
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48752 | Page 1

 Serverless Application Deployment Using AWS Lambda and API Gateway.

 Dr. Rasmi A1, Dilli Ram Shahu2, Prakash Timilsina3, Siddharth Singh4

 1Associate Professor,2Final year student,3Final year student,4 Final year student

Department of Information Science Engineering. RR Institute of Technology. Bengaluru

---***---

Abstract - Serverless computing is transforming the way

applications are developed and deployed by abstracting the

complexities of server management. This paper presents the

design and implementation of a serverless application using

AWS Lambda and API Gateway. The application demonstrates

how cloud-native features like scalability, reduced operational

overhead, and cost efficiency can be achieved through serverless

architecture. The methodology focuses on event-driven function

deployment, RESTful API exposure, and integration with AWS

services such as DynamoDB. The paper includes system

architecture, implementation strategies, sequence and activity

diagrams, testing results, and a discussion on performance. We

conclude with future directions to improve serverless

applications in terms of latency and observability.

As enterprises seek to accelerate application development cycles

while minimizing infrastructure concerns, serverless computing

emerges as a viable solution. This study explores the design,

development, and deployment of a serverless application using

Amazon Web Services (AWS) Lambda and API Gateway. The

solution demonstrates a real-world use case—a task management

REST API—integrated with AWS services to offer seamless, on-

demand execution of backend logic without server maintenance.

Emphasis is placed on architectural design, cloud integration,

performance analysis, and deployment best practices.

Key Words: Serverless computing, AWS lambda, Amazon API

gateway, Cloud-Native Architecture, Cloud deployment

1.INTRODUCTION

Serverless computing allows developers to build and run
applications without managing servers. AWS Lambda, in
combination with Amazon API Gateway, provides a robust
platform for serverless application development. The purpose of
this project is to demonstrate a practical serverless architecture
that can process HTTP requests, execute logic via AWS Lambda,
and persist data using Amazon DynamoDB.

The traditional server-based architecture often requires
provisioning, scaling, and maintaining server instances.
Serverless removes this complexity and offers automatic scaling,
pay-per-use billing, and enhanced developer productivity.

The evolution of cloud computing has fundamentally changed
how applications are developed, deployed, and maintained.
Traditional architectures, which relied heavily on provisioning,
scaling, and managing servers, often imposed significant
operational overhead and infrastructure costs. Serverless
computing has emerged as a powerful paradigm, enabling
developers to focus solely on writing code while cloud providers
handle the underlying infrastructure. Serverless architecture, also
known as Function-as-a-Service (FaaS), allows developers to
write functions that are executed in response to events. These

functions are ephemeral, stateless, and automatically scaled by the
cloud provider. In this model, users are only billed for the actual
execution time of their code, making it highly cost-effective and
resource-efficient. Amazon Web Services (AWS), a leader in
cloud technologies, offers AWS Lambda as its FaaS solution.
Lambda allows developers to run backend code without
provisioning or managing servers. It automatically handles
scaling, fault tolerance, and high availability. Amazon API
Gateway complements Lambda by acting as a front door for
applications, enabling developers to expose Lambda functions as
RESTful APIs that can be accessed securely via HTTP(S).

2. METHODOLOGY

The development and deployment of the serverless application

followed a structured methodology encompassing design,

implementation, integration, and testing phases. The primary goal

was to build a lightweight and scalable RESTful API using AWS

Lambda and Amazon API Gateway, backed by Amazon

DynamoDB for data storage. The application chosen for this

implementation was a basic task management system that

performs CRUD (Create, Read, Update, Delete) operations on

task data.
This methodology ensures a modular, testable, and highly scalable

cloud-native application that adheres to serverless best practices.

The resulting system architecture not only reduces operational

complexity but also demonstrates the viability of serverless

models for real-world web applications. The first step involved

designing the API endpoints and data model. Each endpoint, such

as POST /tasks, GET /tasks/{id}, PUT /tasks/{id}, and DELETE

/tasks/{id}.

3. SOFTWARE OVERVIEW

1. The serverless application was developed using Python 3.9,

chosen for its simplicity, fast development cycle, and strong

support within the AWS ecosystem.

2. The application is hosted on Amazon Web Services (AWS),

leveraging a suite of integrated services to build a fully

serverless and scalable system.

3. For data persistence, the application uses Amazon

DynamoDB, a highly scalable NoSQL database service.

4. Security and permissions are handled using AWS Identity

and Access Management (IAM).

5. Development and deployment were carried out using Visual

Studio Code as the primary IDE, while AWS Management

Console and AWS CLI were used to manage cloud

resources.

6. The core service, AWS Lambda, is responsible for executing

backend code in response to HTTP requests.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48752 | Page 2

7. To expose the Lambda functions as RESTful API endpoints,

Amazon API Gateway was used.

4. SEQUENCE DIAGRAM AND ACTIVITY

DIAGRAM

Imagine a serverless web application that allows users to upload

images and store them in an Amazon S3 bucket. When an image

is uploaded, a Lambda function is triggered to perform image

processing and store the processed image in another S3 bucket.

 Fig 1. Sequence Diagram

STATE DIAGRAM

 Fig 1.2. Activity Diagram

5. RESULTS AND DISCUSSION

The serverless application was successfully deployed and tested

on AWS using Lambda, API Gateway, and DynamoDB. The

system met all functional requirements, including the ability to

handle CRUD operations through RESTful API endpoints. Each

endpoint correctly triggered the corresponding Lambda function,

which executed backend logic and interacted with the

DynamoDB database to store or retrieve task data. Testing with

Postman confirmed that all endpoints responded appropriately

with correct status codes and data formatting.

