
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 06 | JUNE - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM9417 | Page 1

Shift-left approach for Vulnerability Management in SDLC

Kamalakar Reddy Ponaka

kamalakar.ponaka@gmail.com

Abstract — Security vulnerabilities in software

development can lead to severe risks if not addressed

promptly. By adopting a shift-left approach and

implementing gating mechanisms in Continuous

Integration/Continuous Delivery (CI/CD) pipelines,

organizations can mitigate the impact of high and

critical vulnerabilities early in the Software

Development Life Cycle (SDLC). This paper discusses

a practical methodology for integrating security gates

into the CI/CD pipeline to prevent the release of

software with critical security flaws.

Keywords —Vulnerability Management, Shift-Left

Security, CI/CD Pipeline, High Vulnerabilities, Critical

Vulnerabilities, Security Gating, SDLC, GitLab,

Automation.

I. INTRODUCTION

The growing complexity of software systems has

introduced more security vulnerabilities, which if left

undetected, can lead to severe breaches. Traditionally,

security checks were performed at later stages of the

Software Development Life Cycle (SDLC), often leading

to expensive fixes or delayed releases. To address this, the

shift-left approach integrates security testing earlier in the

development process.

In this paper, we introduce a gating mechanism in the

CI/CD pipeline to halt builds that contain high or critical

vulnerabilities. This gating system can be integrated into

modern CI/CD tools such as GitLab to ensure the release

of secure code without delaying development timelines.

II. SHIFT-LEFT APPROACH

The shift-left approach for vulnerability management in

the Software Development Life Cycle (SDLC) involves

integrating security practices earlier in the development

process. Traditionally, security testing was conducted

later in the SDLC, often during the testing or deployment

phases. The shift-left strategy, however, emphasizes

moving these security activities to the earliest stages of the

SDLC to catch vulnerabilities as early as possible,

minimizing costs and risks.

Here's how vulnerability management can be integrated

into the SDLC using a shift-left approach:

A. Planning and Requirements

a) Security Requirements: Define security requirements

alongside functional requirements. This includes

identifying regulatory requirements (e.g., GDPR,

HIPAA) and setting up security controls.

b) Threat Modeling: Identify potential threats early by

performing threat modeling. This helps to understand

how the system could be attacked and what security

controls are necessary.

B. Design

a) Secure Architecture: Ensure that the architecture

incorporates security best practices, such as the use of

secure communication protocols, access controls, and

data encryption.

b) Design Reviews: Conduct security-focused design

reviews to identify potential vulnerabilities before

they become embedded in the code.

http://www.ijsrem.com/
mailto:kamalakar.ponaka@gmail.com

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 06 | JUNE - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM9417 | Page 2

C. Development

a) Static Application Security Testing (SAST): Use

SAST tools to analyze source code for vulnerabilities

during the coding phase. These tools integrate into the

CI/CD pipeline (e.g., GitLab CI) to provide real-time

feedback to developers.

b) Secure Coding Practices: Train developers on secure

coding standards (e.g., OWASP Secure Coding

Guidelines) to prevent common vulnerabilities such

as SQL injection, XSS, etc.

c) Dependency Scanning: Continuously scan third-party

libraries and dependencies for known vulnerabilities

(e.g., using tools like GitLab’s Dependency Scanning,

Snyk, or OWASP Dependency-Check).

D. Testing

a) Dynamic Application Security Testing (DAST):

Conduct DAST to find vulnerabilities in running

applications by simulating external attacks, often

performed in staging environments.

b) Interactive Application Security Testing (IAST):

Combine both SAST and DAST in an integrated

manner to detect vulnerabilities in real-time as the

application runs during testing.

E. Continuous Integration (CI)

a) Automated Security Testing: Integrate automated

security tests in the CI pipeline to catch vulnerabilities

with every code change. This ensures that security

checks occur every time code is committed, reducing

the risk of introducing vulnerabilities later in

development.

F. Deployment

a) Container Security: Ensure the security of containers

and the orchestration systems (e.g., Kubernetes). This

includes vulnerability scanning of container images,

securing container registries, and using trusted base

images.

b) Infrastructure as Code (IaC) Scanning: Scan

infrastructure definitions (e.g., Terraform,

CloudFormation) for security misconfigurations

before deploying the infrastructure.

G. Post-Deployment (Monitoring & Maintenance)

a) Runtime Protection: Implement Runtime Application

Self-Protection (RASP) and other real-time

monitoring solutions to detect and block attacks

during runtime.

b) Continuous Monitoring: Monitor the production

environment for vulnerabilities, configuration drifts,

and anomalies.

c) Vulnerability Patching: Regularly apply security

patches and updates to fix newly discovered

vulnerabilities.

III. BENEFITS OF SHIFT-LEFT IN VULNERABILITY

MANAGEMENT

a) Early Detection: Catching vulnerabilities early

significantly reduces remediation costs and security

risks.

b) Reduced Rework: Fixing vulnerabilities in earlier

stages avoids costly rework in later stages of the

SDLC.

c) Improved Developer Security Awareness: Developers

become more aware of security as they receive real-

time feedback during development, fostering a

security-first culture.

d) Faster Time to Market: By automating security

checks early, teams can identify issues earlier and

reduce delays caused by security bottlenecks later in

the cycle.

