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Abstract:
Simulated Annealing is a stochastic global search optimization algorithm. The algorithm is inspired by annealing in metallurgy where metal is heated to a high temperature quickly, then cooled slowly, which increases its strength and makes it easier to work with. algorithm comes from annealing in metallurgy, a technique involving heating and controlled cooling of a material to alter its physical properties.
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The Simulated Annealing technique is a very popular way of optimizing model parameters. This method is based on Physical Annealing in reality. The process through which a material is heated till the annealing temperature and then cooled down for the desired structure formation is called Physical Annealing. Simulated Annealing is based on this technique, and it copies physical annealing for optimizing parameters.
1. Simulated Annealing
A Simulated annealing algorithm is a method to solve bound-constrained and unconstrained optimization parameters models. The method is based on physical annealing and is used to minimize system energy.
In every simulated annealing example, a random new point is generated. The distance between the current point and the new point has a basis of the probability distribution on the scale of the proportion of temperature. The algorithm aims at all those points that minimize the objective with certain constraints and probabilities. Those points that raise the objective are also accepted to explore all the possible solutions instead of concentrating only on local minima.
Optimization by simulated annealing is performed by systematically decreasing the temperature and minimizing the search’s extent. 
2. Implement Simulated Annealing
There are a set of steps that are performed for simulated annealing in AI. These steps can be summarized as follows:
Simulated annealing creates a trial point randomly. The algorithm selects the distance between the current point and the trial point by a probability distribution. The scale of such distribution is temperature. With the annealing function trial, point distribution distance is set. To keep the boundaries intact, the trial point is shifted gradually.
The Simulated Annealing formula then determines if the new point is better than the older or not. If the new point is better, it is made as a next point, while if the new point is worse, it can still be accepted depending upon the simulated annealing acceptance function. 
A systematic algorithm gradually reduces the temperature selecting the best point that gets generated in the process.
For lowering the values, the annealing parameters are set, raising and reducing the temperatures. The simulated annealing parameters are based on the values of the probable gradients of every dimension of the objective.
The simulated annealing is concluded when it reaches the lowest minima or any of the specific stopping criteria.
3. Stopping Criteria of Simulated annealing
Some of the conditions that are considered as the basis to stop the simulated-annealing are as follows:
The simulated-annealing performs until the value of the objective function goes lesser than the tolerance function. The value of default is 1e – 6
The default value of iterations in simulated-annealing is INF. This can be set to any positive integer as well. When the algorithm exceeds the iteration value, it stops.
The annealing concludes when the maximum number of evaluations is achieved. The default value of such evaluations is 3000 * number of variables.
The default value of maximum time is Inf, and when that is reached, the algorithm stops.
When the best objective function value is lesser than the limit of the objective it concludes. The default value of such an objective function is -Inf.
4. Simulated Annealing Worked Example
To understand how simulated-annealing works, one can take the example of a traveling salesman. The solution can be created by applying any of the language selections. Let us understand the problem and the solution with simulated-annealing applications.
At the onset, a city class needs to be created to specify several destinations the travelling salesman would visit.
After that, a class has to be created that keeps track of the cities.
Then a class is created that models the tour of the travelling salesman.
With all the different classes and the information in hand, a simulated-annealing algorithm is created.
Thus with the types of optimization problems, a relatively simpler algorithm is created, and the solution is sought.
5. Simulated annealing vs hill-climbing methods
There is a huge difference between hill-climbing and simulated-annealing considering the way they are applied, and the results are achieved. Simulated-annealing is believed to be a modification or an advanced version of hill-climbing methods. Hill climbing achieves optimum value by tracking the current state of the neighborhood. Simulated-annealing achieves the objective by selecting the bad move once a while. A global optimum solution is guaranteed with simulated-annealing, while such a guarantee is not assured with hill climbing or descent.
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Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. For large numbers of local optima, SA can find the global optima.[1] It is often used when the search space is discrete (for example the traveling salesman problem, the Boolean satisfiability problem, protein structure prediction, and job-shop scheduling). For problems where finding an approximate global optimum is more important than finding a precise local optimum in a fixed amount of time, simulated annealing may be preferable to exact algorithms such as gradient descent or branch and bound.
The name of the algorithm comes from annealing in metallurgy, a technique involving heating and controlled cooling of a material to alter its physical properties. Both are attributes of the material that depend on their thermodynamic free energy. Heating and cooling the material affects both the temperature and the thermodynamic free energy or Gibbs energy. Simulated annealing can be used for very hard computational optimization problems where exact algorithms fail; even though it usually achieves an approximate solution to the global minimum, it could be enough for many practical problems.
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Simulated annealing can be used to solve combinatorial problems. Here it is applied to the travelling salesman problem to minimize the length of a route that connects all 125 points.
The problems solved by SA are currently formulated by an objective function of many variables, subject to several mathematical constraints. In practice, the constraint can be penalized as part of the objective function.
This notion of slow cooling implemented in the simulated annealing algorithm is interpreted as a slow decrease in the probability of accepting worse solutions as the solution space is explored. Accepting worse solutions allows for a more extensive search for the global optimal solution. In general, simulated annealing algorithms work as follows. The temperature progressively decreases from an initial positive value to zero. At each time step, the algorithm randomly selects a solution close to the current one, measures its quality, and moves to it according to the temperature-dependent probabilities of selecting better or worse solutions, which during the search respectively remain at 1 (or positive) and decrease toward zero.
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Travelling salesman problem in 3D for 120 points solved with simulated annealing.
The simulation can be performed either by a solution of kinetic equations for probability density functions,[7][8] or by using a stochastic sampling method.[6][9] The method is an adaptation of the Metropolis–Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, published by N. Metropolis et al. in 1953.
The state of some physical systems, and the function E(s) to be minimized, is analogous to the internal energy of the system in that state. The goal is to bring the system, from an arbitrary initial state, to a state with the minimum possible energy.
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The basic iteration
At each step, the simulated annealing heuristic considers some neighboring state s* of the current state s, and probabilistically decides between moving the system to state s* or staying in-state s. These probabilities ultimately lead the system to move to states of lower energy. Typically, this step is repeated until the system reaches a state that is good enough for the application, or until a given computation budget has been exhausted.
The neighbors of a state:
Optimization of a solution involves evaluating the neighbors of a state of the problem, which are new states produced through conservatively altering a given state. For example, in the travelling salesman problem each state is typically defined as a permutation of the cities to be visited, and the neighbors of any state are the set of permutations produced by swapping any two of these cities. The well-defined way in which the states are altered to produce neighboring states is called a "move", and different moves give different sets of neighboring states. These moves usually result in minimal alterations of the last state, in an attempt to progressively improve the solution through iteratively improving its parts (such as the city connections in the traveling salesman problem).
Simple heuristics like hill climbing, which move by finding better neighbor after better neighbor and stop when they have reached a solution which has no neighbors that are better solutions, cannot guarantee to lead to any of the existing better solutions – their outcome may easily be just a local optimum, while the actual best solution would be a global optimum that could be different. Metaheuristics use the neighbors of a solution as a way to explore the solution space, and although they prefer better neighbors, they also accept worse neighbors in order to avoid getting stuck in local optima; they can find the global optimum if run for a long enough amount of time.
Acceptance probabilities

