

Smart Irrigation System Using IOT and Cloud App

Prof. D.V. Biradar¹ , Prof. S.M. Kale² , Ankita Dattatrya Hallale³ , Ashlesha Shivaji Birajdar⁴

^{1,2,3,4}Department of Information Technology , M.S. Bidve Engineering College, Latur .

Email_Id.: biradarharamraj@gmail.com¹ , smkale14jan@gmail.com² , ankitahallale2002@gmail.com³ , birajdarashlesha422@gmail.com⁴

Abstract

Agriculture often faces challenges such as excessive water usage, manual monitoring of soil conditions, and inefficient irrigation techniques. These issues lead to reduced crop productivity and unnecessary wastage of resources. Therefore, it becomes essential to introduce a technology-driven solution that automates and optimizes the irrigation process. The proposed Smart Irrigation System provides an intelligent and automated platform that helps farmers monitor soil moisture, control water flow, and manage irrigation schedules efficiently. This system reduces the dependency on traditional manual irrigation by using sensor-based inputs and microcontroller-driven automation. Soil moisture sensors continuously measure real-time soil conditions and trigger irrigation only when required, ensuring optimal water usage. The system also enables users to monitor field status, view moisture levels, and control irrigation through a user-friendly interface. Weather data and predefined thresholds help further improve decision-making and reduce water wastage. The Smart Irrigation System is developed using embedded electronics such as Arduino/NodeMCU along with moisture sensors, relays, and water pumps. The backend data can be stored and managed using a cloud platform or a local server to ensure efficient handling of sensor readings and irrigation logs. The system supports both automatic and manual modes of operation, giving users full control over their field activities. Additionally, users such as farmers or agricultural supervisors can log into the system to monitor crop conditions, adjust irrigation settings, and receive notifications about low moisture levels or irrigation status. This minimizes human effort while improving accuracy and efficiency in water management. Overall, the Smart Irrigation System provides a cost-effective, reliable, and environment friendly solution that enhances agricultural productivity through intelligent automation and smart water management.

Keywords—Smart Irrigation, IoT, Soil Moisture Sensor, Arduino, Automation, Agriculture

I. INTRODUCTION

Agriculture plays a vital role in the economy, especially in developing countries like India. Efficient water management is critical due to decreasing groundwater levels and irregular rainfall patterns. Traditional irrigation systems rely on manual observation, which is time-consuming and inefficient.[1]

Smart irrigation systems use sensors and automation to supply water only when necessary. By integrating IoT, farmers can monitor field conditions remotely and make informed decisions. This system aims to optimize water usage while ensuring healthy crop growth.[2]

The main objective of the Smart Irrigation System is to monitor soil moisture, temperature, humidity, and automatically control the water supply to crops using IoT technology. This system manages all the essential information related to field conditions, water usage, sensors, and irrigation schedules. The entire project is designed to operate through a centralized IoT platform, and only authorized users can access and control the irrigation data through the Blynk mobile application[3]. The purpose of this project is to reduce manual effort required for managing irrigation activities and to ensure efficient water usage in agricultural fields. This application helps farmers easily access real-time information related to their farms, such as soil moisture levels and pump status[4]. Users can also control the water pump remotely using the Blynk app, making irrigation more flexible and convenient[5]. The system provides instant updates and live monitoring, allowing the user to make the right decisions at the right time. Through this Smart Irrigation System, irrigation tasks become highly automated, reducing water wastage and improving crop productivity. The proposed system includes all the necessary features required for smart agricultural management, such as sensor-based control, automatic watering, and cloud-based data storage. The basic idea behind this project is to save data in a central server so that an authorized user can access it anytime, ensuring minimal effort, reduced operational burden, and accurate farm monitoring. Authorized users can view, modify, or control the irrigation settings through the Blynk application[6]. This system provides up-to-

date information, simplifies the manual work of farmers, and reduces documentation or continuous field inspection. Finally, notifications and alerts are sent to the users regarding moisture levels, pump status, and system operations, ensuring smarter and more efficient irrigation management