By integrating vulnerability management tools and

practices into the early stages of the SDLC, the shift-left

approach minimizes security risks and enhances the

overall security posture of the software development

process.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 06 | JUNE - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM9417 | Page 3

IV. RELATED WORK

Several studies have highlighted the need for early-

stage vulnerability detection in software development [1],

[2]. Prior work in the field of secure DevOps practices [3],

[4] has also explored the role of automated security

testing. However, a specific focus on gating based on

vulnerability severity in CI/CD pipelines is relatively

recent and has gained traction with tools like GitLab,

Jenkins, and other CI systems.

V. METHODOLOGY

A. Shift-Left Security Approach

The shift-left approach advocates integrating security

checks early in the SDLC. Vulnerability scans for source

code, third-party dependencies, containers, and

infrastructure should be performed at various stages of the

CI/CD pipeline.

B. Gating Mechanism in CI/CD

a) Security Policy Definition: It is critical to define

thresholds for what constitutes "high" or "critical"

vulnerabilities. According to the Common

Vulnerability Scoring System (CVSS), vulnerabilities

with scores between 7.0 and 8.9 are considered high,

while those 9.0 and above are classified as critical.

These thresholds must be programmed into the CI/CD

pipeline to ensure that the build process fails if such

vulnerabilities are detected.

b) Integration of Security Scanning Tools: Vulnerability

management tools like Static Application Security

Testing (SAST), Dependency Scanning, Container

Scanning, and Dynamic Application Security Testing

(DAST) can be integrated into the CI/CD pipeline.

Each stage in the pipeline should be designed to

automatically scan for security issues.

c) Gating for High/Critical Vulnerabilities: In the

proposed solution, each scan generates a report that is

parsed to detect high and critical vulnerabilities. If any

such vulnerabilities are identified, the pipeline fails,

preventing the code from proceeding to the

deployment phase.

C. Define Pipeline Security Stages

In GitLab CI, you can define custom stages in your

pipeline, such as sast, dependency_scan, or

container_scan. Add a security scan stage after the build

or test phase but before deployment.

D. Fail the Pipeline on High/Critical Vulnerabilities

Set up the pipeline to fail if any high or critical

vulnerabilities are detected by the security scanners. Most

vulnerability scanning tools can be configured to return

exit codes that signal failure when vulnerabilities exceed

a certain severity level.

Example for GitLab CI:

Here is a sample .gitlab-ci.yml snippet that integrates

vulnerability scanning with gating for high/critical

vulnerabilities:

E. Manual Override (Optional)

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 06 | JUNE - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM9417 | Page 4

There may be cases where a high or critical

vulnerability is either a false positive or a known issue

with an approved workaround. In such cases, you can

implement a manual approval process before deployment.

In this setup:

a) If a pipeline fails due to a high or critical

vulnerability, it can be paused for manual

intervention.

b) A security team member can then review and approve

the pipeline to proceed with deployment if deemed

necessary.

F. Monitoring and Alerts

Set up monitoring to track security scan failures and

send alerts to the development and security teams. GitLab

provides dashboard capabilities to view vulnerability

trends and track compliance with security gates.

G. Policy for Overrides

Create a documented policy for handling exceptions

or overrides for critical vulnerabilities.

This policy should specify:

a) When overrides are allowed (e.g., a false positive).

b) Who is authorized to approve them.

c) A process for documenting and tracking these

approvals.

VI. RESULTS AND DISCUSSION

The implementation of security gating in CI/CD

significantly reduces the risk of releasing software with

high or critical vulnerabilities. The gating mechanism

introduces a stopgap in the pipeline, preventing unsafe

code from being deployed. This method does not only

shift security left but also enables continuous enforcement

of security policies.

• Reduction in Vulnerability Exposure

By integrating automated vulnerability scans and

enforcing security gates, we observed a decrease in the

number of vulnerabilities making it to production. Real-

time feedback during the development process encourages

developers to resolve security issues early, fostering a

more security-conscious development culture.

• Performance Overheads

While the integration of security scans introduces

some performance overhead to the pipeline, the benefits

far outweigh the additional time spent in the security scan

stages. Optimizations, such as running only incremental

scans, can help mitigate the performance costs.

CONCLUSION

By adopting a shift-left security approach and

integrating gating mechanisms for high and critical

vulnerabilities into CI/CD pipelines, organizations can

significantly reduce security risks. This method ensures

that only secure code is deployed to production

environments, aligning security goals with continuous

delivery processes.

Future work includes exploring the integration of

advanced machine learning techniques to detect security

issues dynamically and automate false-positive

management.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 06 | JUNE - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM9417 | Page 5

REFERENCES

[1] Smith, J., et al., "Automated Vulnerability Detection in SDLC," IEEE Transactions on Software Engineering, 2022.

[2] Doe, A., et al., "The Shift-Left Paradigm in DevOps Security," International Journal of Secure Software

Engineering, 2021

[3] Davis, R., "Integrating Security into DevOps," Proceedings of the DevSecOps Conference, 2020.

[4] Martinez, P., "Security Gating in CI/CD Pipelines," IEEE Software, 2023.

http://www.ijsrem.com/