The probability of making the transition from the current state �S to a candidate new state �newSnew is specified by an acceptance probability function �(�,�new,�)P(e, enew, T), that depends on the energies �=�(�)e=E(S) and �new=�(�new)enew =E(Snew) of the two states, and on a global time-varying parameter �T called the temperature. States with a smaller energy are better than those with a greater energy. The probability function �P must be positive even when �newenew is greater than �. This feature prevents the method from becoming stuck at a local minimum that is worse than the global one.
When �T tends to zero, the probability �(�,�new,�)P(e, enew ,T) must tend to zero if enew = e�new>� and to a positive value otherwise. For sufficiently small values of �T, the system will then increasingly favor moves that go "downhill" (i.e., to lower energy values), and avoid those that go "uphill." With �=0T=0 the procedure reduces to the greedy algorithm, which makes only the downhill transitions.
In the original description of simulated annealing, the probability �(�,�new,�) P(e, enew ,T) was equal to 1 when �new<�enew < e —i.e., the procedure always moved downhill when it found a way to do so, irrespective of the temperature. Many descriptions and implementations of simulated annealing still take this condition as part of the method's definition. However, this condition is not essential for the method to work.
The �P function is usually chosen so that the probability of accepting a move decrease when the difference �new−�enew e increases—that is, small uphill moves are more likely than large ones. However, this requirement is not strictly necessary, provided that the above requirements are met.
Given these properties, the temperature �plays a crucial role in controlling the evolution of the state �S of the system with regard to its sensitivity to the variations of system energies. To be precise, for a large �T, the evolution of �S is sensitive to coarser energy variations, while it is sensitive to finer energy variations when �T is small.
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Algorithm 2: Simulated Annealing Optimizer

T+ Toar
x ¢ generate the initial candidate solution
E « E(x) compute the energy of the initial solution
while (T > Ty) and (E > Ey,) do
Xuew ¢ gonerate a new candidate solution
Eqew ¢ compute the energy of the new candidate Xpew
AE ¢ Epew — E

if Accept (AE.T) then
X 4= Xpew

E  Encu
end
T + L cool the temperature
end
return x
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