angles at zero. Joint angles 

during a given motor program are selected randomly from the 

range [−30, 30] degrees. This constrains the range of motion 

of the target robot; without a model of itself, it's possible that 

the robot could perform some action that would be harmful to 

itself or complicate the inference process. 

At the start of an identification run, a random motor program 
is generated, and sent to the target robot. Its motors are 

sufficiently strong to succeed in the desired angles. Once it 

reaches those angles it holds steady, and therefore the sensor 

data is taken, and fed into the EEA. The estimation phase then 

begins, as outlined above. When the estimation phase 

terminates, a replacement random motor program is 

generated. For this work, the exploration phase isn't used; i.e., 

a useful motor program isn't sought. Thus, the look for 

controllers is random. 

 

5.4 Results: Parametric Identification 

In the first set of experiments, only the lengths of the eight leg 
parts were identified: all other aspects of the target robot are 

assumed to be known. within the estimation phase, a 

population of 100 random models are created, and in each 

pass the population is evolved for 10 generations. a complete 

of four random motor programs are used; the population of 

models is optimized four times, whenever with an additional 

motor program and resulting set of sensor data from the target 

robot. 

In total, 30 independent runs were conducted for every of 

seven experimental variants. Three or fewer of the sensor 

modalities are presumptively available in each variant for 
optimising the model. Within the first run, all three sensor 

modalities— touch, tilt and clearance—were assumed 

available for identification. within the second run, only touch 

and tilt information were available. When using simply touch 

and tilt information, it is frequently seen that the first run was 

more successful than the second since there was a sizable 
inaccuracy in the left leg's length estimation. 

 

 Across the seven versions, the optimised models' average 

quality was compared. It had been discovered that only the 

lean sensor data was necessary to create accurate models, with 

the mean difference between the model's leg length and the 

target robot's leg length serving as the criterion for model 

quality. This is often because for the experiment variants that 

included tilt information in calculating model quality, evolved 

models were more accurate than when tilt information was 

excluded from the calculation. The model quality is decided 

as the variance across the lengths of a single model’s legs; in a 
good model all four legs should have the same length. 

 

5.5 Results: Topological Identification 

In the second set of experiments, the inference algorithm was 

required not only to spot the length of the robot’s legs, but 

how the legs are attached to at least one another or to the main 

body, and where they're attached. In these experiments, 

parametric changes within the genome correspond to 

topological changes in the body plan of the robot model. 
during this more difficult task, the population size was 

expanded to 300, and every pass through the estimation phase 

was conducted for 40 generations 

The figure 4.1, given below shows the results of a successful 

topological identification. Figures 4.1b-d show the simplest 

model obtained at the end of the first, fifth and ninth iteration, 

respectively. The final model achieves identical poses to the 

physical robot when given the same motor programme, such 

as the initial random motor programme, which demonstrates 

that the model is indeed predictive (compare Figures 4.1a and 

d). 

 
Figure 11: Results from a successful topological 

identification. 

 

A: The pose produced by the physical robot as a result of 

running the first random motor program. 

B: The best model produced after the first iteration of the run 
reported in figure 5 
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6. CONCLUSION 

Although the likelihood of autonomous self-modeling has been 
suggested, here it had been demonstrated for the first time a 
physical system able to autonomously recover its own 
topology with little or no prior knowledge, also as optimize the 
parameters of those resulting self-models after unexpected 
morphological change. These procedures show topological 
self-modeling as well as parametric self-modeling. Future 
machines might be able to continuously recognise changes in 
their own morphology (such as after damage has occurred or 
when grasping a replacement tool) or the environment (such as 
when a robot enters an unfamiliar or modified environment) 
and use the inferred models to generate compensatory 
behaviour.  Beyond robotics, the power to actively generate 
and test hypotheses can lead to general nonlinear and 
topological system identification in other domains, like 
computational systems, biological networks, damaged 
structures, and even automated science. apart from practical 
value, the robot's abilities suggest a similarity to human 
thinking because the robot tries out various actions to figure 
out the shape of its world.These findings may help develop 
more robust robotics, also as shed light on the relation between 
curiosity and cognition in animals and humans: Creating 
models through exploration, and using them to make new 
behaviors through introspection. Someday similar robots will 
someday respond not only to wreck to their own bodies but 
also to changes in the surrounding environment. Such 
responsiveness could lend autonomy to robotic explorers on 
other planets, a helpful feature, since such robots can't always 
be in touch with human controllers on earth. 
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