Performance testing showed that the application responded to

requests with low latency under moderate load conditions. Most

requests completed within 300–500 milliseconds, which is

typical for Lambda-backed APIs. However, cold start delays

were occasionally observed when invoking a Lambda function

after a period of inactivity, especially for the first request. These

delays ranged from 200ms to 1 second, depending on the runtime

environment and function configuration. While this is an

expected limitation of serverless architectures, its impact was

minimal for non-real-time use cases.

Scalability was a key highlight. The application automatically

scaled to handle concurrent requests without any manual

intervention.

6. FUTURE WORK

 While the current implementation of the serverless application

demonstrates the viability and efficiency of using AWS

Lambda and API Gateway, there are several areas that can be

enhanced and expanded in future iterations. One key

improvement is the integration of authentication and

authorization mechanisms, such as AWS Cognito or OAuth

2.0, to secure access to API endpoints and support user-

specific data handling. Adding a frontend interface, either as a

static website hosted on Amazon S3 or as a React-based

single-page application (SPA), would also make the solution

more user-friendly and complete.

 In terms of functionality, the application can be extended to

include scheduled tasks using Amazon EventBridge (formerly

CloudWatch Events), enabling time-based execution for

automated operations like cleanup routines or reminders.

Moreover, implementing detailed logging, tracing, and

monitoring using tools like AWS X-Ray can provide deeper

insights into performance bottlenecks and help in optimizing

cold start times.

7. CONCLUSION

This project successfully demonstrated the deployment of a

serverless application using AWS Lambda and API Gateway,

showcasing the core advantages of serverless computing such as

automatic scaling, reduced operational overhead, and cost

efficiency.

Major contributions

This project illustrates the practical deployment of a fully

serverless application using AWS Lambda and API Gateway,

effectively removing the need for traditional server management

and provisioning.

Future Enhancements

Integrate authentication and authorization mechanisms such as

AWS Cognito or OAuth 2.0 to secure API endpoints and enable

personalized user experiences.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48752 | Page 3

8. ACKNOWLEDGMENT

The satisfaction that accompanies the success in completion of

this project would be incomplete without the mention of the

people who made it possible, without whose constant guidance

and encouragement would have made our efforts go in vain.

We consider ourselves privileged to express gratitude and

respect towards all those who guided us through the

completion of this project.

We would like to express our gratitude to Dr. Mahendra K V,

Principal, RRIT, Bengaluru for providing us congenial

environment and surrounding to study.

We would like to express our sincere gratitude to Dr. Erappa

G, Professor and Head, Department of Information Science

and Engineering, RRIT, Bengaluru for giving us the support

and encouragement that was necessary for the completion of

this project.

We express our deepest gratitude and sincere thanks

to our project coordinator, Dr. Rasmi A, Associate

Professor, Department of Information Science and

Engineering, RRIT, Bengaluru for giving us the support and

encouragement that was necessary for the completion of this

project.

We would like to express our gratitude to our guide Dr. Rasmi

A, Associate Professor, Department of Information Science

and Engineering, RRIT, Bengaluru for giving us the support

and encouragement that was necessary for the completion of

this project.

We would also like to convey our regards to all faculty

members and non-teaching staff of R R Institute of

Technology, Bengaluru for constantly motivating and guiding

us throughout our journey at RRIT.

Finally, we thank our Parents, Friends and Family members

for their co-operation and their guidance in bringing out this

project successfully.

9. REFERENCES

[1] Amazon Web Services, Inc. (2023). AWS Lambda

Developer Guide. Retrieved from

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

[2] Amazon Web Services, Inc. (2023). Amazon API Gateway

Developer Guide. Retrieved from

https://docs.aws.amazon.com/apigateway/latest/developerguide/

welcome.html

[3] Adzic, G., & Chatley, R. (2017). Serverless Computing:

Economic and Architectural Impact. IEEE Cloud Computing,

4(5), 16–23. https://doi.org/10.1109/MCC.2017.4121217.

[4] Roberts, M. (2016). Serverless Architectures. Retrieved from

https://martinfowler.com/articles/serverless.html.

[5] Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C. C.,

Khandelwal, A., Pu, Q., ... & Stoica, I. (2019). Cloud

Programming Simplified: A Berkeley View on Serverless

Computing. arXiv preprint arXiv:1902.03383.

https://arxiv.org/abs/1902.03383.

[6] Shahrad, M., et al. (2019). Serverless in the Wild:

Characterizing and Optimizing the Serverless Workload at a

Large Cloud Provider. Proceedings of the 2020 USENIX Annual

Technical Conference, 205–218.

https://www.usenix.org/conference/atc20/presentation/shahrad

[7] Harris, R. (2020). AWS Certified Solutions Architect Official

Study Guide. Wiley.

[8] Mase, K., & Chen, T. (2019). Building Scalable Applications

with AWS Lambda and API Gateway. International Journal of

Computer Applications, 178(6), 12–17.

[9] Wang, L., Ristenpart, T., & Swift, M. (2018). Peeking Behind

the Curtains of Serverless Platforms. In Proceedings of the 2018

USENIX Annual Technical Conference (USENIX ATC ’18),

133–146.

https://www.usenix.org/conference/atc18/presentation/wang-

liang.

[10] Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,

Ishakian, V., ... & Suter, P. (2017). Serverless Computing:

Current Trends and Open Problems. In Research Advances in

Cloud Computing (pp. 1–20). Springer.

https://doi.org/10.1007/978-3-319-64688-9_1.

http://www.ijsrem.com/
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://arxiv.org/abs/1902.03383

