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Abstract — Cloud-native architectures have become 

the standard for modern application development, with 

container orchestration via Kubernetes and serverless 

computing via AWS Lambda emerging as two 

dominant paradigms. While extensive research exists 

comparing these platforms on performance and cost, 

there is a significant gap in the empirical analysis of 

their inherent resilience mechanisms and recovery 

characteristics from common operational failures. This 

paper addresses this gap by conducting a comparative 

study. We developed a standardized stateless web 

application and deployed it on two parallel stacks: one 

on a managed Kubernetes cluster and another on an 

AWS Lambda and API Gateway stack. We then 

subjected both systems to a series of controlled single-

region failures, including compute instance crashes 

(pod failures) and faulty code deployment rollbacks, 

measuring the Recovery Time Objective (RTO) and 

qualifying the operational process 
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I. INTRODUCTION 

The architectural landscape of modern application 

development is dominated by the cloudnative 

paradigm, which leverages the scalability, flexibility, 

and resilience of cloud computing. Within this domain, 

organizations face a critical decision between  two  

leading  compute  models: Container-Based 

Orchestration, epitomized by Kubernetes, and 

Serverless Computing, primarily represented by AWS 

Lambda. 

While both approaches facilitate the development of 

robust applications, they offer fundamentally different 

trade-offs regarding control and operational overhead. 

Extensive academic and industry literature exists, 

comparing these platforms based on metrics like 

performance (e.g., "cold start" latency and throughput) 

and cost analysis (e.g., pay-per-use vs. provisioned 

resources). 

However, this existing body of work reveals a 

significant research gap: a lack of direct, empirical data 

comparing the inherent resilience and recovery 

mechanisms of these two patterns when faced with 

common, real-world operational failures 

II. LITERATURE REVIEW 

Vermaa and Dutta (2024) 

Discussed the rapid adoption of cloud- native 

computing, identifying Kubernetes (container 

orchestration) and Serverless Computing (FaaS, like 

AWS Lambda) as the two dominant paradigms. Their 

work highlighted the central dilemma faced by 

organizations: choosing between the granular control 

and stateful workload capability of Kubernetes versus 

the simplified operations and automatic scaling of 

Serverless. The study emphasized that while both 

technologies promote agility, resilience, and 

scalability, their architectural differences necessitate a 

comprehensive comparative analysis to guide 

architectural decision making, especially concerning 

metrics beyond just performance and cost. 

Shreekanti et al. (2022) 

Explored the concept of fault tolerance (FT) 

specifically within Server less environments. They 

introduced a framework, AFT (Atomic Fault 
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Tolerance), designed to interpose between the FaaS 

platform and the storage engine, guaranteeing read 

atomic isolation even during failures. The researchers 

noted that commercial FaaS solutions are inherently 

marketed with high availability and built-in fault 

tolerance, relying on mechanisms like retries to ensure 

at-least- once execution. Their work validated the idea 

that Serverless abstracts away recovery mechanisms, 

providing an effective RTO approaching zero for 

compute failures, but requiring developers to ensure 

function idempotence for transaction safety. 

Joshi et al. (2023) 

Conducted an empirical study focusing on the trade- 

offs between Serverless and Kubernetes platforms 

across latency, scalability, and RTO. Their benchmarks 

demonstrated that Serverless offers automated scaling 

but suffers from the cold start latency problem, which 

impacts the Response Time (R) and thus overall 

throughput (T). Conversely, Kubernetes  provided  

sustained  throughput  and negligible cold start issues 

but required policy-driven scaling and granular 

resource control. Critically, their findings showed that 

while Serverless offers inherent fault tolerance to 

infrastructure failure, Kubernetes's self-healing 

features (like the Horizontal Pod Autoscaler) allowed 

for measurable, policy-tuned recovery, proving 

superior for latency-critical, high- throughput services. 

Mondal et al. (2022) 

Examined the resilience and self-healing mechanisms 

embedded in Kubernetes, particularly in the context of 

HPC and microservice infrastructures. The research 

detailed how Kubernetes utilizes declarative 

application management to maintain a desired state, 

leveraging tools like the Horizontal Pod Autoscaler 

(HPA) and the controller pattern for automatic failure 

detection and recovery. They concluded that 

Kubernetes offers powerful, customizable self-healing 

capabilities, such as automatically restarting failed 

containers or replicating services, which directly 

contributes to its resilience and reliability in handling 

node crashes and network partitions. 

