Sy e Jeurnal

A T
b A
@REM International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 12 | Dec - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

Smart Health Analysis System Using Machine Learning and Deep Learning

(Ayusense)

G V Sowmya!, Bhoomika MD?, Brunda V2, Chaithra R?, and Dhanya R?
! Assistant Prof., Dept. of ISE, INNCE, Shivamogga, India.

2UG students, Dept. of ISE, JNNCE, Shivamogga, India.

Abstract - AyuSense is a Smart Health Analysis
System designed to automate the detection and
monitoring of various medical conditions using
advanced machine learning and deep learning
techniques. The system integrates multiple types
of health data, including clinical tabular data
(such as Complete Blood Count and other
laboratory results), medical images (chest X-
rays, CT scans, and skin lesion images), and
biosignals like 12-lead ECG recordings.
Machine learning algorithms, such as Random
Forests, are employed for structured clinical data
analysis, while deep learning architectures,
including Convolutional Neural Networks
(CNNs) and  pretrained models like
MobileNetV2 and ResNet50, are utilized for
medical image classification and ECG signal
analysis. The system includes preprocessing,
normalization, data augmentation, and multi-
class/multi-label prediction pipelines to enhance
model performance and reliability. Extensive
evaluation across multiple datasets demonstrates
high predictive accuracy, Fl-scores, and area-
under-curve (AUC) metrics, validating the
system’s capability to provide accurate and
automated health assessments. By combining
diverse medical data modalities into a unified

framework, AyuSense offers a scalable and

interpretable platform for comprehensive health

analysis and automated diagnostic prediction.

Key Words : Smart Health Analysis, Machine
Learning, Deep Learning, Multi-modal Medical
Data, Medical Image Classification, ECG Signal

Analysis, Automated Diagnostic Prediction.

1.LINTRODUCTION

The healthcare sector is increasingly relying on
technology to improve diagnostic accuracy,
patient monitoring, and overall treatment
efficiency. Traditional methods of health
assessment, which depend heavily on manual
evaluation of clinical reports, medical images,
and biosignals, are often time-consuming and
prone to human error. To address these
limitations, the integration of artificial
intelligence (Al) techniques such as machine
learning (ML) and deep learning (DL) has
emerged as a promising solution for automated

health analysis.

AyuSense is a Smart Health Analysis System
designed to provide a comprehensive, automated
platform for analyzing diverse medical data and

predicting potential health conditions. The
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system consolidates three major types of medical
data: clinical tabular data (including Complete
Blood Count and other laboratory results),
medical images (chest X-rays, CT scans, and
skin lesion images), and biosignals (12-lead
ECG recordings). By integrating these multi-
modal data sources, AyuSense is capable of
performing accurate, multi-class, and multi-label
health  predictions, enabling a broader

understanding of patient health conditions.

For structured clinical data, machine learning
models such as Random Forest are employed to
identify patterns and anomalies in laboratory
reports. For medical image analysis, deep
learning architectures including Convolutional
Neural Networks (CNNs) and pretrained models
like MobileNetV2 and ResNet50 are used to
extract high-level features and classify images
effectively. ECG signal analysis 1is also
performed using deep learning models to detect
various cardiac conditions from raw biosignals.
The system applies rigorous preprocessing,
normalization, and data augmentation techniques
to enhance model performance, prevent
overfitting, and ensure robustness across

different datasets.

AyuSense emphasizes not only accuracy but also
scalability and interpretability. Multi-label
prediction pipelines allow the system to handle
complex scenarios where multiple health
conditions may coexist, while evaluation metrics
such as accuracy, Fl-score, and area-under-
curve (AUC) validate its performance across

diverse datasets. By automating the analysis of

© 2025, IJSREM | https://ijsrem.com

heterogeneous medical data in a single
framework, AyuSense reduces manual effort,
accelerates diagnostic processes, and enables

proactive health monitoring.

The system has potential applications in
personalized  healthcare, remote  patient
monitoring, and early disease detection, offering
a foundation for data-driven decision-making.
By providing an integrated platform for real-
time health analysis, AyuSense aims to enhance
patient outcomes and support the development
of intelligent healthcare solutions for modern

medical practices.

2. RELATED WORK

In recent years, automated health analysis
systems have emerged as a promising approach
for early disease detection, continuous
monitoring, and decision support in healthcare.
These systems leverage machine learning, deep
learning, and computer vision techniques to
analyze diverse medical data, including images,
signals, and clinical records. Several studies
have explored these approaches across multiple
domains, highlighting their effectiveness and
potential for integration into unified health

platforms.

Deep learning research in healthcare has
expanded rapidly, with multiple studies focusing
on dermatological imaging, cardiovascular
signals, radiology, hematology, and smart
healthcare applications. The following section

summarizes the extracted insights from twelve
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recent studies and highlights their relevance to
the development of AyuSense, a unified smart

health analysis platform.

Aquil et al. [1] introduced a hybrid machine
learning and deep learning system aimed at early
skin disease detection across diverse skin tones.
Their work emphasized dataset diversity,
addressing the long-standing issue of bias in
dermatology datasets. The study demonstrated
that combining handcrafted features with CNN
embeddings significantly improves sensitivity
for darker skin tones, an insight directly relevant
to AyuSense’s skin disease module, which aims
for inclusiveness and real-world clinical

usability.

Chen et al. [2] proposed Al-Skin, a closed-loop
self-learning framework that automatically
expands its dataset through user feedback and
continual learning. Their approach enables the
model to improve over time without manual
retraining. This aligns with AyuSense’s long-
term goal of incremental model enhancement
through user-uploaded data, ensuring continuous

performance improvement.

Noor et al. [3] improved skin disease
classification using dataset refinement and
attention-based vision models. Their findings
highlight that cleaning mislabeled samples and
applying attention mechanisms such as
CBAM/SE blocks can boost classification
accuracy in multi-class dermatology tasks.

AyuSense incorporates this insight by applying

data augmentation, attention models, and refined
preprocessing strategies to improve lesion

identification.

In cardiovascular analysis, Makhmudov et al.
[4] developed a multitask deep learning model to
predict complications following myocardial
infarction. Their model jointly learns multiple
risk factors, demonstrating that multitask
networks provide deeper clinical insights and
reduce computational cost. This supports
AyuSense’s ECG module, which integrates
rhythm classification and abnormality detection

through CNN-LSTM architectures.

Golande and Pavankumar [5] introduced an
optical ECG-based deep learning model
combining signal feature extraction and CNN
classification. Their hybrid approach achieved
higher accuracy for heart disease prediction and
highlighted the importance of noise filtering and
feature fusion in ECG analysis. These extracted
techniques inform AyuSense’s ECG pipeline,
particularly in preprocessing (noise removal) and

hybrid model design.

For respiratory imaging, Sharma and Guleria
[6] used VGG-16 combined with a dense neural
classifier for detecting pneumonia from chest X-
rays. Their model achieved high sensitivity due
to the depth of VGG-16’s convolutional layers,
proving  that transfer learning  works
exceptionally well for medical imaging tasks
with limited datasets. Bharati et al. [7] expanded
on this by designing a hybrid deep learning
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classifier capable of diagnosing various lung
diseases, demonstrating that combining multiple
CNN models enhances feature extraction. These
findings shape AyuSense’s radiology module,
which uses CNN and Grad-CAM for pneumonia,

TB, and lung abnormality detection.

