

Volume: 09 Issue: 05 | May - 2025

SJIF Rating: 8.586

Smart Knee X-Ray Analysis for Osteoarthritis Diagnosis

Ms. USHA C D $^1\!,$ BHOOMIKA J R $^2\!,$ GOWRI S K $^3\!,$ JANAVI N G $^4\!,$ NANDAN KUMAR 5

¹ Assistant. Professor, Dept. of Computer Science & Engineering, Rajeev Institute of Technology, Hassan

- ² Computer Science & Engineering, Rajeev Institute of Technology, Hassan
- ³ Computer Science & Engineering, Rajeev Institute of Technology, Hassan
- ⁴ Computer Science & Engineering, Rajeev Institute of Technology, Hassan
- ⁵ Computer Science & Engineering, Rajeev Institute of Technology, Hassan

Abstract - Smart Knee X-Ray Analysis for Osteoarthritis: An Overview Diagnosis is a machine learning method designed to improve osteoarthritis identification. Millions of people worldwide suffer from osteoarthritis, a degenerative joint condition that causes pain, stiffness, and decreased mobility. In this study, preprocessing methods including data purification and feature extraction are used to evaluate knee X-ray pictures. Machine learning techniques CNN, SVM, and Random Forest are utilized to categorize patients as either normal or having By automating diagnostics, the technique improves accuracy and enables early detection. Deep learning is incorporated to guarantee consistent results and give medical professionals an intuitive interface. This strategy aims to enhance patient outcomes, encourage prompt intervention, and lessen long-term joint degeneration.

Key words: computer vision, image processing, guidance system, and object recognition.

1. INTRODUCTION

Osteoarthritis (OA) is a common musculoskeletal disorder that affects millions of people worldwide. It is a degenerative joint disease that causes pain, stiffness, and decreased mobility, especially in the knee joint. The slow deterioration of cartilage causes bone-on-bone contact and severe discomfort, which is the condition's primary cause. Traditional diagnostic methods depend on X-ray imaging and clinical evaluations, which can be laborious and subjective. By using machine learning, this work enhances the identification and categorization of osteoarthritis in knee X-ray pictures, enabling prompt medical intervention and early diagnosis.

Grade I: Millions of people experience knee osteoarthritis each year, a severe condition that impairs mobility and quality of life. The illness frequently results in impairment because to joint discomfort, stiffness, and inflammation. Conventional osteoarthritis detection techniques rely on manual X-ray image interpretation and subjective medical assessments, both of which are subject to human error. Osteoarthritis can now be diagnosed more quickly and accurately thanks to the application of machine learning in healthcare. By identifying trends in vast datasets, these models make sure that patients get timely medical care before their conditions worsen.

Grade II: The efficiency and accuracy of the osteoarthritis diagnosis are significantly enhanced through the application of machine learning and deep learning techniques. This proposed system utilizes convolutional neural networks (CNN), support vector machines (SVM),

and Random Forest to classify knee X-ray images based on the severity of osteoarthritis. By automating the classification process, this approach minimizes human error and provides a faster, more reliable alternative to traditional diagnostic methods.

<u>Grade III</u>: Beyond early diagnosis, machine learning-driven osteoarthritis detection systems are essential to healthcare decision-making. Healthcare providers might suggest individualized treatment regimens, lifestyle changes, and rehabilitation techniques to delay the progression of the condition by spotting trends in knee X-ray pictures. Medical imaging driven by AI also helps with post-diagnostic monitoring, which enables doctors to monitor the progression of diseases and evaluate the efficacy of treatments over time.

Grade IV: There are further ramifications for accessibility and cost-effectiveness when machine learning-based osteoarthritis detection is included into healthcare systems. Patients can evaluate their risk of osteoarthritis remotely with automated screening technologies integrated into digital health platforms, which can eliminate the need for frequent hospital stays. Access to healthcare is improved by this invention, especially for people living in rural or underdeveloped areas. Additionally, the digitization of diagnostic data simplifies the process of retaining medical records, enhancing healthcare transparency and making it easier to file insurance claims and legal paperwork.

Using AI-driven models like CNN, SVM, and Random Forest in healthcare is essential for improving early osteoarthritis identification and management as medical technology develops. The objectives of this research are to enhance medical decision-making, decrease human error, and automate the diagnostic procedure. In addition to helping medical professionals, the system uses digital technologies to improve accessibility. Future developments like telemedicine and smartphone apps will broaden the reach of osteoarthritis detection even more, increasing its effectiveness and accessibility for a larger population.