II. LITERATURE REVIEW

Various irrigation systems have been proposed using wireless sensor networks and automation. Existing systems focus on time-based irrigation, which does not consider soil conditions. Research shows that soil-moisture-based irrigation significantly reduces water consumption.[7]

IoT-based solutions allow real-time monitoring through cloud platforms and mobile applications. However, many systems are costly and complex. The proposed system focuses on low-cost hardware and simple architecture suitable for small and medium farms.[7][8]

III. PROBLEM STATEMENT

The major challenges in traditional irrigation systems include:

- Water wastage due to over-irrigation
- Manual monitoring of soil conditions
- Lack of real-time decision-making
- Inefficient use of electricity and water
- Dependency on human intervention

IV. SYSTEM ARCHITECTURE

The Smart Irrigation System follows a sensor-based IoT architecture.

A. Sensors

- Soil Moisture Sensor – measures water content in soil
- Temperature & Humidity Sensor (DHT11/DHT22)

B. Controller

- Arduino / ESP8266 / ESP32 processes sensor data

C. Actuator

- Relay module controls the water pump

D. Communication

- Wi-Fi module sends data to cloud/mobile app

V. TECHNOLOGIES USED

- **Microcontroller:** Arduino Uno / ESP32
- **Sensors:** Soil Moisture Sensor, DHT11
- **Communication:** Wi-Fi (IoT)
- **Programming Language:** Embedded C
- **Cloud Platform:** Blynk / ThingSpeak
- **Power Supply:** 5V / 12V

VI. IMPLEMENTATION DETAILS

A. Working Principle

1. Sensors collect soil moisture and temperature data
2. Microcontroller compares values with threshold
3. If soil moisture is low → pump turns ON
4. If soil moisture is sufficient → pump turns OFF
5. Data is displayed on mobile/cloud dashboard.

B. Sample Arduino Code Logic

```
if (soilMoisture < threshold) {  
    digitalWrite(pump, HIGH); // Pump ON  
} else {  
    digitalWrite(pump, LOW); // Pump OFF  
}
```

VII. ALGORITHMIC FLOW

1. Start system
2. Read sensor values
3. Compare with threshold
4. Activate pump if required
5. Send data to cloud
6. Repeat process continuously

VIII. TESTING AND RESULTS

A. Functional Testing

- Sensor accuracy verified
- Automatic pump control tested

B. Performance Results

Condition Soil Moisture Pump Status

Dry soil	Low	ON
Wet soil	High	OFF

Results show **30–40% water saving** compared to manual irrigation.

IX. APPLICATIONS

- Agricultural farms
- Greenhouses
- Home gardens
- Parks and lawns
- Smart farming systems

X. ADVANTAGES

- Efficient water usage
- Reduced manual labor
- Real-time monitoring
- Low cost and scalable
- Environment friendly

XI. LIMITATIONS

- Requires internet connectivity
- Sensor degradation over time
- Limited coverage area

XII. FUTURE ENHANCEMENTS

- AI-based crop prediction
- Weather-based irrigation control
- Solar-powered system
- Mobile app with alerts
- Integration with fertilizers (fertigation)

XIII. CONCLUSION

The Smart Irrigation System successfully automates irrigation using IoT and sensor technology. It minimizes water wastage and improves agricultural efficiency. The system is cost-effective, scalable, and suitable for modern smart farming applications.

REFERENCES

1. R. Buyya, *Internet of Things*, Morgan Kaufmann, 2018.
2. Arduino Documentation, 2024.
3. IEEE IoT Journal, Smart Agriculture Systems.
4. ThingSpeak IoT Platform Documentation.
5. DHT Sensor Datasheet.
6. (Conference/Workshop) “Efficient Smart Irrigation System using Internet of Things (IoT) for Agriculture Crops” — *IEEE ICEARS 2025*. Works on sensor-based smart irrigation with IoT and automation logic.
7. Sreelatha Reddy et al., *IoT and Cloud Based Sustainable Smart Irrigation System*, E3S Web of Conferences, 2024.
8. Subham Mukherjee et al., *Smart Irrigation System Using IoT*, IJIREEICE, 2022.
