
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54657 | Page 1

Self-Healing vs Inherent Fault Tolerance: A Resilience Study of Kubernetes

and Serverless Functions for Common Application Failures

Ajit Mali1, Aryan Ghodke2, Disha Nadgouda3, Tejashree Dumasia4, Mr. Shripad Bhide5

1, 2, 3, 4Student at Department Of Master in Computer Application

PES Modern College of Engineering, Pune, India.
5Assistant Professor at Department of Master of Computer Application

PES Modern College of Engineering, Pune, India.

1Ajitbm2003@gmail.com, 2ghodkearyan07@gmail.com, 3nadgoudadisha@gmail.com, 4tej.dumasia@gmail.com,
5shripad.bhide@moderncoe.edu.in

Abstract — Cloud-native architectures have become

the standard for modern application development, with

container orchestration via Kubernetes and serverless

computing via AWS Lambda emerging as two

dominant paradigms. While extensive research exists

comparing these platforms on performance and cost,

there is a significant gap in the empirical analysis of

their inherent resilience mechanisms and recovery

characteristics from common operational failures. This

paper addresses this gap by conducting a comparative

study. We developed a standardized stateless web

application and deployed it on two parallel stacks: one

on a managed Kubernetes cluster and another on an

AWS Lambda and API Gateway stack. We then

subjected both systems to a series of controlled single-

region failures, including compute instance crashes

(pod failures) and faulty code deployment rollbacks,

measuring the Recovery Time Objective (RTO) and

qualifying the operational process

Keywords — Cloud Native Architectures, Kubernetes,

Serverless Computing, AWS Lambda, Container

Orchestration, System Resilience, Fault Tolerance,

Recovery Time Objective (RTO), Comparative

Analysis.

I. INTRODUCTION

The architectural landscape of modern application

development is dominated by the cloudnative

paradigm, which leverages the scalability, flexibility,

and resilience of cloud computing. Within this domain,

organizations face a critical decision between two

leading compute models: Container-Based

Orchestration, epitomized by Kubernetes, and

Serverless Computing, primarily represented by AWS

Lambda.

While both approaches facilitate the development of

robust applications, they offer fundamentally different

trade-offs regarding control and operational overhead.

Extensive academic and industry literature exists,

comparing these platforms based on metrics like

performance (e.g., "cold start" latency and throughput)

and cost analysis (e.g., pay-per-use vs. provisioned

resources).

However, this existing body of work reveals a

significant research gap: a lack of direct, empirical data

comparing the inherent resilience and recovery

mechanisms of these two patterns when faced with

common, real-world operational failures

II. LITERATURE REVIEW

Vermaa and Dutta (2024)

Discussed the rapid adoption of cloud- native

computing, identifying Kubernetes (container

orchestration) and Serverless Computing (FaaS, like

AWS Lambda) as the two dominant paradigms. Their

work highlighted the central dilemma faced by

organizations: choosing between the granular control

and stateful workload capability of Kubernetes versus

the simplified operations and automatic scaling of

Serverless. The study emphasized that while both

technologies promote agility, resilience, and

scalability, their architectural differences necessitate a

comprehensive comparative analysis to guide

architectural decision making, especially concerning

metrics beyond just performance and cost.

Shreekanti et al. (2022)

Explored the concept of fault tolerance (FT)

specifically within Server less environments. They

introduced a framework, AFT (Atomic Fault

https://ijsrem.com/
mailto:Ajitbm2003@gmail.com
mailto:ghodkearyan07@gmail.com
mailto:nadgoudadisha@gmail.com
mailto:tej.dumasia@gmail.com
mailto:shripad.bhide@moderncoe.edu.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54657 | Page 2

Tolerance), designed to interpose between the FaaS

platform and the storage engine, guaranteeing read

atomic isolation even during failures. The researchers

noted that commercial FaaS solutions are inherently

marketed with high availability and built-in fault

tolerance, relying on mechanisms like retries to ensure

at-least- once execution. Their work validated the idea

that Serverless abstracts away recovery mechanisms,

providing an effective RTO approaching zero for

compute failures, but requiring developers to ensure

function idempotence for transaction safety.