III. RESEARCH GAP 

Identified Research Gap Despite the extensive 

literature on Cloud-Native performance and cost 

optimization, three critical gaps remain. First, most 

studies prioritize infrastructure metrics (latency, 

throughput) over operational resilience metrics like 

Recovery Time Objective (RTO). Second, there is a 

lack of empirical data regarding application-lifecycle 

failures, such as recovering from faulty code 

deployments, as opposed to simple resource crashes. 

Third, few studies empirically quantify the trade-off 

between the transparent self-healing of Kubernetes and 

the opaque, inherent fault tolerance of Serverless 

architectures. This paper addresses these gaps by 

subjecting identical stateless workloads to controlled 

chaos engineering experiments. 

IV. SYSTEM ARCHITECTURE 

The study deploys two independent execution 

environments — a Kubernetes-based stack and a 

serverless FaaS stack — each running the same 

stateless web service to ensure platform-driven 

differences are isolated. This ensures that any observed 

differences in resilience and recovery are attributable 

solely to the underlying platform's mechanisms rather 

than the application logic. 

To support structured fault injection and measurable 

experimentation, the architecture is organized into four 

functional layers 

1. Presentation Layer (The Client/Load Generator) 

This layer sits outside the core compute environment 

and functions as both the external user and the primary 

measurement instrument. It produces a steady, uniform 

stream of HTTP requests targeting the exposed 

interfaces of both platforms. 

Components: Includes a Load Testing Tool to simulate 

real-world traffic and a Monitoring Agent to 

continuously record success rates, response latency, 

and service unavailability duration. 

Output: RTO is determined solely from the 

interruption observed by the external client. 

2. Application Logic Layer (The Stateless Service) 

This layer defines the core application code. To 

maintain a fair and controlled comparison, this service 

is a simple, stateless API that processes an incoming 

HTTP request and returns a basic response. 

Isolation: By ensuring the code and container image 

are identical for both deployments, complexities such 

as data persistence and session management are 

eliminated. 

Focus: The study remains purely on how each platform 

manages and recovers the execution environment for 

this uniform piece of business logic. 
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3. Orchestration & Compute Layer (The Dual Stacks) 

This layer acts as the implementation foundation, 

providing two distinct cloud-native environments for 

deployment: 

The Kubernetes Stack: Utilizes a Managed Kubernetes 

Cluster (e.g., EKS or GKE). The Kubernetes 

deployment runs the service as Pods managed through 

ReplicaSets, with traffic routed by a service and 

external load balancer. Recovery relies on Kubernetes’ 

declarative model, where controllers continuously 

reconcile the cluster state and recreate failed 

workloads. 

The Serverless Stack: Utilizes a Function-as-a-Service 

(FaaS) platform (e.g., AWS Lambda). The code is 

deployed as a function triggered via an API Gateway. 

Fault tolerance is handled automatically by the FaaS 

provider, which orchestrates scaling and runtime 

instance replacement without developer involvement. 

4. Failure Injection & Monitoring Layer (The Test 

Environment) 

This final layer provides the mechanism for conducting 

the empirical experiment. 

Failure Injection: The test harness applies controlled 

disruptions, following chaos-engineering 

methodologies, to induce failures in a predictable 

manner. 

Monitoring: Tools (e.g., CloudWatch, Prometheus) log 

all internal system events. This provides "ground truth" 

data to track the recovery process and accurately 

measure the time elapsed from failure to restoration. 

 

V. SYSTEM WORKFLOW: RESILIENCE 

COMPARATIVE ANALYASIS 

The system's operation is a continuous cycle of 

deployment, testing, failure injection, and data 

collection, performed simultaneously on the two 

parallel environments. 

1. Environment Setup and Deployment 

The workflow begins by establishing the controlled 

test beds: 

Kubernetes: Provisioned via a cluster (e.g., AWS 

EKS). The application is containerized and deployed 

via a declarative YAML manifest. 

Serverless: Provisioned via FaaS (e.g., AWS Lambda). 

The identical code is deployed as a function exposed 

through an API Gateway. 

2. Baseline Workload Initiation 

A Load Testing Tool in the Presentation Layer initiates 

a steady stream of HTTP requests against both 

endpoints. This establishes a performance baseline 

(latency, throughput) and confirms the application's 

healthy state before failures are induced. 

3. Continuous Monitoring and Data Logging 

The Failure Injection & Monitoring Layer activates 

logging tools (Prometheus for Kubernetes, 

CloudWatch for Serverless). These tools capture 

internal health metrics—such as CPU utilization, 

container status, and availability—to provide the 

ground truth for recovery analysis. 

