
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | December - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 1

Simulation of Pushdown Automata using Python

Aditya Akangire

AI and DataScience VIT

Pune Pune, India

Ayush Vispute

AI and DataScience VIT

Pune Pune, India

Abdul Mueed

AI and DataScience VIT

Pune Pune, India

Kartik Rupauliha

AI and Data Science

VIT Pune Pune, India

Sarthak Akkarbote

AI and Data Science

VIT Pune

Pune, India

Abstract— In the same approach that we create DFA

for regular grammar, a pushdown automaton (PDA)

is a technique for implementation of context- free

grammar. Because of an extra memory segment

called stack, a PDA can remember an immense

amount of information, whereas a DFA can only

remember a certain amount of information. In

our project, we have implemented PDA using

Python, and made simulations of four PDAs. To

check if the input string has n number of 0s

followed by n number of 1s, palindrome, if no. of

0s and 1s are equal or not and last one to check if,

number of 1s are twice as compared to number of

0s. We also print transition tables for better

understanding of PDA transitions and stack

operations.

Keywords—python,pushdown automata,

palindrome, automata theory, stack.

INTRODUCTION

Pushdown Automata is a type of finite automaton which
includes an additional memory known as a stack that
allows it to recognise Languages that are free of
context. A Stack is a linear type of data structure
where all insertions and deletions are made only from
one end, the top. We can perform two basic operations
on stack, insertion of an element known as ‘push’ and
deletion of an element known as ‘pop’ strictly from
the top only. Pushdown Automata(PDA) is one of
the extensively important and widely used topics in
Theory of Computation(TOC). It has a huge number
of applications and therefore, we decided to design
some examples of Pushdown Automata and implement
it with the help of Python programming.

Formal Definition of PDA can be given as :

● Q : Non empty finite set of states

● ∑ : Input alphabets
● Γ : Stack alphabets
● q0: Initial state
● Z : Stack start symbol(bottom of stack)
● F : the final state, δ is a transition feature which maps

Q x {Σ ∪∈} x Γinto Q x Γ*. In each state, PDA will
read symbols from top of the stack and shift to a new
state and change the symbol of stack.

● Components of Pushdown Automata :

Input tape : The input tape is subdivided into cells or
symbols. The input head is read-only i.e it can not
change the symbol and can only move one symbol from
left to right at a time.

Finite control : It has a pointer which points to the

currently being read symbol.
Stack : This is a kind of data structure in which data
could only be put or removed from one end. It’s size is
unlimited.. It is used to temporarily store items in a
PDA.

Fig 1
Image ref : https://en.wikipedia.org

According to A state-transition table is used in automata
and sequential logic to show which state (or states in
NFA) a finite-state machine will transition to given the
present situation and other inputs.

Considering the fact that Pushdown automata have an

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | December - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 2

extra memory segment called stack which makes it
possible for PDA to remember infinite amounts of

information, unlike finite state automata which can
store only finite amounts of information. The paper

covers certain languages which can be designed using

pushdown automata. The programs are written in
Python and have used Python’s library named

automata.

I. LITERATURE SURVEY

A. Non-Deterministic PDA Tool[1]

Similar to our project, this tool is being used for creating

simulations of PDA. The program is in Java

language. The user is able to run PDA with many inputs

at around the same moment. User has to specify all

necessary information in an input file. This tool is able

to stimulate PDAs in the form of graphs so that it

could assist the user to follow the steps as per

simulation.

B. Pushdown Automata Simulator[2]

This is a GUI based java program which has created a

simulator to study the behavior of PDA in the form of

visualization. This type of simulator can handle both

vacant stack as well as the end state techniques of

approval. It allows users to easily transform the PDA

which takes a vacant stack into a PDA which accepts

by end state. It is a similar process the other way

around. (Hamada 1)

C. Autonomous push-down automaton built on

DNA*[5]

In this paper, the authors have presented a conceptual

model on execution of pushdown automata built on

DNA. They were persuaded by The Turing Machine

model and the finite automaton model. Furthermore,

they have discussed the basic introduction of the

pushdown automaton being a non-deterministic finite

automata and also a schema of the PDA. A few

solved examples of PDA are also stated for better

understanding of the concept. Then, it has been

mentioned about the basic elements of the

implementation of The PDA with respect to a DNA

molecule. Further, they’ve discussed the empirical

implementation and the transition rules along with their

molecular representation. The paper concludes with

successfully presenting a contemporary way to

implement PDA contingent to DNA molecules along

with restriction enzymes. (KRASIŃSKI et al. 1)