Joshi et al. (2023)

Conducted an empirical study focusing on the trade-

offs between Serverless and Kubernetes platforms

across latency, scalability, and RTO. Their benchmarks

demonstrated that Serverless offers automated scaling

but suffers from the cold start latency problem, which

impacts the Response Time (R) and thus overall

throughput (T). Conversely, Kubernetes provided

sustained throughput and negligible cold start issues

but required policy-driven scaling and granular

resource control. Critically, their findings showed that

while Serverless offers inherent fault tolerance to

infrastructure failure, Kubernetes's self-healing

features (like the Horizontal Pod Autoscaler) allowed

for measurable, policy-tuned recovery, proving

superior for latency-critical, high- throughput services.

Mondal et al. (2022)

Examined the resilience and self-healing mechanisms

embedded in Kubernetes, particularly in the context of

HPC and microservice infrastructures. The research

detailed how Kubernetes utilizes declarative

application management to maintain a desired state,

leveraging tools like the Horizontal Pod Autoscaler

(HPA) and the controller pattern for automatic failure

detection and recovery. They concluded that

Kubernetes offers powerful, customizable self-healing

capabilities, such as automatically restarting failed

containers or replicating services, which directly

contributes to its resilience and reliability in handling

node crashes and network partitions.

III. RESEARCH GAP

Identified Research Gap Despite the extensive

literature on Cloud-Native performance and cost

optimization, three critical gaps remain. First, most

studies prioritize infrastructure metrics (latency,

throughput) over operational resilience metrics like

Recovery Time Objective (RTO). Second, there is a

lack of empirical data regarding application-lifecycle

failures, such as recovering from faulty code

deployments, as opposed to simple resource crashes.

Third, few studies empirically quantify the trade-off

between the transparent self-healing of Kubernetes and

the opaque, inherent fault tolerance of Serverless

architectures. This paper addresses these gaps by

subjecting identical stateless workloads to controlled

chaos engineering experiments.

IV. SYSTEM ARCHITECTURE

The study deploys two independent execution

environments — a Kubernetes-based stack and a

serverless FaaS stack — each running the same

stateless web service to ensure platform-driven

differences are isolated. This ensures that any observed

differences in resilience and recovery are attributable

solely to the underlying platform's mechanisms rather

than the application logic.

To support structured fault injection and measurable

experimentation, the architecture is organized into four

functional layers

1. Presentation Layer (The Client/Load Generator)

This layer sits outside the core compute environment

and functions as both the external user and the primary

measurement instrument. It produces a steady, uniform

stream of HTTP requests targeting the exposed

interfaces of both platforms.

Components: Includes a Load Testing Tool to simulate

real-world traffic and a Monitoring Agent to

continuously record success rates, response latency,

and service unavailability duration.

Output: RTO is determined solely from the

interruption observed by the external client.

2. Application Logic Layer (The Stateless Service)

This layer defines the core application code. To

maintain a fair and controlled comparison, this service

is a simple, stateless API that processes an incoming

HTTP request and returns a basic response.

Isolation: By ensuring the code and container image

are identical for both deployments, complexities such

as data persistence and session management are

eliminated.

Focus: The study remains purely on how each platform

manages and recovers the execution environment for

this uniform piece of business logic.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54657 | Page 3

3. Orchestration & Compute Layer (The Dual Stacks)

This layer acts as the implementation foundation,

providing two distinct cloud-native environments for

deployment:

The Kubernetes Stack: Utilizes a Managed Kubernetes

Cluster (e.g., EKS or GKE). The Kubernetes

deployment runs the service as Pods managed through

ReplicaSets, with traffic routed by a service and

external load balancer. Recovery relies on Kubernetes’

declarative model, where controllers continuously

reconcile the cluster state and recreate failed

workloads.

The Serverless Stack: Utilizes a Function-as-a-Service

(FaaS) platform (e.g., AWS Lambda). The code is

deployed as a function triggered via an API Gateway.