In the domain of kidney imaging, Zhang et al.
[8] reviewed advancements in deep learning
approaches for nephrology, emphasizing
segmentation, tumor detection, and functional
renal assessment using CNN and transformer-
based architectures. Their work identifies
challenges such as limited annotated data and the
need for clinically interpretable Al outputs.
AyuSense addresses these concerns by
integrating explainability through Grad-CAM
heatmaps and modular training for CT scan

classification.

Reghunandanan et al. [9] proposed a CNN
model capable of detecting reticulocytes in
peripheral  blood smears. Their study
demonstrated Al's capability to automate
microscopic analysis with high precision,
significantly reducing manual workload. This is
relevant to AyuSense’s blood report module,
which uses ML/DL algorithms (XGBoost,
LightGBM) to classify

hematological

abnormalities.

In neuroimaging, Chattopadhyay and Maitra
[10] developed a CNN-based model for MRI-
based brain tumor detection. Their model

achieved strong classification accuracy and

demonstrated that deep learning can outperform
traditional radiological methods, especially in
complex tumor segmentation tasks. This
contributes to AyuSense’s CT/MRI module
design choices, particularly CNN-based feature

extraction and classification.

Beyond imaging and diagnostics, Lv et al. [11]
introduced a deep learning-based predictive
evaluation framework for smart healthcare
systems, using multimedia input for patient
monitoring. Their model demonstrated that
multimodal sensing and Al integration
significantly improve healthcare responsiveness.
AyuSense adopts this concept by unifying
multiple datasets (ECG, images, blood

parameters) into one intelligent platform.

Finally, Chen [12] explored deep learning—
assisted user interface design for senior
healthcare applications. Their study highlighted
the importance of usability, accessibility, and
age-appropriate interface structures for health
app adoption. These findings support
AyuSense’s goal to provide a clean, user-
friendly, and inclusive dashboard suitable for

both general users and clinical professionals.

Collectively, the extracted findings from these
studies indicate strong advancements in disease
detection, multimodal learning, and healthcare
automation. However, most existing research
focuses on single-dataset or single-disease
prediction. A gap exists in unified, multi-model

healthcare platforms capable of handling images,
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signals, and  structured medical data
concurrently. AyuSense addresses this gap by
integrating dermatology, cardiology, radiology,
hematology, and CT imaging into a single Al-

enabled smart diagnostic system.

3. METHODOLOGY

The Smart Health Analysis System (AyuSense)
is designed to provide real-time health analysis
using multiple types of medical data. The system
is implemented in four main phases: Data
Collection, Model Training, Prediction, and

Dashboard Integration.

Data Collection:

Data is gathered from multiple publicly available
datasets to ensure diversity and robustness. This
includes the Complete Blood Count (CBC)
dataset for blood test parameters, skin disease
image datasets for dermatological conditions,
chest X-ray datasets for Pneumonia and Covid-
19, and the PTB-XL ECG dataset for cardiac
signals. All collected data are preprocessed
according to type: numerical blood parameters
are cleaned and normalized, images are resized
and augmented, and ECG signals are padded and

normalized to a fixed length.

Model Training:

Different algorithms are applied based on the
dataset type. CBC blood data is scaled using
StandardScaler, and disease labels are encoded
using LabelEncoder, followed by training a

Random  Forest Classifier for disease

classification. Skin disease and chest X-ray
images are processed using Convolutional
Neural Networks (CNNs) for feature extraction
and classification. ECG signals are processed
using 1D CNNs with Multi-Label encoding to
identify multiple cardiac conditions in a single
record. Models are trained with appropriate
optimizers and loss functions (e.g., binary cross-
entropy for ECG multi-label classification), and
performance is evaluated using metrics such as
accuracy, classification reports, Fl-scores, and
confusion matrices. Data augmentation and
regularization are applied as necessary to

improve model generalization.

Prediction:

The system allows single-report, real-time
prediction via a Tkinter interface. CBC reports
in PDF or image format are processed using
pdfplumber and pytesseract, and relevant blood
parameters are extracted using regular
expressions before being passed to the trained
Random Forest model. Skin and chest X-ray
images, as well as ECG signals, are preprocessed
and classified using their respective trained CNN
or Multi-Label CNN models. The Tkinter
interface  displays the predicted disease,
probability scores, and feature highlights
immediately after processing the uploaded

report.

Dashboard Integration:

A Streamlit-based dashboard provides a secure,
interactive web platform. Users must log in with

valid credentials to access the dashboard. Once
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logged in, they can upload a single report at a
time and view the predicted health condition,
along with interactive visualizations such as
probability charts, heatmaps, and feature
importance plots. This setup ensures a seamless
workflow from data collection and model
training to single-report prediction and
visualized output, making the system user-
friendly and scalable for  real-time

health analysis.

Dty Collection
Bloed dyzset, Skin imupes, Chest X-eay, CT Scan, BOG

1

Musdel Trainisg / Prediction

Msdd: Fambo Fommt

el o g

Figure 1: Workflow of AyuSense
Prediction Model

The figure 1 illustrates the workflow of a
complete machine-learning pipeline designed for
analyzing different types of medical data,
including blood datasets, skin images, chest X-ray
images, CT scan images, and ECG signals. The

process begins with data collection, where all

these medical data sources are gathered. After
collection, the user selects a specific dataset to
work with. Once a dataset is chosen, the system
proceeds to model training, where each type of
data follows its own preprocessing steps and

machine-learning model.

Skin images and chest X-ray images are
processed using MobileNetV2 CNN models after
resizing and normalizing the images, with
predictions generated through softmax and
converted to class labels using argmax. ECG
signals are trimmed or padded, standardized, and
optionally denoised before being fed into a 1D
CNN, with predictions obtained through sigmoid
activation followed by thresholding for multilabel

classification.

Blood datasets undergo normalization, categorical
encoding, and missing-value handling before
being analyzed using models such as Random
Forest, XGBoost, or MLP, producing either class
labels or regression outputs. CT scan images are
resized, normalized, and augmented through
flipping, rotating, or zooming, and -classified
using models like CNN, ResNet50, or
MobileNetV2, with final predictions again

derived through softmax and argmax.

4. ALGORITHM

The proposed AyuSense Smart Health Analysis
System employs a unified data-driven framework
to analyze multimodal medical data including

images, biosignals, and laboratory reports through
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preprocessing, normalization, and feature P = max(A)
extraction. Deep learning models such as

MobileNetV2, ResNet50, and 1D-CNN, along 5. Repeat convolution and pooling to extract

with a Random Forest classifier, are utilized for hierarchical features.

disease prediction across different data types using 6. Flatten feature maps into a vector f.

transfer learning and optimized training. The 7. Pass fif through fully connected layers:

trained models generate disease predictions with

h=Wf+b
confidence scores, which are presented through an
interactive dashboard to enable accurate, real- 8. Apply Softmax to obtain class
time, and automated health assessment. probabilities:
~ ehi
General CNN Algorithm (Deep Learning) Ve = Y el

Input

9. Train the network using backpropagation

Labeled medical image dataset and gradient-based optimization.