D. Pushdown Automata in Statistical Machine

Translation[6]

This paper contains the application of PDA in

relation with statistical machine translation. They’ve

also mentioned SCFGs, HiPDT and described

decoding in three steps: Translation, Language Model

Application

and Search. They’ve researched in such a way proving

that PDAs are more worthy in decoding SCFGs and

other language models. (Allauzen et al. 1)

E. Pushdown Automata[7]

This paper contains the theory and information about

Pushdown Automata and then further discusses the

similarities between Pushdown Automata and context

free grammar and then they further talk about various

properties and types of Pushdown Automata. The paper

then discusses how recursion is the face and the building

block of Pushdown Automata. The paper finally

discusses some of the machine models based on

Pushdown Automaton.

II. PROBLEM STATEMENT

1. We will be designing a PDA system for accepting the
language in the form 0ⁿ1ⁿ and 0n12n. The important thing
to note is, the order of 0’s and 1’s should be maintained.

2. L={x∈{o,1}*/#o=#1} where # represent

no. of zero i.e. 0’s = 1’s.

3. We will be designing a Python implementation of
palindrome numbers using Pushdown Automata with

the alphabets 0 and 1.

III. METHODOLOGY

The python program to simulate PDA consists of two

.py files and for text files of four different PDAs

simulated.

First python file is FileHandler.py in which two

functions namely readFile() and parseFile() are defined.

readFile() reads the input file and displays an error

message if the proper input file is not provided.

parseFile() function is used to assign a variable to each

line from text files and returns a dictionary containing

these variable and value(text) pairs.

PDA.py is the second python file which performs the

main operations of the program.The compute() function

does the stack operations and generates transition table.

main() function asks for user input and displays relevant

messages accordingly.

text files contain following details to define a PDA: Total

States on Line 1

Input Word Symbols(0,1) on Line 2 Stack Symbols 3

Initial State Symbol on Line 4 Initial Stack Symbol on

Line 5 List of Final States on Line 6

Productions in the form of (Current State, Current Input

Symbol, Current Top of Stack, Next State, Push/Pop

Operation Symbol) from Line 7 and onwards.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | December - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 3

Following PDAs are implemented in this program

1) 0n 1n

1. So, initially a special symbol “$” is being put in the

empty stack.

2. Then, checking in the input string, if we encounter

“0” and at the top of the stack lies “$”, we push “0”

into the stack.

3. If the next letter we encounter is “1”, and at the top

of the stack lies “0”, then we pop the “0” out of the

stack.

4. So, overall we push the “0”s into the stack and pop

out one “0” for every “1” we get in the input string.

5. Finally, after encountering all the letters of the

input string, we found the “$” symbol in the stack,

then the string is being accepted otherwise not.

6. We also check that the input string is strictly of the

form 0n 1n , n≥1.

2) WCWR (Palindrome)

1. Here, in an ideal case “W” is a combination of one

string, “C” acts as a center/separator of the input

string and “WR” is another string opposite of “W”.

2. So, initially a special symbol “$” is being put in

the empty stack.

3. Then, all the alphabets of string “W” are being

pushed into the stack.

4. The next alphabet encountered will be “C” which

we are going to ignore.

5. The next set of strings will be of “WR”, as the

encountered alphabets start matching with the alphabets

at the top of the stack, we’ll start popping them out.

6. Finally, after encountering all the alphabets, if we

find “$” symbol in the stack, then the string will be

accepted otherwise not.

7. We also check whether or not the input string is of

the form WCWR.

2. Then, checking in the input string, if we come

across “0” and “$” is present as the up most element of

the stack, we push “0” into the stack.

3. Again if we encounter “0” and the up most element of

the stack is “0”, we push “0” into the stack.

4. When we encounter “1” and the up most element of

the stack is “0”, we move to q1 state from initial qo

state.

5. If we again encounter “1” in q1 state and the up

most element of the stack is “0”, we pop a “0” out of the

stack and move to q2 state.

6. Again if we encounter “1”, we move from q2 to q1

state and then for immediate next “1” we as above(5).