4. Controlled Failure Injection 

A Failure Injection Script programmatically introduces 

a single failure event into one stack at a time. Common 

scenarios include: 

Compute Failure: Deleting a Pod in Kubernetes or 

simulating a resource crash in the Serverless runtime. 

Deployment Failure: Introducing faulty code via the 

deployment pipeline to cause application errors. 

5. System Recovery Activation 

The system’s resilience mechanisms are triggered: 

Kubernetes (Automated): The Controller Manager 

detects the deviation from the desired state (e.g., Pod 

count drop) and initiates self-healing by scheduling a 

new Pod. 

Serverless (Inherent): The platform's fault tolerance 

routes traffic away from the failed instance to a pre-

warmed instance or rapidly provisions a new runtime. 

6. Recovery Time Objective (RTO) Measurement 

The External Monitoring Agent detects the service 

outage (loss of successful HTTP responses) and 

records the duration until successful responses resume. 

This interval represents the empirical RTO. 
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7. Internal Event Analysis 

Raw data from internal tools is analyzed to qualify the 

recovery process: 

Kubernetes: The time taken for the new Pod to 

transition through its lifecycle states Pending - 

ContainerCreating - Running - Ready is measured to 

understand granular speed. 

Serverless: Event logs confirm the platform's action 

(retry, cold start, or failover) and verify that errors 

were not propagated to the client. 

8. Repeat and Iterate 

Steps 4 through 7 are repeated multiple times under 

various failure types and load conditions to ensure 

statistical significance and mitigate random variable 

interference. 

9. Comparative Analysis and Conclusion 

The empirical RTO and operational data from both 

stacks are compiled to yield quantitative insights into: 

Resilience Efficiency: The results contrast Kubernetes’ 

explicit control-loop-based recovery with the provider-

managed resilience of Serverless systems. 

Operational Complexity: Assessing the effort and 

control required to manage the recovery process in 

each architecture. 

 

VI. SYSTEM SCREENS 

Docker: 

 

Dynamo Db: 

 

VII. APPLICATIONS 

1. Cloud Architecture Decision- Making: 

Provides the empirical data (measured Recovery Time 

Objective - RTO) needed by architects to select the 

optimal architecture for new applications based on 

specific resilience and Service Level Agreement (SLA) 

requirements. 

Application: Guiding the choice between Kubernetes 

(for high control, custom healing policies, and stateful 

services) and Serverless (for inherent fault tolerance, 

zero- maintenance compute, and event- driven 

workloads). 

2. Financial and E-Commerce Systems (High 

Availability): 

Application: Implementing the findings to minimize 

downtime during peak traffic or critical transactions. 

For a microservice responsible for credit card 

processing, the study helps determine which platform 

provides the faster RTO in case of a crash, directly 

impacting transaction completion rates and revenue 

protection. 

3. IoT and Edge Computing (Latency- Sensitive 

Workloads): 

Application: Using the latency and cold-start data from 

the study to deploy functions at the edge. For a sensor 

data processing pipeline, the research dictates whether 

the low- latency, consistent performance of a custom-

tuned Kubernetes cluster is required, or if the auto-

scaling efficiency of Serverless is sufficient, especially 

where cold-start latency is a concern. 

4. Disaster Recovery and Business Continuity Planning 

(BCP): 

Application: Informing the RTO targets within 

organizational BCP documents. The comparative 

measurements help set realistic expectations for system 

recovery time for containerized vs. FaaS- based 
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services, ensuring that recovery plans are aligned with 

the platform's intrinsic capabilities. 

5. DevOps and Site Reliability Engineering (SRE): 

Application: Training SRE teams on the distinct fault-

handling characteristics of each platform. The study 

highlights where custom monitoring and self-healing 

logic (Kubernetes) must be built and maintained, 

versus where platform- level abstraction handles 

recovery automatically (Serverless). 

6. Enterprise Application Modernization: 

Application: Advising companies migrating legacy 

applications to the cloud. The project's framework can 

be adapted to benchmark the resilience improvements 

achieved by moving a monolithic component to either 

a Kubernetes-based microservice or a Serverless 

function, quantifying the reliability gain in terms of 

RTO reduction. 

VIII. ADVANTAGES 

1. Quantifies Recovery Time Objective (RTO): 

It moves beyond qualitative discussions by providing 

measurable, empirical RTO values for specific, 

common failures (e.g., Pod crash, bad deployment) in 

both Kubernetes and Serverless environments. This 

data is essential for setting realistic and platform-

specific Service Level Agreements (SLAs). 

