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Abstract — Cloud-native architectures have become
the standard for modern application development, with
container orchestration via Kubernetes and serverless
computing via AWS Lambda emerging as two
dominant paradigms. While extensive research exists
comparing these platforms on performance and cost,
there is a significant gap in the empirical analysis of
their inherent resilience mechanisms and recovery
characteristics from common operational failures. This
paper addresses this gap by conducting a comparative
study. We developed a standardized stateless web
application and deployed it on two parallel stacks: one
on a managed Kubernetes cluster and another on an
AWS Lambda and API Gateway stack. We then
subjected both systems to a series of controlled single-
region failures, including compute instance crashes
(pod failures) and faulty code deployment rollbacks,
measuring the Recovery Time Objective (RTO) and
qualifying the operational process
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I. INTRODUCTION

The architectural landscape of modern application
development is dominated by the cloudnative
paradigm, which leverages the scalability, flexibility,
and resilience of cloud computing. Within this domain,
organizations face a critical decision between two
leading compute models: Container-Based
Orchestration, epitomized by Kubernetes, and
Serverless Computing, primarily represented by AWS
Lambda.

While both approaches facilitate the development of
robust applications, they offer fundamentally different
trade-offs regarding control and operational overhead.
Extensive academic and industry literature exists,
comparing these platforms based on metrics like
performance (e.g., "cold start" latency and throughput)
and cost analysis (e.g., pay-per-use vs. provisioned
resources).

However, this existing body of work reveals a
significant research gap: a lack of direct, empirical data
comparing the inherent resilience and recovery
mechanisms of these two patterns when faced with
common, real-world operational failures

II. LITERATURE REVIEW

Vermaa and Dutta (2024)

Discussed the rapid adoption of cloud- native
computing, identifying  Kubernetes  (container
orchestration) and Serverless Computing (FaaS, like
AWS Lambda) as the two dominant paradigms. Their
work highlighted the central dilemma faced by
organizations: choosing between the granular control
and stateful workload capability of Kubernetes versus
the simplified operations and automatic scaling of
Serverless. The study emphasized that while both
technologies  promote agility, resilience, and
scalability, their architectural differences necessitate a
comprehensive comparative analysis to guide
architectural decision making, especially concerning

metrics beyond just performance and cost.

Shreekanti et al. (2022)

Explored the concept of fault tolerance (FT)
specifically within Server less environments. They
introduced a framework, AFT (Atomic Fault
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Tolerance), designed to interpose between the FaaS
platform and the storage engine, guaranteecing read
atomic isolation even during failures. The researchers
noted that commercial FaaS solutions are inherently
marketed with high availability and built-in fault
tolerance, relying on mechanisms like retries to ensure
at-least- once execution. Their work validated the idea
that Serverless abstracts away recovery mechanisms,
providing an effective RTO approaching zero for
compute failures, but requiring developers to ensure
function idempotence for transaction safety.

Joshi et al. (2023)

Conducted an empirical study focusing on the trade-
offs between Serverless and Kubernetes platforms
across latency, scalability, and RTO. Their benchmarks
demonstrated that Serverless offers automated scaling
but suffers from the cold start latency problem, which
impacts the Response Time (R) and thus overall
throughput (T). Conversely, Kubernetes provided
sustained throughput and negligible cold start issues
but required policy-driven scaling and granular
resource control. Critically, their findings showed that
while Serverless offers inherent fault tolerance to
infrastructure  failure, Kubernetes's self-healing
features (like the Horizontal Pod Autoscaler) allowed
for measurable, policy-tuned recovery, proving
superior for latency-critical, high- throughput services.

Mondal et al. (2022)

Examined the resilience and self-healing mechanisms
embedded in Kubernetes, particularly in the context of
HPC and microservice infrastructures. The research
detailed how Kubernetes utilizes declarative
application management to maintain a desired state,
leveraging tools like the Horizontal Pod Autoscaler
(HPA) and the controller pattern for automatic failure
detection and recovery. They concluded that
Kubernetes offers powerful, customizable self-healing
capabilities, such as automatically restarting failed
containers or replicating services, which directly
contributes to its resilience and reliability in handling
node crashes and network partitions.