7. Finally, after encountering all the letters of the input

string, we found the “$” symbol in the stack, then the

string is accepted otherwise not.

Fig. 3

4) Number of 0s = Number of 1s

1. Initially a special symbol “$” is being put in the

empty stack.

2. Then, checking in the input string, we encounter “0”

or “1” and we push it into the stack. That means if “0”

comes first, push it in the stack.

3. After “0” if again “0” comes then push it in the stack.

4. If “1” comes first, push it in the stack (“0” did not

come yet).If again “1” comes then push it in the stack.

5. Now if “0” lies on top of stack and we encounter “1”

then, pop “0”'

Similarly if “1” is present on top of the stack and we

encounter “0” then, pop “1”.

6. Finally, after encountering all the letters of the input

string, we found the “$” symbol in the stack, then the

string is being accepted otherwise not.

3)

 0n12

n

Fig.

2

IV. RESULT

This project covers four examples of the

implementation of pushdown automata. The results will

be shown by a string which will be either “The string is

accepted by PDA” or “The string is not accepted by

PDA”. The user could select one out of the four options

which are 0n 1n, WCWR, 0n12n and No. of 0’s equals to

1. So, initially a special symbol “$” is being put in

the empty stack.

No. of 1’s. After running the program and inputting the

string, the user will get to know whether or not the string

is accepted by The Pushdown Automata.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | December - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 4

V. FUTURE SCOPE

This model helps us to easily understand PDAs and

study them properly with the help of transition tables.

In the future we can design and add more PDAs in

the format of text files and implement it using the

same algorithm.

VI. SCOPE OF PROJECT

There is an immense scope for this project which can be

worked upon. Since only a few simulations have

been performed, a greater number of simulations can be

done using Python. Other languages other than

Python may also be used for simulation. The

simulation can also be shown graphically step by step

and then maybe the comparison between different

languages can be done depicting which language

takes a minimum amount of time.

VII. CONCLUSION

We have considered the problems of push down
automata.These problems can be seen as model
checking and context-free properties for pushdown
models.We have used Python for checking PDA for
Palindrome, if number of 0s and 1s are equal or not
and if no of 1s are twice as compared to number of
0s.We have seen how the system works and what are
the methods of Data Collection and Analysis.

ACKNOWLEDGEMENT

We are grateful to our project guide for shaping our

ideas and constant support during the project. Such

projects help us a lot to develop skillful and

innovative thinking. Thanks to The Department of IT

and AI & Data Science, Vishwakarma Institute of

Technology for including it in our curriculum. Special

acknowledgement to all our group members for such

efforts and exchange of various concepts and ideas

which made the project possible. Last but not the

least, we are thankful to our parents and friends for

their support and encouragement.

REFERENCES

[1] Another non-deterministic push-

down automaton. available at

 http:

//www.cs.binghamton.edu/˜software/pda/pdadoc.html.

[2] Pushdown Automata Simulator by

 Felix Erlacher

[3] https://research.cs.queensu.ca/home/ksalomaa/

julk/p47-okhotin.pdf

[4] https://www.geeksforgeeks.org/introduction- of-

pushdown-automata/

[5] https://www.researchgate.net/publication/5195

9108_Autonomous_push-

down_automaton_built_on_DNA

[6] https://aclanthology.org/J14-3008.pdf

[7] https://www.researchgate.net/publication/2424

27937_Pushdown_Automata/link/0a85e532de95307b1

e000000/download

[8] https://www.tutorialspoint.com/automata_theo

ry/pushdown_automata_introduction.htm

[9] https://en.wikipedia.org/wiki/State-

transition_table

[10] Pushdown Automata Hendrik Jan Hoogeboom

and Joost Engelfriet

[11] Head Pushdown Automata Samson Ayodeji

Awe

[12] RE-DESIGNING THE PACMAN GAME

USING PUSH DOWN AUTOMATA

[13] Complexity of Input-Driven Pushdown

Automata1 Alexander Okhotin2 Kai Salomaa3

[14] Atig, M. F., Bollig, B., & Habermehl, P. (2017).

Emptiness of Ordered Multi-Pushdown Automata is

2ETIME-Complete. International Journal of

Foundations of Computer Science, 28(08), 945–975.

https://doi.org/10.1142/s0129054117500332
[15] Fransson, T. (2013). Simulators for formal

languages, automata and theory of computation with

focus on JFLAP [Student thesis, Mälardalens högskola,

Akademin för innovation, design och teknik].

http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-

18351
[16] LIN, H. J., & WANG, P. S. P. (1989).