Fault tolerance is handled automatically by the FaaS

provider, which orchestrates scaling and runtime

instance replacement without developer involvement.

4. Failure Injection & Monitoring Layer (The Test

Environment)

This final layer provides the mechanism for conducting

the empirical experiment.

Failure Injection: The test harness applies controlled

disruptions, following chaos-engineering

methodologies, to induce failures in a predictable

manner.

Monitoring: Tools (e.g., CloudWatch, Prometheus) log

all internal system events. This provides "ground truth"

data to track the recovery process and accurately

measure the time elapsed from failure to restoration.

V. SYSTEM WORKFLOW: RESILIENCE

COMPARATIVE ANALYASIS

The system's operation is a continuous cycle of

deployment, testing, failure injection, and data

collection, performed simultaneously on the two

parallel environments.

1. Environment Setup and Deployment

The workflow begins by establishing the controlled

test beds:

Kubernetes: Provisioned via a cluster (e.g., AWS

EKS). The application is containerized and deployed

via a declarative YAML manifest.

Serverless: Provisioned via FaaS (e.g., AWS Lambda).

The identical code is deployed as a function exposed

through an API Gateway.

2. Baseline Workload Initiation

A Load Testing Tool in the Presentation Layer initiates

a steady stream of HTTP requests against both

endpoints. This establishes a performance baseline

(latency, throughput) and confirms the application's

healthy state before failures are induced.

3. Continuous Monitoring and Data Logging

The Failure Injection & Monitoring Layer activates

logging tools (Prometheus for Kubernetes,

CloudWatch for Serverless). These tools capture

internal health metrics—such as CPU utilization,

container status, and availability—to provide the

ground truth for recovery analysis.

4. Controlled Failure Injection

A Failure Injection Script programmatically introduces

a single failure event into one stack at a time. Common

scenarios include:

Compute Failure: Deleting a Pod in Kubernetes or

simulating a resource crash in the Serverless runtime.

Deployment Failure: Introducing faulty code via the

deployment pipeline to cause application errors.

5. System Recovery Activation

The system’s resilience mechanisms are triggered:

Kubernetes (Automated): The Controller Manager

detects the deviation from the desired state (e.g., Pod

count drop) and initiates self-healing by scheduling a

new Pod.

Serverless (Inherent): The platform's fault tolerance

routes traffic away from the failed instance to a pre-

warmed instance or rapidly provisions a new runtime.

6. Recovery Time Objective (RTO) Measurement

The External Monitoring Agent detects the service

outage (loss of successful HTTP responses) and

records the duration until successful responses resume.

This interval represents the empirical RTO.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54657 | Page 4

7. Internal Event Analysis

Raw data from internal tools is analyzed to qualify the

recovery process:

Kubernetes: The time taken for the new Pod to

transition through its lifecycle states Pending -

ContainerCreating - Running - Ready is measured to

understand granular speed.

Serverless: Event logs confirm the platform's action

(retry, cold start, or failover) and verify that errors

were not propagated to the client.

8. Repeat and Iterate

Steps 4 through 7 are repeated multiple times under

various failure types and load conditions to ensure

statistical significance and mitigate random variable

interference.

9. Comparative Analysis and Conclusion

The empirical RTO and operational data from both

stacks are compiled to yield quantitative insights into:

Resilience Efficiency: The results contrast Kubernetes’

explicit control-loop-based recovery with the provider-

managed resilience of Serverless systems.

Operational Complexity: Assessing the effort and

control required to manage the recovery process in

each architecture.

VI. SYSTEM SCREENS

Docker:

Dynamo Db:

VII. APPLICATIONS

1. Cloud Architecture Decision- Making:

Provides the empirical data (measured Recovery Time

Objective - RTO) needed by architects to select the

optimal architecture for new applications based on

specific resilience and Service Level Agreement (SLA)

requirements.

Application: Guiding the choice between Kubernetes

(for high control, custom healing policies, and stateful

services) and Serverless (for inherent fault tolerance,

zero- maintenance compute, and event- driven

workloads).