III. RESEARCH GAP

Identified Research Gap Despite the extensive
literature on Cloud-Native performance and cost
optimization, three critical gaps remain. First, most
studies prioritize infrastructure metrics (latency,
throughput) over operational resilience metrics like
Recovery Time Objective (RTO). Second, there is a

lack of empirical data regarding application-lifecycle
failures, such as recovering from faulty code
deployments, as opposed to simple resource crashes.
Third, few studies empirically quantify the trade-off
between the transparent self-healing of Kubernetes and
the opaque, inherent fault tolerance of Serverless
architectures. This paper addresses these gaps by
subjecting identical stateless workloads to controlled
chaos engineering experiments.

IV. SYSTEM ARCHITECTURE

The study deploys two independent execution
environments — a Kubernetes-based stack and a
serverless FaaS stack — each running the same
stateless web service to ensure platform-driven
differences are isolated. This ensures that any observed
differences in resilience and recovery are attributable
solely to the underlying platform's mechanisms rather
than the application logic.

To support structured fault injection and measurable
experimentation, the architecture is organized into four
functional layers

1. Presentation Layer (The Client/Load Generator)
This layer sits outside the core compute environment
and functions as both the external user and the primary
measurement instrument. It produces a steady, uniform
stream of HTTP requests targeting the exposed
interfaces of both platforms.

Components: Includes a Load Testing Tool to simulate
real-world traffic and a Monitoring Agent to
continuously record success rates, response latency,
and service unavailability duration.

Output: RTO is determined solely from the
interruption observed by the external client.

2. Application Logic Layer (The Stateless Service)
This layer defines the core application code. To
maintain a fair and controlled comparison, this service
is a simple, stateless API that processes an incoming
HTTP request and returns a basic response.

Isolation: By ensuring the code and container image
are identical for both deployments, complexities such
as data persistence and session management are
eliminated.

Focus: The study remains purely on how each platform
manages and recovers the execution environment for
this uniform piece of business logic.
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3. Orchestration & Compute Layer (The Dual Stacks)
This layer acts as the implementation foundation,
providing two distinct cloud-native environments for
deployment:

The Kubernetes Stack: Utilizes a Managed Kubernetes
Cluster (e.g., EKS or GKE). The Kubernetes
deployment runs the service as Pods managed through
ReplicaSets, with traffic routed by a service and
external load balancer. Recovery relies on Kubernetes’
declarative model, where controllers continuously
reconcile the cluster state and recreate failed
workloads.

The Serverless Stack: Utilizes a Function-as-a-Service
(FaaS) platform (e.g., AWS Lambda). The code is
deployed as a function triggered via an API Gateway.
Fault tolerance is handled automatically by the FaaS
provider, which orchestrates scaling and runtime
instance replacement without developer involvement.

4. Failure Injection & Monitoring Layer (The Test
Environment)

This final layer provides the mechanism for conducting
the empirical experiment.

Failure Injection: The test harness applies controlled
disruptions, following chaos-engineering
methodologies, to induce failures in a predictable
manner.

Monitoring: Tools (e.g., CloudWatch, Prometheus) log
all internal system events. This provides "ground truth"
data to track the recovery process and accurately
measure the time elapsed from failure to restoration.
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V. SYSTEM WORKFLOW: RESILIENCE
COMPARATIVE ANALYASIS

The system's operation is a continuous cycle of
deployment, testing, failure injection, and data

collection, performed simultancously on the two
parallel environments.

1. Environment Setup and Deployment

The workflow begins by establishing the controlled
test beds:

Kubernetes: Provisioned via a cluster (e.g., AWS
EKS). The application is containerized and deployed
via a declarative YAML manifest.

Serverless: Provisioned via FaaS (e.g., AWS Lambda).
The identical code is deployed as a function exposed
through an API Gateway.

2. Baseline Workload Initiation

A Load Testing Tool in the Presentation Layer initiates
a steady stream of HTTP requests against both
endpoints. This establishes a performance baseline
(latency, throughput) and confirms the application's
healthy state before failures are induced.

3. Continuous Monitoring and Data Logging

The Failure Injection & Monitoring Layer activates
logging tools  (Prometheus for  Kubernetes,
CloudWatch for Serverless). These tools capture
internal health metrics—such as CPU utilization,
container status, and availability—to provide the
ground truth for recovery analysis.

