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Abstract—Selfie AI is a non-invasive, smartphone-based pre- 
screening system that analyzes standardized facial selfies using 
EfficientNetV2 with Squeeze-and-Excitation attention to indicate 
diabetes risk and provide CAM-based interpretability for user 
and clinician understanding.The platform couples a Streamlit 
interface, a FastAPI inference service, and Firebase for secure 
storage, history, and PDF reports, emphasizing privacy, fairness, 
and transparency to support early detection and prompt confir- 
matory testing in real-world deployments. 

Index Terms—Diabetes screening, EfficientNetV2, Squeeze- 
and-Excitation, facial biomarkers, Class Activation Maps, 
Streamlit, FastAPI, Firebase. 

 

I. INTRODUCTION 

Early, non-invasive screening is crucial to mitigate undiag- 

nosed diabetes burden, particularly where access to laboratory 

diagnostics is limited; a selfie-based AI pre-screen can lower 

barriers and nudge timely clinical follow-up.The pipeline 

standardizes selfies, extracts facial signals with an explainable 

CNN, and returns an indicative risk score with CAM overlays 

to build trust and guide confirmatory testing in a mobile-first, 

low-friction user experience. 

II. BACKGROUND AND SCOPE 

The literature spans facial texture, external eye, scleral 

vasculature, tongue, nail, thermal foot images, and fundus 

imaging, with CNNs and classical ML reporting promising 

sensitivity/specificity for screening and referral, motivating a 

facial selfie approach for accessibility.Selfie AI targets indica- 

tive pre-screen use rather than diagnosis, with UI copy and 

thresholding oriented toward sensitivity and clear calls to seek 

professional evaluation when risk is moderate to high. 

III. HIGH-LEVEL ARCHITECTURE 

Figure 1 depicts a modular system with a Streamlit UI 

for capture and results, a FastAPI service for preprocessing 

and inference, and Firebase for authentication, scoped storage, 

history, and report generation to support longitudinal use and 

auditability. 

IV. DATA AND PREPROCESSING 

Front-facing selfies are validated, detected, aligned, resized 

to 224 × 224, and normalized, with quality gates prompting 

retakes on low light, occlusion, or off-angle shots to stabilize 

features across diverse skin tones and devices.Augmentations 

 

 

Fig. 1: System architecture with key subcomponents mapped 

to UI, API, ML engine, and Firebase services (in-column 

sizing). 

 

TABLE I: Illustrative risk mapping and action guidance 
 

Score Range Category Suggested Action 
 

0.00–0.33 Low Maintain habits; routine screening cadence 
0.34–0.66 Moderate Early check-up; monitor lifestyle factors 

0.67–1.00 High Seek confirmatory testing (e.g., HbA1c) 

 

 

(mild rotation, crop, illumination shifts) and adaptive his- 

togram normalization improve robustness to ambient condi- 

tions often encountered in home and community settings. 

 

V. MODEL AND EXPLAINABILITY 
 

The classifier uses EfficientNetV2 with Squeeze- 

and-Excitation for channel recalibration, trained with 

early stopping and class balancing while monitoring 

AUC, sensitivity, and specificity suitable for pre- 

screen  emphasis  on  recall.Binary  cross-entropy 

LBCE = − [y log p̂ + (1 − y) log(1 − pˆ)] is applied, and 

CAMs visualize salient facial regions; optional post hoc 

temperature scaling steadies probability displays for user- 

facing thresholds. 

 

VI. RISK MAPPING AND GUIDANCE 
 

Risk scores map to categories and concise guidance aligned 

with consumer literacy and clinician communication, encour- 

aging confirmatory tests when indicated. 
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TABLE III: Selected user stories and target outcomes 
 

 

User Story Desired Outcome 

XI. EVALUATION AND ABLATIONS 

Prototype runs show sub-second model inference with total 

As a user, get a selfie risk 
score 
As clinician, view 
anonymized data 
As developer, upload new 
images 

Instant feedback via mobile UI 

Monitor trends and intervene early 

Improve dataset and model performance 

latency dominated by I/O and preprocessing; CAMs con- 

sistently highlight plausible facial regions, and PDF reports 

render promptly across major browsers for shareable triage. 

XII. MLOPS, QA, AND GOVERNANCE 

Track my health over time Visualized risk trends and tips 
Ensure secure storage Regulatory alignment and integrity 

 

TABLE IV: Illustrative ablation on validation (indicative) 

Telemetry captures model versioning, preprocessing out- 

comes, latency, and confidence histograms; drift checks and 

periodic shadow tests inform threshold and model refresh 

decisions for safe iteration.Consent, encryption in transit/at 

rest, scoped rules, and fairness audits across age, sex, and 

skin tone cohorts are essential for responsible deployment with 

equitable benefit. 

 

 

 

Fig. 2: Firestore schema sketch with UID scoping for privacy 

and audit-friendly logging. 

TABLE II: Condensed visual-AI literature for diabetes screen- 

ing 
 

Modality Method Key Note 
 

 

Facial texture SVM/KNN + Gabor Mobile capture feasi- 

XIII. CONCLUSION 

Selfie AI offers an explainable, privacy-aware, non-invasive 

pre-screen to encourage confirmatory testing, combining ro- 

bust preprocessing, mobile-efficient CNNs, CAMs, and secure 

reporting for scalable community health impact.Next steps 

include HbA1c-based validation, multilingual UX, federated 

learning, and EHR/telemedicine integrations to strengthen 

clinical utility and responsible adoption. 
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