D={(X,y: )}¥1

3.6 ResNet-50 Algorithm (Deep Learning with

Output
Residual Learning)
Predicted disease class y Input
Algorithm Steps Preprocessed medical image X
1. Represent input image X as a tensor Output
X € RHXWxC Disease class prediction Y
2. Apply convolution using learnable filters: Algorithm Steps

1. Load ResNet-50 pre-trained on ImageNet.
Zi,j,k = in+m,j+n,c * Kmnek + by P &
2. Pass input through initial convolution and

3. Apply ReLU activation: pooling layers.

3. For each residual block, compute:

A =max(0,Z)
Y=F(X,(W;)+ X

4. Perform pooling to reduce spatial

dimensions: 4. Use identity (skip) connections to preserve

gradient flow.
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5. Stack multiple residual blocks to learn
deep representations.

6. Apply global average pooling.

7. Feed extracted features into a fully
connected layer.

Softmax activation for

8. Apply
classification.
9. Fine-tune network parameters using

medical dataset.

3.7 MobileNetV2 Algorithm (Lightweight
Deep Learning Model)
Input

Medical image M
Output

Disease class label D
Algorithm Steps

1. Normalize input image M.

2. Apply depthwise convolution:
Z; =X* Ky
3. Apply pointwise (1x1) convolution:
Z, =17, * K,

4. Use inverted residual blocks with linear
bottleneck.

5. Extract efficient and compact feature
representations.

6. Apply global average pooling.

7. Classify features using fully connected and

Softmax layers.

3.8 One-Dimensional CNN Algorithm (ECG
Signal Analysis)
Input

ECG signal

S = {SI , 82, ...,Sn}

Output
Cardiac condition label L
Algorithm Steps

1. Preprocess ECG signal by noise removal
and normalization.

2. Apply 1D convolution:

Zi: ZSH_k' Wk+ b

3. Apply ReLU activation.

4. Perform 1D max pooling.

5. Stack convolution layers to learn temporal
patterns.

6. Flatten extracted features.

7. Apply fully connected layers.

8. Use Softmax or Sigmoid for classification.

Skin Cancer Classification Using Mobilenetv2

Input: Skin lesion image X € R"{224x224x3}
Qutput: Predicted class label ¥ € {1,2,...,C} with

confidence

Step 1: Input Image Representation

X € RM{224%224%3}
Step 2: Dataset Mapping

D={X i,y 1)} {i=1}"{N}, y i€ {l,..,C}
Step 3: Data Augmentation
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X' 1=T(X 1)
where T includes random flip, rotation, zoom
Step 4: Image Preprocessing
X norm=X/1275-1
Step 5: Feature Extraction (MobileNetV2)
F =f MobileNetV2(X norm), F €
RMNHxWxK}, H=W=7, K=1280
Step 6: Global Average Pooling
z k=(1/(HW))Z {i=I}"H} £ {=1}"{W}
F {ij.k}, ze R*K
Step 7: Dropout Regularization
7z'=z (O m, m ~ Bernoulli(p=0.6)
Step 8: Fully Connected Layer
o0=W-z'+b, WeERMNCxK}, beR C
Step 9: Softmax Classification
P(y=c|X) =exp(o ¢)/Z {k=1}"C exp(o_k)
¥ =argmax_c P(y=c|X)
Step 10: Loss Function
L =-log(P(y_true|X))
Step 11: Optimization (Adam)
0 {t+1} =0 t-a- (M t/ (¥ t+g))
Step 12: Transfer Learning Phase
OL /00 base =0 (base layers frozen)
Step 13: Fine-Tuning Phase
OL / 08 base #0 (selected base layers
trainable)
Step 14: Learning Rate Adjustment
o_new = 0.5 x a_old
Step 15: Model Selection & Early Stopping
Model_best = argmax(Accuracy val)
Step 16: Prediction on New Image
¥ test = argmax( f(X_test) )
Confidence = max(P(y|X test)) x 100%

Algorithm 1: Skin Cancer Classification using

MobileNetV2

Step-Wise  Working of Skin Cancer
Classification using  MobileNetV2  with

Mathematical Formulation

Step 1: Input Image Representation

Each skin lesion image is represented as a 3-

channel RGB image:
X € R224x224x3
Where:

e 224 x 224 — image resolution

¢ 3 — RGB color channels

Step 2: Dataset Mapping
The dataset is defined as:

D ={(X;y: )}es
Where:

e X; — input image
e yi€{l,2,...,C} — class label

¢ C — number of skin cancer classes

Step 3: Data Augmentation

Augmented images are generated using random

transformations:

’

X; =TX;)
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Where transformation function T includes:

o Horizontal/vertical flipping
o Rotation

e Zooming

This increases data diversity and improves

generalization.

Step 4: Image Preprocessing

MobileNetV2 preprocessing normalizes pixel

values:

X
Xnorm = 127.5 -1

This scales pixel intensities to the range [—1,+1].

Step 5: Feature Extraction using MobileNetV2

The pretrained MobileNetV?2 acts as a feature

extractor:
F = fuobitenet v2( Xnorm )
Where:
F € RHXWXK
Typically:
e H=7, W=7

o K=1280 feature maps

Step 6: Global Average Pooling

Each feature map is averaged spatially:

H W
w2 0F
Z = P
T Hxw Lk
i=1 j=1
Resulting feature vector:
z € RK

This reduces dimensionality and prevents

overfitting.

Step 7: Dropout Regularization
Dropout randomly deactivates neurons:

Z =20 m
Where:

e« m~Bernoulli(p)

e p=0.6 (keep probability)

This improves robustness.

Step 8: Fully Connected Layer

The dense layer computes class scores:

o=Wz+ b
Where:
e WEeERCK
e beRC

Step 9: Softmax Classification

Softmax converts scores into probabilities:
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Oc

P =c|X)= ———
(y | ) ZC . ok
Predicted class:

y =arg maxP(y = c|X)

Step 10: Loss Function

Sparse categorical cross-entropy loss is used:

L= —log (P (YiruelX))

This penalizes incorrect class predictions.

Step 11: Optimization using Adam

Model parameters are updated using Adam

optimizer:
m,
01 = 0, — @ ——
VU + €
Where:

e o — learning rate
e m,;, V;— bias-corrected moment

estimates

Step 12: Transfer Learning Phase
Initially, MobileNetV2 layers are frozen:

o _.
aebase

Only the classification layers are trained.

© 2025, IJSREM | https://ijsrem.com

Step 13: Fine-Tuning Phase

Later, selected base layers are unfrozen:

oL

*0
aebase

This allows the network to adapt features for skin

cancer detection.

Step 14: Learning Rate Adjustment
Learning rate reduction is applied as:
Apew = 0.5 X g

This stabilizes training.

Step 15: Model Selection and Early Stopping

Best model is selected based on validation

accuracy:
Modely.s = arg max( Accuracy,, )

Training stops when validation loss no longer

improves.