PUSHDOWN RECOGNIZERS FOR ARRAY

PATTERN. International Journal of Pattern

Recognition and Artificial Intelligence, 03(03n04),

377–392. https://doi.org/10.1142/s0218001489000292

[17] Vayadande, Kuldeep, Ritesh Pokarne,

Mahalaxmi Phaldesai, Tanushri Bhuruk, Tanmai Patil,

and Prachi Kumar. "SIMULATION OF CONWAY’S

GAME OF LIFE USING CELLULAR AUTOMATA."

International Research Journal of Engineering and

Technology (IRJET) 9, no. 01 (2022): 2395-0056.

[18] Vayadande Kuldeep, Ram Mandhana,

Kaustubh Paralkar, Dhananjay Pawal, Siddhant

Deshpande, and Vishal Sonkusale. "Pattern Matching in

File System." International Journal of Computer

Applications 975: 8887.

[19] Vayadande Kuldeep, Neha Bhavar, Sayee

Chauhan, Sushrut Kulkarni, Abhijit Thorat, and Yash

http://www.ijsrem.com/
http://www.cs.binghamton.edu/
http://www.geeksforgeeks.org/introduction-
http://www.researchgate.net/publication/5195
http://www.researchgate.net/publication/2424
http://www.tutorialspoint.com/automata_theo
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Amdh%3Adiva-

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | December - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 5

Annapure. Spell Checker

Model for String Comparison in Automata. No. 7375.

EasyChair, 2022.

[20] VAYADANDE KULDEEP. "Simulating

Derivations of Context-Free Grammar." (2022).

[21] Vayadande, Kuldeep, Neha Bhavar, Sayee

Chauhan, Sushrut Kulkarni, Abhijit Thorat, and Yash

Annapure. Spell Checker Model for String Comparison

in Automata. No. 7375. EasaafyChair, 2022.

[22] Varad Ingale, Kuldeep Vayadande, Vivek

Verma, Abhishek Yeole, Sahil Zawar, Zoya Jamadar.

Lexical analyzer using DFA, International Journal of

Technology, www.IJARIIT.com.

[23] Kuldeep Vayadande, Harshwardhan

More,Omkar More, Shubham Mulay,Atahrv Pathak,

Vishwam Talanikar, “Pac Man: Game Development

using PDA and OOP”, International Research Journal

of Engineering and Technology (IRJET), e-ISSN: 2395-

0056, p-ISSN: 2395-0072, Volume: 09 Issue: 01 |

Jan 2022, www.irjet.net

[24] Kuldeep B. Vayadande, Parth Sheth, Arvind

Shelke, Vaishnavi Patil, Srushti Shevate, Chinmayee

Sawakare, “Simulation and Testing of Deterministic

Finite Automata Machine,” International Journal of

Computer Sciences and Engineering, Vol.10, Issue.1,

pp.13-17, 2022.

[25] Rohit Gurav, Sakshi Suryawanshi,Parth

Narkhede,Sankalp Patil,Sejal Hukare,Kuldeep

Vayadande,” Universal Turing machine simulator”,

International Journal of Advance Research, Ideas and

Innovations in Technology, ISSN: 2454-132X,

(Volume 8, Issue 1 - V8I1-1268,

https://www.ijariit.com/

[26] Kuldeep Vayadande, Krisha Patel, Nikita

Punde, Shreyash Patil, Srushti Nikam, Sudhanshu

Pathrabe, “Non-Deterministic Finite Automata to

Deterministic Finite Automata Conversion by Subset

Construction Method using Python,” International

Journal of Computer Sciences and Engineering, Vol.10,

Issue.1, pp.1-5, 2022.

[27] Kuldeep Vayadande and Samruddhi Pate and

Naman Agarwal and Dnyaneshwari Navale and

Akhilesh Nawale and Piyush Parakh,” Modulo

Calculator Using Tkinter Library”, EasyChair Preprint

no. 7578, EasyChair, 2022

Advance Research, Ideas and Innovations in

http://www.ijsrem.com/
http://www.ijariit.com/
http://www.irjet.net/
http://www.ijariit.com/