4. Controlled Failure Injection

A Failure Injection Script programmatically introduces
a single failure event into one stack at a time. Common
scenarios include:

Compute Failure: Deleting a Pod in Kubernetes or
simulating a resource crash in the Serverless runtime.
Deployment Failure: Introducing faulty code via the
deployment pipeline to cause application errors.

5. System Recovery Activation

The system’s resilience mechanisms are triggered:
Kubernetes (Automated): The Controller Manager
detects the deviation from the desired state (e.g., Pod
count drop) and initiates self-healing by scheduling a
new Pod.

Serverless (Inherent): The platform's fault tolerance
routes traffic away from the failed instance to a pre-
warmed instance or rapidly provisions a new runtime.

6. Recovery Time Objective (RTO) Measurement

The External Monitoring Agent detects the service
outage (loss of successful HTTP responses) and
records the duration until successful responses resume.
This interval represents the empirical RTO.
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7. Internal Event Analysis

Raw data from internal tools is analyzed to qualify the
recovery process:

Kubernetes: The time taken for the new Pod to
transition through its lifecycle states Pending -
ContainerCreating - Running - Ready is measured to
understand granular speed.

Serverless: Event logs confirm the platform's action
(retry, cold start, or failover) and verify that errors
were not propagated to the client.

8. Repeat and Iterate

Steps 4 through 7 are repeated multiple times under
various failure types and load conditions to ensure
statistical significance and mitigate random variable
interference.

9. Comparative Analysis and Conclusion

The empirical RTO and operational data from both
stacks are compiled to yield quantitative insights into:
Resilience Efficiency: The results contrast Kubernetes’
explicit control-loop-based recovery with the provider-
managed resilience of Serverless systems.

Operational Complexity: Assessing the effort and
control required to manage the recovery process in
each architecture.

CLOUD-NATIVE RESILIENCE STUDY:
KUBERNTES VS. SERVELESS
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VI. SYSTEM SCREENS

Docker:

Dynamo Db:

VII. APPLICATIONS

1. Cloud Architecture Decision- Making:

Provides the empirical data (measured Recovery Time
Objective - RTO) needed by architects to select the
optimal architecture for new applications based on
specific resilience and Service Level Agreement (SLA)
requirements.

Application: Guiding the choice between Kubernetes
(for high control, custom healing policies, and stateful
services) and Serverless (for inherent fault tolerance,
zero- maintenance compute, and event- driven
workloads).

2. Financial and E-Commerce Systems (High
Availability):

Application: Implementing the findings to minimize
downtime during peak traffic or critical transactions.
For a microservice responsible for credit card
processing, the study helps determine which platform
provides the faster RTO in case of a crash, directly
impacting transaction completion rates and revenue
protection.

3. IoT and Edge Computing (Latency- Sensitive
Workloads):

Application: Using the latency and cold-start data from
the study to deploy functions at the edge. For a sensor
data processing pipeline, the research dictates whether
the low- latency, consistent performance of a custom-
tuned Kubernetes cluster is required, or if the auto-
scaling efficiency of Serverless is sufficient, especially
where cold-start latency is a concern.

4. Disaster Recovery and Business Continuity Planning
(BCP):

Application: Informing the RTO targets within
organizational BCP documents. The comparative
measurements help set realistic expectations for system
recovery time for containerized vs. FaaS- based
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services, ensuring that recovery plans are aligned with
the platform's intrinsic capabilities.

5. DevOps and Site Reliability Engineering (SRE):
Application: Training SRE teams on the distinct fault-
handling characteristics of each platform. The study
highlights where custom monitoring and self-healing
logic (Kubernetes) must be built and maintained,
versus where platform- level abstraction handles
recovery automatically (Serverless).

6. Enterprise Application Modernization:

Application: Advising companies migrating legacy
applications to the cloud. The project's framework can
be adapted to benchmark the resilience improvements
achieved by moving a monolithic component to either
a Kubernetes-based microservice or a Serverless
function, quantifying the reliability gain in terms of
RTO reduction.