Step 16: Prediction on Test Image
For a new image X,z :

Vtest = arg max(f (Xees: )
Confidence score:

Confidence = max(P(y|Xsest)) X 100%
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The proposed system formulates skin cancer

classification as a multi-class optimization Step 10: Softmax Probability Estimation
problem using transfer learning and fine-tuning. P(y=c|X) =exp(o_¢)/ Z {k=1}"{C} exp(o_k)
By integrating MobileNetV2 feature extraction, ¥ =argmax_c P(y=c|X)
global average pooling, dropout regularization, Step 11: Loss Function
and softmax classification, the model achieves L=-% {c=1}"{C} y _clog(P(y=c|X))
efficient and accurate skin cancer diagnosis. Step 12: Optimization (Adam)
Chest X-ray Disease Classification using 0 {t+t1} =0 t-o- (M t/ (¥ t+e))
MobileNetV2 Step 13: Fine-Tuning Phase
Input: Chest X-ray image X € R"{224x224x3} OL / 00 base # 0 (selected deeper base layers
Qutput: Predicted class label § € {COVID-19, trainable)
NORMAL, PNEUMONIA} with confidence Step 14: Learning Rate Adjustment
Step 1: Input Image Representation o_new =0.5 %o _old
X € R"M{224%224x3} Step 15: Model Selection & Early Stopping
Step 2: Dataset Formation Model best = argmax(Accuracy_val)
D={X i,y i)} {i=1}"{N}, y i€ {1,2,3} Step 16: Prediction on New X-ray Image
Step 3: Data Augmentation ¥ _test = argmax(f(X_test))
X' i=T(X i) Confidence = max(P(y|X_test)) x 100%

where T includes rotation, width/height shift,
shear, zoom, horizontal flip

Step 4: Image Normalization

X_norm = X / 255 Algorithm  2: Chest X-ray  Disease
Step 5: Feature Extraction (MobileNetV2) Classification using MobileNetV2

F =f MobileNetV2(X norm), F € Step-Wise Working of Chest X-ray Disease
RAMNHXxWxK}, H=W=7, K=1280 Classification System Using MobileNetV2 and

OL /00 _base =0 (base layers frozen initially) Transfer Learning

Step 6: Global Average Pooling
z k=(1/(HW)) Z {i=1}"H} X {j=1}"{W} Step 1: Input Image Representation
F_{ijk}, ze R"K

Each chest X-ray i 1 ted 3-
Step 7: Dropout Regularization chest s-tay lage 1S fepresenied as a

Z=2@® m, m ~ Bernoulli(p=0.7) channel RGB image after resizing:
Step 8: Fully Connected Layer X € R224x224x3

h=ReLUW _1-Z+b 1), W 1€
RM128xK}, b 1 € RM{128} Where:
Step 9: Output Classification Layer

o 224x224 tial luti
0=W 2-h+b 2, W 2 € RM{Cx128}, C=3 — spatial resolution
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e 3— RGB channels

Step 2: Dataset Formation

The dataset is organized into training, validation,

and testing sets:

D= {( Xiyi )}?1=1
Where:

e Xi — chest X-ray image
e yi€{1,2,3} — class label
o COVID-19
o NORMAL
o PNEUMONIA

Step 3: Data Augmentation

To improve model generalization, real-time data

augmentation is applied:

X; =TX)

Where transformation function T includes:

e Rotation
o Width and height shifting
o Shearing
e Zooming

e Horizontal flipping

This simulates real-world variations in X-ray

acquisition.

Step 4: Image Normalization

All pixel values are normalized using min-max

scaling:

X
Xnorm = E

This scales pixel intensities to the range [0,1],

ensuring numerical stability during training.

Step 5: Feature Extraction using MobileNetV2

A pretrained MobileNetV2 network is used as a

feature extractor:
F = fuobitenet v2( Xnorm )
Where:
F € RHXWxK
Typical dimensions:

o H=7, W=7
o K=1280 feature channels

Initially, all MobileNetV2 layers are frozen:

JL

=0
aebase

Step 6: Global Average Pooling

Spatial feature maps are reduced using Global

Average Pooling:

1
HXW .

4

w
2 Fu

j=1

H
Zy =
=1

Resulting feature vector:
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z € RK

This reduces model complexity and prevents

overfitting.

Step 7: Dropout Regularization

Dropout is applied to reduce co-adaptation of
neurons:

zZ =20 m
Where:
e m ~ Bernoulli(p)

o p=0.7 (keep probability)

Step 8: Fully Connected Layer

A dense layer with ReLLU activation is applied:

h = ReLU(le, + bl)

Where:

. Wl € R128><K
. b] € R128

Step 9: Output Classification Layer

The final dense layer computes class scores:

0 = W2h+ bz

Step 10: Softmax Probability Estimation

Softmax converts scores into probabilities:

Oc

P(v=clX) = ———
y=clX) ZC eok
Predicted class:

y = arg maxP(y = c|X)

Step 11: Loss Function

Categorical cross-entropy loss is used:

C
L= =) yclog(P(y = clX))
c=1

This penalizes incorrect predictions across all

classes.

Step 12: Optimization using Adam Optimizer

Model parameters are updated as:

0i11= 0, — a— N
U, + €

Where:

e o — learning rate

e 1M, U; — bias-corrected moment

Where:
estimates
° W2 € RC><128
e (=3 classes
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Step 13: Fine-Tuning Phase

In fine-tuning, selected deeper layers of

MobileNetV?2 are unfrozen:

JaL
aebase

0

Training continues with a smaller learning rate to

refine domain-specific features.

Step 14: Learning Rate Adjustment
Learning rate reduction is applied as:
Apew = 0.5 X gyq

This improves convergence when validation loss

plateaus.

Step 15: Model Selection and Early Stopping

Best model is selected based on validation

accuracy:
Model,,.,; = arg max( Accuracy,,; )

Training is stopped early when validation loss no

longer improves.

Step 16: Prediction on New Chest X-ray Image
For a new input image Xiest:

Vtese = arg max(f (Xees: )
Confidence score:

Confidence = max(P(y|Xsest)) X 100%

The proposed chest X-ray classification system
formulates disease detection as a multi-class
optimization problem using transfer learning and
fine-tuning. By integrating MobileNetV2 feature
extraction, global average pooling, dropout
regularization, and softmax classification, the
system achieves accurate and computationally
efficient diagnosis of COVID-19, pneumonia, and
normal cases.

CT Scan Disease Classification System using
ResNet50

Input: CT scan image X € R"{224x224x3}
Qutput: Predicted disease class ¥ € {1,2,...,C}

Step 1: Input Image Representation
X € RM224%224%3}
Step 2: Dataset Formation
D={X 1,y 1)} {i=1}"N,y 1€ {1,...,C}
Step 3: Data Augmentation
X' 1=T(X 1), T € {flip, rotate, color jitter}
Step 4: Image Preprocessing
X norm = (X - p)/o, u=[0.485,0.456,0.406],
0=[0.229,0.224,0.225]
Step 5: Feature Extraction (ResNet50)
F =1f ResNet50(X norm), F €
RA{T7xT7%2048}
Step 6: Residual Blocks
Y =ReLU(X + f(X,W))
Step 7: Global Average Pooling
z k= (1/(H*W)) 3._{i=1}"{H}
2 =MW F_{ijk}
z € RM2048}
Step 8: Dropout Regularization
7' = Dropout(z), rate=0.4
Step 9: Fully Connected Layer
o0=Wz+b, WeRMNCx2048}, b € R*{C}
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Step 10: Softmax Classification X € R¥?2¥X2203 g €1(1,2,...,C}
P(y=c[X) =e"{o_c} /3 {k=1}"{C}
Mo k! Where:

y = argmax_c P(y=c|X
Y gmax_c P(y=e|X) C=number of disease categories (Bone Break, Bra

Step 11: Loss Function
L CE=-% {i=I}M{C}y ilog(P(y=i[X))

in Tumor, Lung Cancer, Renal Malignancy, Skin

Lesions)
Step 12: Optimization (Adam)
0 {t+1} =0 t-a(m t/ (W _t+g)), o=le-4
Step 13: Transfer Learning Phase Step 2: Dataset Representation