2. Informs Architectural Choice: 

It offers clear, data-driven insights to help Cloud 

Architects decide between the control and 

customizability of Kubernetes and the operational 

simplicity and inherent resilience of Serverless, 

directly based on a system's resilience requirements. 

3. Identifies Resilience Trade-offs: 

The project clearly delineates the trade-off between 

automated self- healing (Kubernetes) and inherent fault 

tolerance (Serverless), highlighting   which   platform 

provides faster recovery for specific failure modes. 

4. Reduces Operational Risk: 

By identifying the specific recovery characteristics of 

each architecture, the project helps DevOps and SRE 

teams pre-emptively mitigate risks, optimize 

monitoring alerts, and design more robust deployment 

strategies. 

5. Focuses on a Research Gap: 

It addresses a significant gap in current cloud-native 

literature by focusing on resilience and recovery rather 

than the commonly studied metrics of performance, 

cost, or scalability, thus contributing novel quantitative 

data to the field. 

6. Validates Chaos Engineering Practices: 

The methodology employs controlled Failure Injection 

(a core Chaos Engineering principle), establishing a 

repeatable and statistically significant framework for 

future resilience testing and validation across different 

cloud providers. 

7. Guides Resource Provisioning: 

The RTO analysis can indirectly inform cost-

efficiency. For services requiring near-zero RTO, the 

findings justify the selection of Serverless; conversely, 

where cold- start latency is unacceptable, the findings 

support the higher cost and management overhead of a 

Kubernetes deployment for better consistency. 

IX. LIMITATIONS 

1. Scope Restricted to Single-Region Failures: 

The study is typically limited to failures within a single 

cloud region (e.g., a Pod crash or a deployment 

failure). It generally does not extend to analyzing 

multi- region disaster recovery (DR) scenarios, which 

involve far more complex and time-consuming data 

synchronization and failover mechanisms. 

2. Stateless Application Constraint: 

The analysis is based on a simple, stateless web 

application. Real- world applications often involve 

complex stateful components (databases, message 

queues, caches). The recovery mechanisms for stateful 

services are drastically different and more complex, 

meaning the RTO results from this study may not be 

directly applicable to stateful systems. 

3. Vendor and Technology Lock-In: 

The results are often highly dependent on the specific 

cloud provider (e.g., AWS Lambda vs. Azure 

Functions) and the specific flavor of Kubernetes used 

(e.g., EKS vs. GKE). The inherent fault- tolerance of 

Serverless and the implementation of Kubernetes self- 

healing can vary, limiting the universality of the 

quantitative RTO findings. 

4. Limited Failure Scenarios: 

While key failures like Pod crashes and bad 

deployments are tested, the study cannot cover the 

infinite spectrum of real-world failures, such as 

networking partitions, storage failures, rate-limiting, or 

complex cascading failures caused by application 

logic. 
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5. Abstraction of Serverless Recovery: 

In the Serverless stack, the underlying recovery 

mechanisms (e.g., replacing the failed compute 

instance) are largely opaque and unmeasurable by the 

user. The RTO is an external measurement (from the 

client's perspective), but the internal recovery process 

cannot be analyzed or optimized by the user, limiting 

the depth of the Serverless architecture findings. 

6. Exclusion of Custom Self-Healing Logic: 

The Kubernetes results represent its default, automated 

self- healing. They do not factor in the potential for 

advanced, custom controllers or machine learning- 

driven self-healing logic that large enterprises might 

implement, which could significantly lower the 

observed Kubernetes RTO. 

X. CONCLUSION 

This comparative study empirically demonstrated that 

while both Kubernetes and Serverless architectures 

provide robust resilience, their recovery mechanisms 

operate fundamentally differently, directly impacting 

the measurable Recovery Time Objective (RTO). The 

Serverless stack showed inherent fault tolerance to 

compute- level crashes with an RTO near zero, 

abstracting away recovery for the user; conversely, 

Kubernetes exhibited a measurable, policy-driven RTO 

for self- healing Pod failures but provided greater 

transparency and control over the recovery process. 

The conclusion is that Kubernetes is ideal for complex, 

stateful applications demanding fine-grained control 

over custom recovery policies, whereas Serverless is 

superior for stateless, event- driven workloads where 

operational simplicity and platform-managed resilience 

are the highest priorities. 
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