VIII. ADVANTAGES

1. Quantifies Recovery Time Objective (RTO):

It moves beyond qualitative discussions by providing
measurable, empirical RTO values for specific,
common failures (e.g., Pod crash, bad deployment) in
both Kubernetes and Serverless environments. This
data is essential for setting realistic and platform-
specific Service Level Agreements (SLASs).

2. Informs Architectural Choice:

It offers clear, data-driven insights to help Cloud
Architects decide between the control and
customizability of Kubernetes and the operational
simplicity and inherent resilience of Serverless,
directly based on a system's resilience requirements.

3. Identifies Resilience Trade-offs:

The project clearly delineates the trade-off between
automated self- healing (Kubernetes) and inherent fault
tolerance (Serverless), highlighting which platform
provides faster recovery for specific failure modes.

4. Reduces Operational Risk:

By identifying the specific recovery characteristics of
each architecture, the project helps DevOps and SRE
teams pre-emptively mitigate risks, optimize
monitoring alerts, and design more robust deployment
strategies.

5. Focuses on a Research Gap:

It addresses a significant gap in current cloud-native
literature by focusing on resilience and recovery rather
than the commonly studied metrics of performance,

cost, or scalability, thus contributing novel quantitative
data to the field.

6. Validates Chaos Engineering Practices:

The methodology employs controlled Failure Injection
(a core Chaos Engineering principle), establishing a
repeatable and statistically significant framework for
future resilience testing and validation across different
cloud providers.

7. Guides Resource Provisioning:

The RTO analysis can indirectly inform cost-
efficiency. For services requiring near-zero RTO, the
findings justify the selection of Serverless; conversely,
where cold- start latency is unacceptable, the findings
support the higher cost and management overhead of a
Kubernetes deployment for better consistency.

IX. LIMITATIONS

1. Scope Restricted to Single-Region Failures:

The study is typically limited to failures within a single
cloud region (e.g., a Pod crash or a deployment
failure). It generally does not extend to analyzing
multi- region disaster recovery (DR) scenarios, which
involve far more complex and time-consuming data
synchronization and failover mechanisms.

2. Stateless Application Constraint:

The analysis is based on a simple, stateless web
application. Real- world applications often involve
complex stateful components (databases, message
queues, caches). The recovery mechanisms for stateful
services are drastically different and more complex,
meaning the RTO results from this study may not be
directly applicable to stateful systems.

3. Vendor and Technology Lock-In:

The results are often highly dependent on the specific
cloud provider (e.g., AWS Lambda vs. Azure
Functions) and the specific flavor of Kubernetes used
(e.g., EKS vs. GKE). The inherent fault- tolerance of
Serverless and the implementation of Kubernetes self-
healing can vary, limiting the universality of the
quantitative RTO findings.

4. Limited Failure Scenarios:

While key failures like Pod crashes and bad
deployments are tested, the study cannot cover the
infinite spectrum of real-world failures, such as
networking partitions, storage failures, rate-limiting, or
complex cascading failures caused by application
logic.
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5. Abstraction of Serverless Recovery:

In the Serverless stack, the underlying recovery
mechanisms (e.g., replacing the failed compute
instance) are largely opaque and unmeasurable by the
user. The RTO is an external measurement (from the
client's perspective), but the internal recovery process
cannot be analyzed or optimized by the user, limiting
the depth of the Serverless architecture findings.

6. Exclusion of Custom Self-Healing Logic:

The Kubernetes results represent its default, automated
self- healing. They do not factor in the potential for
advanced, custom controllers or machine learning-
driven self-healing logic that large enterprises might
implement, which could significantly lower the
observed Kubernetes RTO.

X. CONCLUSION

This comparative study empirically demonstrated that
while both Kubernetes and Serverless architectures
provide robust resilience, their recovery mechanisms
operate fundamentally differently, directly impacting
the measurable Recovery Time Objective (RTO). The
Serverless stack showed inherent fault tolerance to
compute- level crashes with an RTO near zero,
abstracting away recovery for the user; conversely,
Kubernetes exhibited a measurable, policy-driven RTO
for self- healing Pod failures but provided greater
transparency and control over the recovery process.
The conclusion is that Kubernetes is ideal for complex,
stateful applications demanding fine-grained control
over custom recovery policies, whereas Serverless is
superior for stateless, event- driven workloads where
operational simplicity and platform-managed resilience
are the highest priorities.
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