Freeze all ResNet50 layers except classifier:
O0L/08 base =0
Step 14: Fine-Tuning Phase

Training dataset:

D={(X;y; .,y €{1,2,...,C
Unfreeze last residual blocks: {( LY )}l_l y el J

OL/0B_base # 0 e X — input CT scan image
Step 15: Training Control o yi— class label (integer encoded)

Model Checkpoint — save best validation

accuracy
Learning Rate Scheduler: LR _new = 0.1 * Step 3: Data Augmentation

LR old
Early Stopping if validation loss stagnates

Random transformations to improve

L. generalization:
Step 16: Prediction on New CT Scan Image
ytest= X; =T(X)
argmax(Softmax(f ResNet50(X new)))
Confidence = max(P(y|X new)) x 100% Where T includes:
Algorithm 3: CT Scan Disease Classification o Random horizontal flip
System using ResNet50 e Random rotation

e Color jitter (brightness, contrast,

Mathematical Model and Working of CT saturation)
Scan Disease Classification System
(ResNet30) Step 4: Image Preprocessing
Step 1: Problem Definition Normalize pixel values using ImageNet statistics:
Given a CT scan image, classify it into one of C X—u
Xonorm = ——

disease classes:
1=[0.485,0.456,0.406], 6=[0.229,0.224,0.225]
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Step 5: Feature Extraction (ResNet50 Base) Step 10: Softmax Classification
Pretrained ResNet50 extracts deep features: Convert logits into probabilities:
F = (X )’ F € R7><7X204-8 el
fResNetSO norm P(y — C|X) — ~ )
Y k=1€%

Step 6: Residual Blocks (Convolution +
Shorteut) y = arg max P(y = c|X)

Each block:
ach bloe Step 11: Loss Function (Cross-Entropy)

Y = ReLU (X + f(X,W))

c
Leg = = ) yilog(POy = ilX))
Where: c=1

e f(X,W) — convolution + batch norm + Where y; =1 for true class, 0 otherwise.

activation

o Shortcut connection ensures gradient flow
Step 12: Optimization (Adam)

. Model parameters updated using Adam:
Step 7: Global Average Pooling

m,
Reduces spatial dimensions: 0;,1=0;,— «a A—t, a=1x 107
Uy + €
H W
— 1 F I= R204—8
KT Hxw L LTk
i=1 j=1 Step 13: Transfer Learning Phase

classifier:

Randomly disables neurons to prevent overfitting:
JL

=0
z' = Dropout(z), dropout rate = 0.4 00pase

e Only final fully connected layer is trained.

Step 9: Fully Connected Layer

Compute logits for each class: Step 14: Fine-Tuning Phase

o=Wz' + b, W e RCX2048 pc RC Later, last residual blocks unfrozen:
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JaL
aebase

0

o Adapts ImageNet features to CT scan

images.

Step 15: Training Control Mechanisms

e Model Checkpoint: Save model when
validation accuracy 1

e Learning Rate Scheduler: LRnew
=0.1xLRo1d

o Early Stopping: Stop if validation loss

stops improving

Step 16: Prediction on New CT Scan Image

For new image Xnew:

y =arg max(softmax(fResNetSO (Xnew)))

Confidence:
Confidence = max(P(y|X;est)) X 100%

The proposed CT scan disease -classification
system leverages ResNet50-based transfer
learning to effectively identify multiple medical
conditions such as Bone Break, Brain Tumor,
Lung Cancer, Renal Malignancy, and Skin
Lesions. By integrating deep residual feature
extraction, global average pooling, dropout
regularization, and softmax classification, the
system 1is able to capture complex spatial and
textural patterns in CT images while reducing
overfitting and computational complexity. The

two-phase training strategy, consisting of transfer

learning and fine-tuning, ensures that pretrained
ImageNet features are effectively adapted to
domain-specific CT scan data. Coupled with data
augmentation, learning rate scheduling, model
checkpointing, and early stopping, the model
achieves high accuracy, robustness, and
generalization on unseen images. This framework
provides a practical and reliable solution for real-
world diagnostic support, enabling healthcare
professionals to make informed decisions based

on automated CT scan analysis.

ECG Disease Classification using 1D-CNN and
Multi-Label Learning

Input: 12-lead ECG signal X € RN12xT) (T =
1000 samples)

Qutput: Predicted cardiac condition probabilities
Y € {0,11771

Step 1: Signal Preprocessing

1.1 Standardize signal length: pad or truncate X
to T samples

1.2 Normalize each lead: X norm =(X - )/ (o
+g)
Step 2: Data Augmentation (Training Phase)

2.1 Add Gaussian noise: X_aug =X norm + A *
N(0,1)
Step 3: 1D Convolutional Feature Extraction

3.1 ConvlD Layer 1: F 1=
ReLU(ConvID(X aug, W 1)+b 1)

3.2 Batch Normalization: 'F 1 =(F 1-p F)/
V(o F*2 +¢)

3.3 Max Pooling: P_1 =max(F_1[i:i+k])

3.4 ConvlD Layer 2: F 2 =
ReLU(ConvID(P_1,W 2)+b 2)
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3.5 ConvlD Layer 3: F_3 = 1. Problem Definition
ReLU(ConvID(F 2, W 3)+b 3)
Step 4: Global Average Pooling Given a 12-lead ECG signal, the objective is to
417z k=(UT) Y _{t=1}"T} F_{3,k}(t) predict multiple cardiac conditions
4.2 Resulting feature vector z € R*256 simultaneously from a set of 71 SCP diagnostic
Step 5: Fully Connected Layer labels.
5.1 h=ReLU(W * z+b)
5.2 Apply Dropout: ' =h ® m, m ~ fnput 12T
Bernoulli(0.6) X ek
Step 6: Multi-Label Output Layer where
6.10=W o*h'+b o
6.2 Apply Sigmoid: P(y j=1|X)=1/(1+ o 12— ECG leads
exp(-0_j)), j=1...71 e T=1000 samples (10 seconds at 100 Hz)
Step 7: Loss and Optimization
7.1 Compute Binary Cross-Entropy Loss: Output
L=-(IN)Y_{iFl}"N ¥_{j=1}*71} 7 = (0,7
[y_{ij} log(p_{ij}) + (1-y_{ij}) log(1-p_{ij})]
7.2 Update weights using Adam optimizer: where each output represents the presence
0 {t+t1} =0 t-o* (h_t/(NF_t)+¢)), probability of a cardiac condition.
a=10"-4
Step 8: Prediction

2.D R ion (PTB-XL
8.1 For test signal X _test, compute ataset Representation ( )

probabilities ¥ = P(y[X_test) The dataset is represented as:
8.2 Rank top-k conditions with highest

probabilities D= {(X;y: )}es

Where:

Algorithm 4: ECG Disease Classification using
1D-CNN and Multi-Label Learning

e X;— ECG signal
e Y; — multi-label target vector

o Labels are encoded using Multi-Label

Step-Wise Working of ECG Disease Binarization:
Classification System PTB-XL Dataset using

: : Yhin = MLB(Y)
1D CNN and Multi-Label Learning
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3. Signal Length Standardization

Each ECG signal is padded or truncated to fixed
length:

_{ X, [0:T] ifT;>T
L7 pad (X)) if T; <T

This ensures uniform input dimensions for CNN

processing.