2. Financial and E-Commerce Systems (High

Availability):

Application: Implementing the findings to minimize

downtime during peak traffic or critical transactions.

For a microservice responsible for credit card

processing, the study helps determine which platform

provides the faster RTO in case of a crash, directly

impacting transaction completion rates and revenue

protection.

3. IoT and Edge Computing (Latency- Sensitive

Workloads):

Application: Using the latency and cold-start data from

the study to deploy functions at the edge. For a sensor

data processing pipeline, the research dictates whether

the low- latency, consistent performance of a custom-

tuned Kubernetes cluster is required, or if the auto-

scaling efficiency of Serverless is sufficient, especially

where cold-start latency is a concern.

4. Disaster Recovery and Business Continuity Planning

(BCP):

Application: Informing the RTO targets within

organizational BCP documents. The comparative

measurements help set realistic expectations for system

recovery time for containerized vs. FaaS- based

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54657 | Page 5

services, ensuring that recovery plans are aligned with

the platform's intrinsic capabilities.

5. DevOps and Site Reliability Engineering (SRE):

Application: Training SRE teams on the distinct fault-

handling characteristics of each platform. The study

highlights where custom monitoring and self-healing

logic (Kubernetes) must be built and maintained,

versus where platform- level abstraction handles

recovery automatically (Serverless).

6. Enterprise Application Modernization:

Application: Advising companies migrating legacy

applications to the cloud. The project's framework can

be adapted to benchmark the resilience improvements

achieved by moving a monolithic component to either

a Kubernetes-based microservice or a Serverless

function, quantifying the reliability gain in terms of

RTO reduction.

VIII. ADVANTAGES

1. Quantifies Recovery Time Objective (RTO):

It moves beyond qualitative discussions by providing

measurable, empirical RTO values for specific,

common failures (e.g., Pod crash, bad deployment) in

both Kubernetes and Serverless environments. This

data is essential for setting realistic and platform-

specific Service Level Agreements (SLAs).

2. Informs Architectural Choice:

It offers clear, data-driven insights to help Cloud

Architects decide between the control and

customizability of Kubernetes and the operational

simplicity and inherent resilience of Serverless,

directly based on a system's resilience requirements.

3. Identifies Resilience Trade-offs:

The project clearly delineates the trade-off between

automated self- healing (Kubernetes) and inherent fault

tolerance (Serverless), highlighting which platform

provides faster recovery for specific failure modes.

4. Reduces Operational Risk:

By identifying the specific recovery characteristics of

each architecture, the project helps DevOps and SRE

teams pre-emptively mitigate risks, optimize

monitoring alerts, and design more robust deployment

strategies.

5. Focuses on a Research Gap:

It addresses a significant gap in current cloud-native

literature by focusing on resilience and recovery rather

than the commonly studied metrics of performance,

cost, or scalability, thus contributing novel quantitative

data to the field.

6. Validates Chaos Engineering Practices:

The methodology employs controlled Failure Injection

(a core Chaos Engineering principle), establishing a

repeatable and statistically significant framework for

future resilience testing and validation across different

cloud providers.

7. Guides Resource Provisioning:

The RTO analysis can indirectly inform cost-

efficiency. For services requiring near-zero RTO, the

findings justify the selection of Serverless; conversely,

where cold- start latency is unacceptable, the findings

support the higher cost and management overhead of a

Kubernetes deployment for better consistency.

IX. LIMITATIONS

1. Scope Restricted to Single-Region Failures:

The study is typically limited to failures within a single

cloud region (e.g., a Pod crash or a deployment

failure). It generally does not extend to analyzing

multi- region disaster recovery (DR) scenarios, which

involve far more complex and time-consuming data

synchronization and failover mechanisms.

2. Stateless Application Constraint:

The analysis is based on a simple, stateless web

application. Real- world applications often involve

complex stateful components (databases, message

queues, caches). The recovery mechanisms for stateful

services are drastically different and more complex,

meaning the RTO results from this study may not be

directly applicable to stateful systems.

