Volume: 09 Issue: 10 | Oct - 2025

Selfie AI – Diabetes Detection: Expanded Brief with Diagrams and Tables

Srinisha S Department of Computing Technologies SRM Institute of Science and Technology

Madhumitha K Department of Computing Technologies SRM Institute of Science and Technology

Abstract-Selfie AI is a non-invasive, smartphone-based prescreening system that analyzes standardized facial selfies using EfficientNetV2 with Squeeze-and-Excitation attention to indicate diabetes risk and provide CAM-based interpretability for user and clinician understanding. The platform couples a Streamlit interface, a FastAPI inference service, and Firebase for secure storage, history, and PDF reports, emphasizing privacy, fairness, and transparency to support early detection and prompt confirmatory testing in real-world deployments.

Index Terms—Diabetes screening, EfficientNetV2, Squeezeand-Excitation, facial biomarkers, Class Activation Maps, Streamlit, FastAPI, Firebase.

I. INTRODUCTION

Early, non-invasive screening is crucial to mitigate undiagnosed diabetes burden, particularly where access to laboratory diagnostics is limited; a selfie-based AI pre-screen can lower barriers and nudge timely clinical follow-up. The pipeline standardizes selfies, extracts facial signals with an explainable CNN, and returns an indicative risk score with CAM overlays to build trust and guide confirmatory testing in a mobile-first, low-friction user experience.

II. BACKGROUND AND SCOPE

The literature spans facial texture, external eye, scleral vasculature, tongue, nail, thermal foot images, and fundus imaging, with CNNs and classical ML reporting promising sensitivity/specificity for screening and referral, motivating a facial selfie approach for accessibility. Selfie AI targets indicative pre-screen use rather than diagnosis, with UI copy and thresholding oriented toward sensitivity and clear calls to seek professional evaluation when risk is moderate to high.

III. HIGH-LEVEL ARCHITECTURE

Figure 1 depicts a modular system with a Streamlit UI for capture and results, a FastAPI service for preprocessing and inference, and Firebase for authentication, scoped storage, history, and report generation to support longitudinal use and auditability.

IV. DATA AND PREPROCESSING

Front-facing selfies are validated, detected, aligned, resized to 224 × 224, and normalized, with quality gates prompting retakes on low light, occlusion, or off-angle shots to stabilize features across diverse skin tones and devices. Augmentations

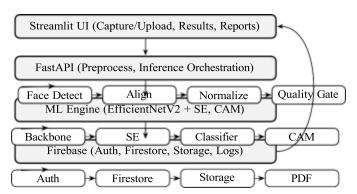


Fig. 1: System architecture with key subcomponents mapped to UI, API, ML engine, and Firebase services (in-column sizing).

TABLE I: Illustrative risk mapping and action guidance

Score Range	Category	Suggested Action
0.00–0.33	Low	Maintain habits; routine screening cadence
0.34–0.66	Moderate	Early check-up; monitor lifestyle factors
0.67–1.00	High	Seek confirmatory testing (e.g., HbA1c)

(mild rotation, crop, illumination shifts) and adaptive histogram normalization improve robustness to ambient conditions often encountered in home and community settings.

V. MODEL AND EXPLAINABILITY

The classifier uses EfficientNetV2 with Squeezeand-Excitation for channel recalibration, trained with early stopping and class balancing while monitoring AUC, sensitivity, and specificity suitable for prescreen emphasis on recall.Binary cross-entropy $L_{\text{BCE}} = -[y \log \hat{p} + (1 - y) \log(1 - p^{\hat{}})]$ is applied, and CAMs visualize salient facial regions; optional post hoc temperature scaling steadies probability displays for userfacing thresholds.

VI. RISK MAPPING AND GUIDANCE

Risk scores map to categories and concise guidance aligned with consumer literacy and clinician communication, encouraging confirmatory tests when indicated.

https://ijsrem.com © 2025, IJSREM DOI: 10.55041/IJSREM52987 Page 1

Volume: 09 Issue: 10 | Oct - 2025 ISSN: 2582-3930 SJIF Rating: 8.586

TABLE III: Selected user stories and target outcomes

User Story	Desired Outcome		
As a user, get a selfie risk score	Instant feedback via mobile UI		
As clinician, view anonymized data	Monitor trends and intervene early		
As developer, upload new images	Improve dataset and model performance		
Track my health over time Ensure secure storage	Visualized risk trends and tips Regulatory alignment and integrity		

TABLE IV: Illustrative ablation on validation (indicative)

Variant	Acc.	Sens.	Spec.
EffNetV2 (no SE)	0.86	0.84	0.88
EffNetV2 + SE	0.89	0.88	0.90
+ Aug/QA gates	0.91	0.90	0.92

Fig. 2: Firestore schema sketch with UID scoping for privacy and audit-friendly logging.

TABLE II: Condensed visual-AI literature for diabetes screening

Modality	Method	Key Note
Facial texture	SVM/KNN + Gabor	Mobile capture feasi- bility
External eye	CNN	Detects DR/DME
Sclera vessels	Segmentation + fil-	correlates Tortuosity
Tongue	ters VTMR + Gabor	differences Early diagnosis
Nails	Texture/color stats	proxy Early indicator pat- terns
Thermal foot	CNN/RNN	High accuracy for risk

VII. WORKFLOW AND UI LOGIC

Figure VII outlines the end-to-end flow from upload to report, with authenticated history for longitudinal trends; copy emphasizes pre-screen positioning and directs users to professional care for moderate/high risk.