4. Signal Normalization

Each ECG lead is normalized:

Where:

e 1 — mean of signal
e o — standard deviation

e ¢=10"% avoids division by zero

5. Data Augmentation (Noise Injection)
Gaussian noise is added during training:
X' = Xnorm + A.N(0,1)
Where:
e 1=0.01 controls noise strength

This improves robustness to real-world ECG

noise.

© 2025, IJSREM | https://ijsrem.com

6. Convolutional Feature Extraction (1D CNN)

6.1 First Convolution Layer
F, = ReLU(Conv1iD(X,W,) + b,)

Kernel size =7

Filters = 64

6.2 Batch Normalization

F — pp
fo%+e

Stabilizes training and accelerates convergence.

F =

6.3 Max Pooling

P =max(F;r)

Downsamples temporal resolution by factor of 2.

6.4 Deeper Convolution Layers
Second convolution:
F, = ReLU(Conv1D(P,W,) + b,)

o Filters =128

e Kernel size =5
Third convolution:
F3 = ReLU(Conv1D(P,W3) + bs3)

o Filters =256

o Kernel size=3
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7. Global Average Pooling (Temporal
Aggregation)

1 <
= — E Fa . (t
Zk = T Z, 3,k(1)

Result:

This removes temporal dependency and reduces

parameters.

8. Fully Connected Layer
h =ReLUW, + b)
Where:

. W € R256><256

9. Dropout Regularization
h =h O m
where m ~ Bernoulli(0.6)

Prevents overfitting.

10. Multi-Label Output Layer

o= Wy,h' + b,

11. Loss Function (Binary Cross-Entropy)
N 71

L= —% ZZD’U log(pij)

i=1 j=1

+ (1-yy)log(1 - py)]

Suitable for multi-label classification.

12. Optimization using Adam

~

m
Oi11= 60— a —
v, + €
Learning rate:
a=1x 107*

13. Model Evaluation Metrics

Accuracy

TP+TN
TP+TN+ FP +FN

Accurracy =

AUC

1
AUC = f TPR(FPR)d(FPR)
0

F1 Score
2TP

Fl= P T FPTEN

14. ECG Signal Analysis (Rule-Based)
R-Peak Detection

R — peaks = find_peaks(Xpandpass)

Final activation using Sigmoid: RR Interval
for j=1...71 Ri.1— R;
RR; = ——
fs
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Heart Rate

60
RR

15. QRS Duration Estimation

width samples
QRS s = x 1000

fs

16. ST-Segment Deviation
AST = ST, 41, — Baseline
Threshold:

17. T-Wave Inversion Detection

T < 0 = Inversion

18. PVC Detection
PVC is detected if:

RR; < 0.8 XRR;_4
and waveform correlation:

corr < (0.85

19. Severity and Confidence Estimation

/‘
Severe p>0.85
i Moderate p > 0.65
Severity = < Vil e 045
Low otherwise
N~

20. Final Prediction

y = arg max P( y; |X)
J
Top-k conditions are reported with probabilities

The proposed ECG diagnostic system formulates
cardiac condition detection as a multi-label
classification  problem  using deep 1D
convolutional neural networks. By combining
signal preprocessing, temporal feature extraction,
global pooling, and sigmoid-based probability
estimation, the system accurately predicts 71 ECG
abnormalities. The integration of rule-based ECG
analysis further enhances interpretability and

clinical relevance.
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Smart Health Lab Report Disease Prediction

using Random Forest

Input: Patient lab report R (PDF/Image) containing
blood test parameters
Qutput: Predicted disease class § new with

confidence

Step 1: Automatic Text Extraction
1.1 IfPDF: T=X {p=1}"{P} extract text(p)
1.2 If Image: T = Tesseract(I)
Step 2: Feature Extraction
2.1 For each parameter x i (i=1...21):
x_1= float(regex(T)) if found, else NaN
2.2 Form feature vector: X new =[x 1,x 2, ...,
x 21]
Step 3: Feature Preprocessing
3.1 Standardization: X scaled = (X new - p)/ o
Step 4: Random Forest Prediction
4.1 Each decision tree T j predicts: § j=
T j(X scaled)
4.2 Ensemble prediction via majority voting:
¥ new=mode(y 1,V 2,...,9 M)

4.3 Class probabilities:
P(y=c| X_new) = (/M) £_{j=1}*{M} I(§_j =
c)
Step 5: Confidence Estimation
5.1 Confidence = max_c P(y=c | X_new) x 100

Step 6: Interpretation
6.1 Provide clinical reasoning based on parameter
patterns:
- High WBC — Infection
- Low HGB / RBC — Anemia
- Abnormal PLT — Clotting disorder

Algorithm 5: Smart Health Lab Report Disease
Prediction using Random Forest
Mathematical Model and Working of Smart
Health Lab Report Disease Prediction System

1. Problem Definition

The objective of the system is to predict a disease
class based on blood laboratory parameters
automatically extracted from medical reports

(PDF/Image).
Input
X=[x1%5 ..., x,] ER"
Where:

o n=21 laboratory features
(WBC, RBC, HGB, HCT, MCV, MCH,
PLT, etc.)

Output
y €{DyDy,..,D,}

Where:

e k= number of disease classes

e ¥ =predicted disease

2. Dataset Representation
The dataset is represented as:
D= {( XiYi )}Iivzl

Where:
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e X € R?! - blood parameters Standardization ensures that features contribute
e y; — disease label equally to the learning process.
3. Label Encoding 6. Random Forest Classifier
Since disease labels are categorical, they are A Random Forest is an ensemble of decision trees.

converted into numeric form using Label

Encoding: 6.1 Decision Tree Learning

Each decision tree Tj is trained on a bootstrap
Yene = F(¥),
sample:

f 2y - {0;1;2; 'k - 1}
D; ~ Bootstrap(Dqin)

This enables machine learning algorithms to

process the target variable.
6.2 Feature Randomness

4. Train—Test Split At each split, a random subset of features is

selected:
The dataset is divided as:
Fj € F, |f|=+n
Dirain = 80%, Diese = 20%,
This reduces correlation between trees.

( Xtraiw Xtest' Ytrainf Ytest )

The quality of splits is measured using Gini

5. Feature Standardization Impurity:
Numerical features are normalized using k
StandardScaler: G=1- z p?
c=1
X—p
Xscaleda = ———— Where:
o
Where: e pc = probability of class ¢ at the node

e 1 — mean of feature The split minimizing G is selected.

e o — standard deviation
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7. Ensemble Prediction 10. Model Evaluation Metrics
Accuracy

Each tree produces a prediction:

TP+TN
TP+TN + FP +FN

y,=T;(X) Accurracy =

The final prediction is obtained by majority

. Precision
voting:
o~ — . , . TP
y = mode(y1,¥2, -, Y200 ) Precision = ——
Recall
8. Probability Estimation P
Recall =
TP+FN
Class probabilities are calculated as:
1 M
P(y=C|X)=MZI(5'}=C) F1-Score
j=1
F1— 2.Precision. Recall
Where: ~ Precision + Recall
e M=200 trees .
11. Model Persistence

¢ [ is indicator function

The trained model and label encoder are saved as:

9. Model Pipeline Model — disease_model.pkl
The complete pipeline is mathematically Ensuring reproducibility and deployment
represented as: readiness.

o X—pu

Y= frr( p )

12. Automatic Text Extraction (OCR / PDF)
Where: PDF Extraction

e frr — trained Random Forest classifier

P
T = Z extract_text(p)
p=1
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Image OCR The combined pattern of all parameters

determines the final disease classification.
T = Tesseract(l)

The proposed Smart Health Lab Report Prediction

Where: System integrates automatic report parsing,

feature normalization, and a Random Forest
e T — extracted text
ensemble classifier to accurately identify diseases

from blood test parameters. The system eliminates

13. Feature Extraction Using Regular manual data entry, improves diagnostic efficiency,
Expressions and provides interpretable predictions with

confidence scores, making it suitable for real-time

Each lab parameter is extracted as: clinical decision support.