2. LITERATURE REVIEW

A literature review is an essential step in the software development process since it offers insightful ideas and ways to improve on current methods. Important studies that have impacted the suggested work on machine learning-based osteoarthritis detection are highlighted in this section.

Singh et al. (2023) used X-ray imaging to create a machine learning-based knee osteoarthritis detection method. Because their algorithm was trained on a variety of datasets, osteoarthritis

© 2025, IJSREM | <u>www.ijsrem.com</u> DOI: 10.55041/IJSREM47779 | Page 1

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 05 | May - 2025 SIIF Rating: 8.586 ISSN: 2582-3930

severity levels could be accurately classified. The study underlined the need for accurate and prompt diagnostic methods due to the intricacy of osteoarthritis and its different stages.

In a different study, BeRedy (2023) presented a machine learning-enabled mobile healthcare software that analyzes knee X-ray pictures to detect osteoarthritis early. In order to predict the likelihood of osteoarthritis, the system looked at important characteristics such bone spur forms and joint space constriction. This strategy provided a more automated and accessible healthcare service, addressing the shortcomings of traditional technic.

Gupta and Fatima's (2023) systematic study concentrated on machine learning applications in medical imaging for the diagnosis of osteoarthritis. Their study showed how prediction algorithms might successfully distinguish between knee joints with osteoarthritis and those that are healthy. The study also demonstrated the value of parameter-based analysis in determining the severity of the condition and offered insights into individualized treatment plans.

Chitra et al. (2023) proposed a hybrid deep learning model that combines CNN and traditional ML techniques for PCOS diagnosis. The model improved accuracy in detecting PCOS-related features from ultrasound images, emphasizing the potential of AI-driven diagnostics in women's healthcare.

In order to categorize knee X-ray pictures, Brindha and Rajalaxmi (2023) compared CNN and transfer learning methods. Their study filled up the gaps in current diagnostic methods by combining numerical and image-based aspects. The study reaffirmed how crucial AI-based techniques are to improving osteoarthritis detection's precision and usability.

3. SYSTEM DESIGN

Existing system:

Manual X-ray analysis, clinical assessments, and symptom evaluations by medical specialists are the mainstays of traditional approaches for diagnosing osteoarthritis (OA) of the knee. In addition to taking into account the patient's medical history and symptoms including pain, stiffness, and limited mobility, doctors analyze X-ray pictures to evaluate joint space narrowing, bone spurs, and cartilage degeneration. But this method is very subjective, time-consuming, and reliant on the radiologist's skill, which could result in inconsistent findings and a delayed diagnosis.

Semi-automated X-ray analysis is used in a number of contemporary methods, however these frequently lack sophisticated image processing and feature extraction tools. Furthermore, the lack of machine learning-based predictive models in current diagnostic techniques restricts their capacity to offer individualized risk assessments. An artificial intelligence (AI)-driven system that combines deep learning, medical imaging, and clinical data analysis is needed to improve accuracy, efficiency, and early osteoarthritis identification.

Proposed system:

The suggested solution improves osteoarthritis detection by utilizing machine learning and deep learning techniques. It automatically diagnoses osteoarthritis from knee X-ray pictures by using Convolutional Neural Networks (CNNs) for image classification and segmentation. Clinical data is also included for a more thorough analysis. The system takes a methodical approach, beginning with preprocessing methods to eliminate noise and extract key characteristics from X-ray pictures. By spotting intricate patterns in knee joint photos, CNNs, Support Vector Machines (SVM), and Random Forest algorithms improve diagnostic precision. Medical practitioners can submit X-ray images and obtain immediate risk evaluations because to the system's user-friendly interface and real-time accessibility. Future developments include the incorporation of remote diagnostics and telemedicine.

