

Sentimental Analyzer for Depression Using Machine Learning Approaches

Prasad Nimkar

Department of Computer Engineering, Smt. Kashibai Navale College of Engineering, Vadgaon (Pune)

Abstract - Mental stress and depression are prevalent psychological conditions that affect millions of individuals worldwide. Early detection and intervention are crucial for effective management and treatment. With advancements in technology, particularly in the field of computer vision and machine learning, there has been growing interest in utilizing facial input for the detection of mental stress and depression. This abstract presents a concise overview of recent research in this area.

Facial input-based detection methods leverage the analysis of facial expressions, movements, and features to infer an individual's emotional state. Various techniques have been explored, including traditional computer vision algorithms and deep learning approaches. These methods aim to capture subtle changes in facial expressions associated with mental stress and depression, such as sadness, fatigue, and withdrawal.

1. Introduction

Depression is a major global health concern and a leading cause of disability. Despite the availability of validated screening tools, large portions of the population remain undiagnosed due to stigma and lack of access to mental healthcare. With the increase in digital interactions, machine learning (ML) offers new opportunities to analyze behavioural and linguistic patterns to detect markers of depression.

Text-based sentiment analysis has proven effective for uncovering psychological states encoded within written language. Social media platforms such as Twitter, Reddit, and Facebook contain rich emotional data that can be mined using Natural Language Processing (NLP). Parallelly, questionnaire-based clinical data provide structured indicators of depressive tendencies.

This research aims to integrate these two modalities and develop a robust ML model that predicts depression levels reliably. The system is designed to support healthcare providers, organizations, and individuals by enabling early identification of depressive symptoms and enabling timely intervention.

2. Objectives

1. To design a machine learning-based model capable of predicting depression levels using questionnaire responses and text-based inputs.
2. To evaluate the performance of multiple machine learning algorithms and identify the most effective classifier.
3. To build a flexible sentiment analysis pipeline without dependency on proprietary APIs.
4. To provide a deployable framework adaptable for clinical and non-clinical mental health support systems.

3. Problem Identification

Traditional depression diagnosis relies heavily on clinician interpretation and self-reported symptoms, which can be subjective and may fail to capture early warning signs. Digital platforms contain valuable behavioural cues, yet most existing tools are limited to general sentiment classification rather than

mental-health-specific indicators. Moreover, many models depend on external libraries with limited customizability. Thus, there is a need for a scalable, automated system that:

- Integrates structured and unstructured data
- Accurately detects depression-specific cues
- Operates without external black-box frameworks
- Supports real-time self-assessment and clinical decision-making

4. Literature Review

Recent studies emphasize the growing use of artificial intelligence in mental health diagnostics. Research by Resnik (2015) and Shatte et al. (2019) demonstrated that linguistic patterns in social media posts correlate strongly with depressive tendencies. WHO reports also highlight significant increases in depression cases worldwide.

Traditional ML models such as SVM, Logistic Regression, and Naïve Bayes have been extensively applied for sentiment analysis. Recent advancements include transformer-based architectures (BERT, RoBERTa), which provide near-human textual understanding.

However, research gaps still exist:

- Lack of multimodal sentiment systems combining text and structured data
- Limited explainability in deep learning-based depression predictors
- Data imbalance issues in mental health datasets
- Absence of deployable tools for real-world users

This study addresses these gaps by integrating multiple classifiers and constructing a customizable, transparent, and expandable framework.

5. Methodology

The proposed methodology comprises six major phases:

5.1 Data Collection

Two datasets were used:

- Clinical depression dataset (Likert-scale questionnaire responses)
- Twitter sentiment dataset (positive, negative, depressive text posts)

5.2 Data Preprocessing

- Removal of duplicates, URLs, stop words
- Tokenization, lemmatization
- Encoding categorical values
- TF-IDF and word embeddings for feature generation

5.3 Feature Engineering

- Sentiment polarity scores
- Depression-related lexicon frequencies
- Questionnaire score normalization

5.4 Model Development

Classifiers implemented:

- SVM
- Random Forest
- Decision Tree
- Gaussian Naïve Bayes
- KNN