X = {float(regex(T)), if found
| .
NaN, otherwise CNN pipeline for Skin Disease Classification

Skin Disease Classification

Smart Health Analysis System (AyuSense)

14. Prediction on New Patient Data

.
The extracted feature vector is: o r———
. Puoe' N dizatean
Shin lnlap' Input;
Xpew = [ %1, X2, ., X21] ey Ao w

Prediction: — ,
[ O Faature Extraction  [REETWPSTTR
| gy, e—— Learmng
o= o WY wt e
— £ - . -
Ynew = fRF(Xnew) 3 3 Faskes & Mteivs
Global Average Fooling
-y - =7
15. Confidence Estimation ) !
Confidence = maxP(y = ¢ [Xpey) X 100 RN
[

16. Explanation of Prediction (Clinical Basis) !

The prediction is interpreted based on medical 3
: | Finai Prediction
correlations: * Oetected Sin Osease -
Canfidemxs ware

o High WBC — Infection or inflammation

e Low HGB/RBC — Anemia

Figure 2: CNN working model for Skin Disease

Classification
e Abnormal PLT indices — Clotting

) The Skin Disease Classification module in the
disorders

AyuSense Smart Health Analysis System begins
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with the user uploading a skin image through the
application. The image is first preprocessed by
resizing it to a fixed dimension of 224 x 224 pixels
and normalizing pixel values to ensure consistency
and reduce noise. To improve model robustness
and avoid overfitting, data augmentation techniques
such as image flipping, rotation, shifting, and
zooming are applied. The enhanced images are
then fed into a Convolutional Neural Network
(CNN), where multiple layers including initial
convolutions, depthwise convolutions, and inverted
bottleneck blocks extract meaningful features such
as lesions, textures, and skin patterns. High-level
features learned by the CNN are condensed using
global average pooling, followed by dropout
regularization to further prevent overfitting. The
processed features are passed through dense layers
and a Softmax classifier to generate class
probabilities. Temperature scaling is finally applied
to calibrate the confidence scores, and the system
outputs the detected skin disease along with a

reliable confidence score.

1D CNN pipeline for ECG Signal Analysis

1D CNN Pipeline for ECG Signal Analysis
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Figure 2: 1D CNN pipeline for ECG Signal
Analysis

The 1D CNN pipeline for ECG signal analysis in
the AyuSense Smart Health Analysis System
begins with the acquisition of raw ECG data files,
which are converted from binary format into digital
signals using an analog-to-digital converter (ADC).
The ECG signals are organized into a matrix
representing multiple leads and samples, and the
signals are then normalized to ensure consistent
amplitude ranges. The normalized ECG data is
passed through a sequence of one-dimensional
convolutional layers that use increasing numbers of
filters and decreasing kernel sizes to capture both
low-level and high-level temporal features of the
heart signal. Batch normalization and max pooling

layers are applied after convolution to stabilize
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learning, reduce noise, and downsample the signal

while preserving important waveform
characteristics. As the network deepens, it learns
discriminative patterns related to different cardiac
conditions. Global average pooling is used to
condense the extracted feature maps into a fixed-
length feature vector, which is then processed by a
fully connected dense layer with dropout to prevent
overfitting. Finally, the output layer with sigmoid
activation produces probability scores for multiple
heart conditions, such as normal rhythm,

myocardial infarction, and atrial fibrillation,

providing reliable diagnostic predictions.

5. RESULTS AND SIMULATION

The AyuSense Smart Health Analysis System
successfully demonstrated accurate performance
across all its diagnostic modules. The Blood
Report Analysis module correctly extracted CBC
values from uploaded reports and predicted the
user’s health status with clear probability scores,
identifying the sample case as Healthy with the
highest confidence. The CT Scan and X-ray
modules showed excellent accuracy by detecting a
bone fracture with 99.95% confidence, proving
the strength of the deep-learning models in
identifying patterns, textures, and abnormalities in
medical images. The system’s dashboard worked
smoothly, allowing easy navigation between
Blood Test, ECG, Skin Disease, CT, and X-ray
modules. Overall, the results confirm that
AyuSense provides reliable, fast, and accurate
multi-modal health predictions through an
integrated  Al-based  platform, effectively
supporting early diagnosis and improving

healthcare accessibility.

AyuSense

Figure 4: Login Page

The Figure 4 depicts a login interface for
AyuSense, a Smart Health Analysis System. It
features a dark-themed design with the system
name and description centered at the top. Below
that, there are options to select an action between
"Login" and "Sign Up," with "Login" currently

selected.

The login form includes fields for entering a
username and password, with the username field
pre-filled with "Admin." The password field
obscures the input for security, and there is an eye
icon to toggle password visibility. At the bottom
of the form, there is a login button featuring a lock
icon and the text "Login." The overall interface is
clean and user-friendly, designed to facilitate

secure access to the system.

AyuSense

Sebect Amalyss Modude

Figure 5: Dashboard
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The Figure S shows the dashboard of AyuSense, a
Smart Health Analysis System, after the admin
has logged in. The interface welcomes the admin
and offers a logout option. It presents five
different health analysis modules for selection:
Blood Test, ECG (Electrocardiogram), Skin
condition detection, CT Scan image analysis, and
Chest X-ray examination. Each module has a brief
description and an associated button to start the
respective analysis, allowing users to easily
navigate and access various diagnostic tools
within the system. The overall design is clean and
organized with distinct color-coded tiles for each

module.

Smart Health Lab Report Predictor

Figure 6: Blood Report Prediction

The Figure 6 shows the Blood Test Module of the
Smart Health Lab Report Predictor within the
AyuSense system. This module allows users to
upload lab reports in PDF or image formats (PDF,
PNG, JPG, JPEG) with a file size limit of 200MB
to automatically extract lab values and predict
possible diseases. The interface includes a drag-
and-drop area for file uploading, as well as a
button to browse files manually. A "Back" button
is available for navigation, and there is a message
displayed at the bottom stating "No main()
function found in script." The overall design

follows a dark theme consistent with the rest of

the system.

Figure 7: File Selection

The Figure 7 shows a file upload dialog box
within a health analysis system's Blood Test
Module. The user is selecting a PDF file named
"sample report.pdf" from a directory on the D:
drive, which contains various folders related to
health data such as CT scans, ECG, kidney, and
skin cancer. The upload interface allows users to
drag and drop files or manually browse and select
files with accepted formats including PDF, PNG,
JPG, and JPEG, with a maximum size limit of
200MB. Below the file selection area, there is a
message stating "No main() function found in
script," indicating a possible issue or feedback
related to a script execution. The background
interface for the Blood Test Module maintains a
dark theme consistent with earlier scenes seen in

the system.