4. METHODOLOGY

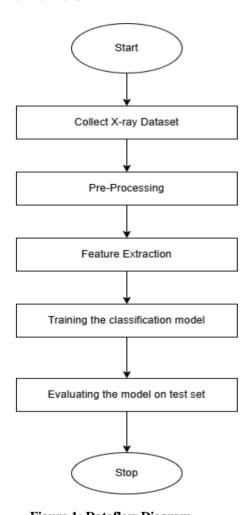
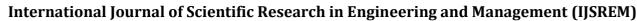



Figure 1: Dataflow Diagram

The suggested OA detection system employs a systematic methodology to guarantee precise and prompt identification of knee osteoarthritis (OA). The first step in the procedure is gathering a dataset of knee X-ray pictures that shows various degrees of osteoarthritis severity. The dataset is cleaned, normalized, and ready for additional analysis during the data preprocessing stage. For classification, the system uses machine learning and deep learning models. A Convolutional Neural Network (CNN)-based model analyzes the X-ray images to identify osteoarthritis-related features such joint space narrowing and bone spurs, while Support Vector Machines (SVM), Random Forest, and Logistic Regression are used to train tabular clinical data. To determine their efficacy, both models are put through a rigorous testing and performance review process. The top-

© 2025, IJSREM | <u>www.ijsrem.com</u> DOI: 10.55041/IJSREM47779 | Page 2

Volume: 09 Issue: 05 | May - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

performing model is chosen for final classification after accuracy metrics are compared, guaranteeing an accurate diagnosis of OA. By facilitating early intervention and individualized treatment plans, this data-driven strategy enhances clinical decision-making and, eventually, improves patient outcomes.

5. CONCLUSIONS

An innovative tool that uses deep learning and machine learning approaches to precisely diagnose osteoarthritis (OA) is the Smart Knee X-ray Analysis for Osteoarthritis Diagnosis system. Support Vector Machines (SVM) and Random Forest are two machine learning classifiers that the system effectively uses to classify OA situations; SVM has an astounding accuracy of 95.73%. Furthermore, an accuracy of 97.59% is achieved when predicting the severity of osteoarthritis using a Convolutional Neural Network (CNN) model. The method improves accuracy, permits early medical interventions, and makes customized treatment planning easier by automating the diagnostic procedure. The importance of AI-powered healthcare solutions in enhancing musculoskeletal health is highlighted by this initiative. In order to ensure greater accessibility and efficiency in orthopedic diagnostics, future developments may incorporate wearable sensors, real-time patient monitoring, and extending the model's capacity to identify additional orthopedic disorders.

6. FUTURE DIRECTIONS

Future developments could greatly improve the Smart Knee X-ray Analysis for Osteoarthritis Diagnosis system's effect, accuracy, and accessibility. People can receive individualized health insights and support by creating mobile applications for OA self-management, education, and early diagnosis. Integration of telemedicine may make it easier for patients in remote locations to receive diagnosis and treatment by enabling virtual consultations, initial screenings, and follow-up care with orthopedic specialists. Programs for community education and outreach can also increase knowledge of OA symptoms, risk factors, and prevention techniques, encouraging early identification and lifestyle changes. In order to ensure prompt diagnosis.

REFERENCES

- [1] K. D. Allen, L. M. Thoma, and Y. M. Golightly, "Epidemiology of osteoarthritis," Osteoarthritis Cartilage, vol. 30, no. 2, pp. 184–195, Feb. 2022.
- [2] Mahmoudian, L. S. Lohmander, A. Mobasheri, M. Englund, and F. P. Luyten, "Early- stage symptomatic osteoarthritis of the knee—Time for action," Nature Rev. Rheumatol., vol. 17, no. 10, pp. 621–632, Oct. 2021.
- [3] M. Herrera-Pérez, D. González-Martín, M. Vallejo-Márquez, A. L. Godoy-Santos, V. Valderrabano, and S. Tejero, "Ankle osteoarthritis aetiology," J. Clin. Med., vol. 10, no. 19, p. 4489, Sep. 2021.
 - [4] R. Javed, M. S. M. Rahim, T. Saba, and A. Rehman, "A comparative study of features selection for skin lesion detection from

- dermoscopic images," Netw. Model. Anal. Health Informat. Bioinf., vol. 9, no. 1, pp. 1–13, Dec. 2020.
- [5] H. Panwar, P. K. Gupta, M. K. Siddiqui, R. Morales-Menendez, and V. Singh, "Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet," Chaos, Solitons Fractals, vol. 138, Sep. 2020, Art. no. 109944.
- [6] M. A. Khan, T. Akram, M. Sharif, K. Javed, M. Raza, and T. Saba, "An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection," Multimedia Tools Appl., vol. 79, nos. 25–26, pp. 18627–18656, Jul. 2020.

© 2025, IJSREM | <u>www.ijsrem.com</u> DOI: 10.55041/IJSREM47779 | Page 3