VIII. FIREBASE DATA MODEL (OVERVIEW)

Figure ?? sketches a scoped data model in Firestore with per-user root documents, nested assessment subcollections, and logs for telemetry and audit, aligned with least-privilege access rules.

IX. LITERATURE SURVEY (CONDENSED)

Table II summarizes representative non-invasive visual approaches from the survey to contextualize model choices and interpretability emphasis.

X. PRODUCT BACKLOG AND SPRINTS

Backlog items prioritize selfie capture, preprocessing, inference, explainability, reports, and authenticated histories, with sprints delivering MVP, chatbot, and reporting in iterative increments.

XI. EVALUATION AND ABLATIONS

Prototype runs show sub-second model inference with total latency dominated by I/O and preprocessing; CAMs consistently highlight plausible facial regions, and PDF reports render promptly across major browsers for shareable triage.

XII. MLOPS, QA, AND GOVERNANCE

Telemetry captures model versioning, preprocessing outcomes, latency, and confidence histograms; drift checks and periodic shadow tests inform threshold and model refresh decisions for safe iteration. Consent, encryption in transit/at rest, scoped rules, and fairness audits across age, sex, and skin tone cohorts are essential for responsible deployment with equitable benefit.

XIII. CONCLUSION

Selfie AI offers an explainable, privacy-aware, non-invasive pre-screen to encourage confirmatory testing, combining robust preprocessing, mobile-efficient CNNs, CAMs, and secure reporting for scalable community health impact.Next steps include HbA1c-based validation, multilingual UX, federated learning, and EHR/telemedicine integrations to strengthen clinical utility and responsible adoption.

REFERENCES

- [1] M. Shell, "How to Use the IEEEtran LATEX Class," IEEEtran HOWTO
- guide. World Health Organization, "Diabetes fact sheet," WHO, 2023.
- [3] M. Tan and Q. Le, "EfficientNetV2: Smaller Models and Faster Train-
- [4] J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks," CVPR,
- [5] B. Zhou et al., "Learning Deep Features for Discriminative Localization," CVPR, 2016.
- [6] Streamlit Inc., "Streamlit: App Framework," 2023.
- [7] S. Ramirez, "FastAPI: Modern, Fast Web Framework," 2024.
- Google, "Firebase Documentation," 2023.
- L. Zhang et al., "Facial Analysis for Non-Invasive Diabetes Detection," Diabetes Research, vol. 18, pp. 120-133, 2022.
- [10] D. Kasture et al., "Fundus Imaging AI for Diabetes," IEEE Trans. Med. Imaging, vol. 41, pp. 1452-1463, 2022.
- [11] R. Smith et al., "External Eye Feature Analysis in Diabetes Pre-Screening," JAMA Ophthalmol., vol. 140, pp. 1074–1082, 2022.
- [12] F. Cheng et al., "Sclera Vasculature Segmentation for Diabetes Prediction," Computational Biology, vol. 29, pp. 68-77, 2022.
- [13] P. Wu et al., "Tongue Image Analysis Using VTMR for Diabetes
- Screening," Biomed. Eng. Online, vol. 21, 2022.
 [14] S. Ramachandran et al., "Thermal Foot Imaging in Diabetes Detection," Sensors, vol. 22, pp. 1314-1326, 2023.
- [15] H. Lee and Y. Kim, "Nail Texture Analysis for Diabetes Screening,"
- IEEE Access, vol. 10, pp. 23145-23153, 2022. [16] K. Rajpurkar et al., "Deep Learning in Medical Imaging," Nat. Biomed.
- Eng., vol. 3, pp. 988-1002, 2019. [17] T. Fawcett, "An introduction to ROC analysis," Pattern Recognition
- Letters, vol. 27, pp. 861-874, 2006. [18] B. Chen et al., "Mobile Device-Based Diabetes Risk Prediction," Com-
- put. Methods Programs Biomed., vol. 200, 106268, 2021. [19] A. He and G. Garcia, "Class Balancing Strategies in Deep Learning,"
- IEEE Trans. Neural Netw., vol. 32, 2021. [20] R. Li, "Preprocessing Challenges for Facial Biomarker Detection," IEEE Trans. Image Process., vol. 29, pp. 3000-3012, 2020.
- [21] C. Shorten and T. Khoshgoftaar, "A survey on Image Data Augmentation for Deep Learning," J. Big Data, vol. 6, pp. 60, 2019.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52987 Page 2

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

- [22] M. Guo et al., "On Calibration of Modern Neural Networks," ICML, 2017.
- [23] S. Rieke et al., "Privacy Considerations in Federated Learning," Nat. Machine Intelligence, vol. 2, pp. 205–211, 2021.
- [24] M. E. Allibhai et al., "MLOps: Continuous Delivery and Automation," J. Machine Learning Systems, vol. 2, 2022.
- [25] K. Buolamwini and T. Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification," PMLR, 2018.
- [26] V. Sculley et al., "Hidden Technical Debt in Machine Learning Systems,"
- NeurIPS, 2015.
- [27] S. E. Diaconu et al., "Survey of Computer Vision Techniques for Diabetes Screening," Comput. Biol. Med., vol. 161, 106818, 2023.
- [28] L. Wang et al., "EHR Integration for AI-Driven Diabetes Care," J. Biomed. Inform., vol. 128, 104024, 2022.
- [29] J. Doshi-Velez and B. Kim, "Towards A Rigorous Science of Interpretable Machine Learning," arXiv:1702.08608, 2017.
- [30] Q. Yang et al., "Federated Machine Learning," ACM Trans. Intelligent Systems, vol. 10, 2022.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52987 | Page 3