B tatracted Lab vehim

B Pt Dvesse

Figure 8: Predicting Process
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The Figure 8 displays the results screen of the
Blood Test Module from a health analysis system.
It shows the extracted lab values from a file
named "sample report.pdf," presenting key
hematological metrics such as hemoglobin (hgb),
red blood cell count (rbc), white blood cell count
(wbc), platelets (plt), and others in a structured
JSON format. Beneath the extracted data, the
system provides a prediction of the patient's health
status, which in this case is indicated as "Healthy"
with a green checkmark. The interface maintains a
dark theme and is designed to clearly present the
lab data alongside the automated disease

prediction.

B Predctioe Prebasiies

=]

Figure 9: Prediction Probability

The Figure 9 presents a table titled "Prediction
Probabilities," which lists various diseases
alongside their corresponding probability values.
The diseases included are Anemia, Cancer,
Chronic Disease, Healthy, and PCOS. Each
disease is associated with a probability indicating
the likelihood of the condition, with "Healthy"
having the highest probability at 0.4450, followed
by Anemia at 0.2350, Cancer at 0.1600, PCOS at
0.1100, and Chronic Disease at 0.0500. The table
provides a clear overview of the predicted chances

of each health status based on the analyzed data.

B Basis for Preciction

Figure 10: Final Health Prediction

The Figure 10 model predicts a healthy status
based on specific lab values extracted from the
report, including HGB (9.4), RBC (3.8), WBC
(5400), PLT (220000), MCV (82.0), MCH (26.1),
MCHC (31.8), and HCT (34.0). The machine
learning  pipeline  analyzes patterns and
correlations among these clinical parameters to
identify potential health conditions. For instance,
elevated WBC and neutrophil counts may indicate
inflammation or infection, while low hemoglobin
or RBC levels can suggest anemia, and abnormal
platelet counts might point to clotting issues. By
considering the combination of these values, the

model determines the most probable health status,

providing a prediction confidence of 44.50%.

¥ CT Scan Disease Prediction

Figure 11: CT Prediction
The Figure 11 shows the CT Scan Disease
Prediction module of a health analysis system. It

allows users to upload CT scan images in JPG or

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM55375 | Page 30


https://ijsrem.com/

¢a" TRy
7 &
¢ IISREM 3|
Q« 2 International Journal of Scientific Research in Engineering and Management (IJSREM)

w Volume: 09 Issue: 12 | Dec - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

PNG formats to predict potential diseases. The
interface provides a drag-and-drop area and a
button to browse and select files, with a file size
limit of 200MB. A message displayed below the
upload section indicates that no main() function
was found in the script, which could imply an
issue with the underlying code execution. The
overall layout has a dark theme, with clear

instructions and navigation options.

Figure 12: File Selection

The Figure 12 shows a file selection dialog within
a CT Scan Disease Prediction module of a health
analysis system. The wuser is browsing the
"Medical Imaging" folder, which contains
subfolders for different classification tasks such as
Bone Break Classification, Brain Tumor
Classification, Lung Cancer Classification, Renal
Malignancy Classification, and Skin Lesions
Classification. The interface allows users to
upload CT scan images in JPG, JPEG, or PNG
formats with a file size limit of 200MB. A
message at the bottom indicates that "No main()
function found in script," suggesting a potential
issue with the script execution in the system. The
background interface continues the dark-themed

design characteristic of the application.

Figure 13: Bone Break Prediction

The Figure 13 displays an X-ray of an ankle with
a clear prediction result indicating a bone break.
The system has identified a bone fracture with a
high confidence level of 99.95%, as shown by the
text above the X-ray image. The interface is
simple and focused, highlighting the diagnostic
outcome prominently in green text, which
emphasizes the seriousness and certainty of the

bone break diagnosis.

{ Predicted Dsaase

bre oot B0 by

B Bpanitise

Figure 4 Final Bone Break Prediction

The Figure 14 presents the prediction results of a
CT scan analysis, indicating a bone break with a
high confidence level of 99.95%. The explanation
provided states that the model's prediction is based
on learned spatial patterns in the scan, analyzing
deep convolutional features such as edges, shapes,
and textures. The confidence score reflects the
model’s certainty in identifying the bone fracture

from the CT scan data.
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Environmental and Societal Impact (Merged)

e Digital Healthcare and Paper Reduction:
AyuSense promotes digital storage and
analysis of medical data, reducing the use of
paper-based medical records. This helps
conserve natural resources and supports

environmentally sustainable healthcare

practices.

e Reduced Travel and Carbon Emissions:
By enabling remote  diagnosis  and
telemedicine support, the system minimizes
patient travel to hospitals, leading to reduced
fuel consumption, lower carbon emissions,

and improved access to healthcare for rural

communities.
e Energy-Efficient and

Diagnosis:

The use of optimized deep learning models
ensures efficient energy usage while providing
accurate preliminary diagnosis. This reduces

operational costs and makes healthcare more

affordable for society.

e Early Disease Detection and Preventive

Care:

Early identification of health conditions such
as cardiac disorders, skin diseases, pneumonia,
and blood abnormalities improves patient
outcomes, lowers long-term treatment costs,

and reduces the burden on healthcare

infrastructure.

e Reduction in Unnecessary Medical Tests:
Accurate Al-based analysis avoids repeated or
unnecessary diagnostic tests, saving medical
resources, reducing energy consumption in

laboratories, and  minimizing  patient

discomfort.

Cost-Effective

e Improved Healthcare Accessibility:
AyuSense bridges the gap between urban and
rural healthcare by providing easy access to
diagnostic support where specialist doctors
and facilities are limited.

e Reduced Workload on  Healthcare

Professionals:
Automated screening assists doctors by
handling routine analysis tasks, allowing them
to focus on critical cases and improving
overall healthcare efficiency.

e Ethical and Responsible Use of Al:
The system functions as a decision-support
tool, ensuring transparency, data privacy, and
responsible Al usage while maintaining trust
between patients and healthcare providers.

e Long-Term Sustainable Healthcare

Development:

By combining environmental conservation

with social well-being, AyuSense contributes

to sustainable digital healthcare transformation

and improved public health outcomes.
6. CONCLUSION

The AyuSense project has successfully developed
an intelligent health analysis system capable of
processing and interpreting diverse medical data
types, including blood reports, ECG signals, skin
images, and medical scans. By employing
machine learning and deep learning algorithms
specifically suited for each type of dataset, the
system can generate accurate predictions and
health insights. The integration of these models
into a unified platform with a user-friendly
dashboard enables users to visualize results

through graphs, alerts, and detailed reports,
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facilitating proactive health monitoring and
informed  decision-making. This approach
demonstrates the potential of Al-driven solutions
to enhance early detection, personalized care, and
continuous health surveillance, marking a

significant advancement in digital healthcare.

Looking forward, the system can be further
enhanced by integrating it with hospital
networks. Users could upload their medical data
and receive instant predictions, while the system
would suggest nearby hospitals for consultation.
Moreover, the analysis reports could be directly
shared  with  healthcare  providers, and
appointment scheduling could be automated to
streamline further treatment. This future
integration would not only improve accessibility
and convenience for patients but also ensure
continuity of care, enabling timely medical

interventions.

By expanding real-time capabilities, data
security, and cross-platform accessibility,
AyuSense has the potential to become a
comprehensive, scalable, and inclusive health
monitoring solution, bridging the gap between

patients and healthcare providers.
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