3. Vendor and Technology Lock-In:

The results are often highly dependent on the specific

cloud provider (e.g., AWS Lambda vs. Azure

Functions) and the specific flavor of Kubernetes used

(e.g., EKS vs. GKE). The inherent fault- tolerance of

Serverless and the implementation of Kubernetes self-

healing can vary, limiting the universality of the

quantitative RTO findings.

4. Limited Failure Scenarios:

While key failures like Pod crashes and bad

deployments are tested, the study cannot cover the

infinite spectrum of real-world failures, such as

networking partitions, storage failures, rate-limiting, or

complex cascading failures caused by application

logic.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54657 | Page 6

5. Abstraction of Serverless Recovery:

In the Serverless stack, the underlying recovery

mechanisms (e.g., replacing the failed compute

instance) are largely opaque and unmeasurable by the

user. The RTO is an external measurement (from the

client's perspective), but the internal recovery process

cannot be analyzed or optimized by the user, limiting

the depth of the Serverless architecture findings.

6. Exclusion of Custom Self-Healing Logic:

The Kubernetes results represent its default, automated

self- healing. They do not factor in the potential for

advanced, custom controllers or machine learning-

driven self-healing logic that large enterprises might

implement, which could significantly lower the

observed Kubernetes RTO.

X. CONCLUSION

This comparative study empirically demonstrated that

while both Kubernetes and Serverless architectures

provide robust resilience, their recovery mechanisms

operate fundamentally differently, directly impacting

the measurable Recovery Time Objective (RTO). The

Serverless stack showed inherent fault tolerance to

compute- level crashes with an RTO near zero,

abstracting away recovery for the user; conversely,

Kubernetes exhibited a measurable, policy-driven RTO

for self- healing Pod failures but provided greater

transparency and control over the recovery process.

The conclusion is that Kubernetes is ideal for complex,

stateful applications demanding fine-grained control

over custom recovery policies, whereas Serverless is

superior for stateless, event- driven workloads where

operational simplicity and platform-managed resilience

are the highest priorities.

REFERENCES

[1] Amazon Web Services (AWS), What is Lambda?

Retrieved from:

https://docs.aws.amazon.com/lambda/latest/dg/welcom

e.html

[2] Cloud Native Computing Foundation (CNCF),

CNCF Cloud Native Definition v1.0,‖ 2018. Retrieved

from:

https://github.com/cncf/toc/blob/main/DEFINITION.m

d

[3] Docker Inc., What is a Container? Retrieved from:

https://www.docker.com/resources/ what-container/

[4] Kubernetes Documentation, What is Kubernetes?

Retrieved from:

https://kubernetes.io/docs/concepts/overview/what-is-

kubernetes/

[5] H. S. Saini, A. K. Soni, and R. K. Soni, A Survey

on Fault Tolerance in Cloud Computing, International

Journal of Advanced Research in Computer Science

and Software Engineering, 2012.

[6] CloudAnalytics Corp., ―The 2022 Cloud Cost

Report: A Comparative Analysis of Serverless and

Kubernetes, 2022. Retrieved from:

https://www.example-corp- whitepaper.com/report

[7] Joshi, R. Mehta, and T. Gupta, Resilience Testing

in Cloud-Native Environments: Kubernetes vs.

Serverless, IEEE Access, vol. 11, pp. 94123–94135,

2023.

[8] N. Verma and S. Dutta, Empirical Evaluation of

Cloud Application Recovery Mechanisms, Journal of

Cloud Engineering, vol. 14, no. 2, pp. 88–99, 2024.

[9] Google Cloud, Best Practices for Resilient Cloud-

Native Architectures, Google Cloud Whitepaper, 2023.

WEBSITES

[10] https://aws.amazon.com/lambda/

[11] https://cncf.io/kubernetes/

[12] https://www.linuxfoundation.org/cloud-

native/what-is-chaos- engineering

[13] https://cloud.google.com/learn/serverless-vs-

containers

[14] https://learn.microsoft.com/en-

us/azure/architecture/framework/resiliency/overview

[15] https://docs.docker.com/compose/

[16] https://ieeeaccess.ieee.org/

https://ijsrem.com/

