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Abstract- The economy of energy suppliers and countries may be significantly impacted by non-technical losses 

(NTLs) in the electrical distribution system, which mostly involve electrical theft. Non-technical losses include 

consumer dishonesty, unethical transmission line tapping, and hacking or tampering with energy meters. The 

smart meter, a crucial component of the smart grid, is anticipated to benefit several stakeholders on the economic, 

social, and environmental levels. Smart meter data analytics, which deals with data gathering, transmission, 

processing, and interpretation that benefits all stakeholders, is one of the crucial elements that will define the 

success of smart meters. An artificial neural network can be created in order to find and identify meter 

manipulation or energy theft. The outcomes can also be applied to larger real-world systems. Additionally, a 

communication network that satisfies the security requirements for smart grid communication must be properly 

chosen and implemented in order to deploy smart meters. This article discusses different problems and difficulties 

related to the development, implementation, use, and upkeep of the smart metering system. 
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1. INTRODUCTION 
Anomalies of any kind (installation mistakes, meter parametrization mistakes, malfunctioning meters, or energy 

fraud) pose a serious issue for the utilities. They not only result in large revenue losses, but they can also have an 

impact on the management of the power system since they raise questions about actual usage. The electricity 

providers are very interested in reducing NTL because they account for a sizable portion of the overall power 

losses. Furthermore, since their usage accounts for roughly 55% of overall energy consumption, detecting NTL in 

industrial and large commercial users is of special relevance (EC). Undoubtedly, recovering substantially more 

money from an industrial customer's meter when an abnormality is found. [1]. 

It can be difficult to detect NTL using a supervised strategy because this is a very unbalanced classification 

problem. Naturally, a very small percentage of the world's electric supplies have any form of identified anomaly 

in developed nations. Additionally, as the customer samples are manually labelled by on-site inspections, human 

mistake is a possibility. It becomes more challenging for a machine learning (ML) algorithm to distinguish 

between classes when misclassified examples are included. 

It can be difficult to detect NTL using a supervised strategy because this is a very unbalanced classification 

problem. Naturally, a very small percentage of the world's electric supplies have any form of identified anomaly 

in developed nations. Additionally, as the customer samples are manually labelled by on-site inspections, human 

mistake is a possibility. It becomes more challenging for a machine learning (ML) algorithm to distinguish 

between classes when misclassified examples are included. The detection and prevention of electricity power 

theft using AMI has not been considered, despite the substantial study on the large-scale implementation of smart 

meters and smart grids. Power Utilities is now working to address the serious problem of power theft. According 

to the World Bank, power theft accounts for up to 50% of the lost electricity in developing nations. Technical and 

Non-Technical losses are the two categories into which these power losses can be divided. 

Unauthorized tapping of distribution lines and poles, refusal to pay bills, meter tampering and circumventing 

meters, official bribery, and defective meters are some examples of non-technical losses [2]. Non-technical losses 

are understudied, and the majority of power utilities do not keep records of these losses' data. Although even 

industrialised nations like the USA and UK report NTLs ranging from $1 to $6 billion [3], it is generally believed 

that NTLs are more prevalent in underdeveloped nations. Non-technical losses in India are thought to account for 

up to more than 50% of all power loss. India's power utility corporations have recorded annual losses of $4.5 

billion. [4] The current artificial intelligence-based, state-based, and game theory-based methods for power theft 

detection employing AMI can be roughly categorised into these three categories. 
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1.1. AMI and Smart Meters: 

Advanced Metering Infrastructure, or AMI, is recognised as the first step in the process that leads to the smart 

grid. It is renowned for its cutting-edge methods of electric grid-related transmission and distribution. Customers 

will be able to monitor how much energy they consume online using the computer application as a third party. 

The AMI will have the capability to improve electricity quality. A two-way communication will be established 

between the smart maters and the central control stations. They can send the clients' billing information through 

these interactions. Individual residential loads can be controlled by the smart meter using their capacity. By the 

benefit of micro girds and the AMI’s network, we can possibly get the pattern of improved efficiencies and the 

moderating energy usage [11,12].(Figure 1: Flow of power in Advanced Metering Infrastructure ).  

 
Figure 1: Flow of power in Advanced Metering Infrastructure [5] 

Smart Meters record the use of the energy and then simultaneously it also sends the data back forth to the central 

server for the purpose of monitoring and analysis of the data. The major purposes of smart meters are to keep 

track of energy consumption statistics, set a reading interval, link with communication, connect and disconnect, 

remotely programme, and detect theft. There may be a cap on the power supply in some circumstances, and if it is 

exceeded by the smart meter, the electricity supply will be turned off. 

 

Table 1: Types of Smart Meters categorized on their end user 

Domestic Application Industrial Application 

Single phase/three phase, whole current counter/LCD type 

meters 
Digital Panel meters 

Dual source projection metering solutions Digital energy meters 

Special long range metering solutions LT Tri-vector meter 

Smart metering solutions Single module meter 

Prepayment metering solutions Multi-function meter 

DLMS metering solutions Load manager and demand controller 

RF/Optical port/LPR meters Power factor control and regulators 

 

Prepayment metering solutions 

DLMS metering solutions 

Long range integrated metering 

solutions 

Net metering solutions 

Smart metering solutions 
 

Smart meters can help the government achieve its energy management objectives. The distribution firms are 

currently faced with the difficulty of replacing the traditional meters with smart meters. The system is also 
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updated using it. The largest benefit is the continuous and speedy receipt of data on energy use as well as the 

processing and transmission processes. The region will be able to be found and located when the distributed 

companies switch to smart meters, and it will then be regulated by the usage of power consumption. 

The smart meter can be used to track daily energy consumption, including that of gas and electricity. It may also 

be able to track water consumption as well. We can lower the cost of meter reading and bill collection by utilising 

the smart meter. This function also helps the bill's accuracy and lowers the likelihood of error theft. The smart 

meter's architecture is shown in Fig. 2 and includes an energy meter, harmonic sensor, and circuit breaker. A 

workstation for the wireless transceiver and control system will be available. We can compute the problems with 

the control signals and the non-technical losses by using this workstation. The ECS will be able to manage and 

regulate the flow of power or the operation of any household appliances. 

 
Figure 2: Model of Smart Metering Infrastructure 

 

2. Literature Survey and Methodology Used:  

2.1. AMR vs AMI: 

Table 2: AMR vs AMI. 

Process AMR AMI 

Communication One-way communication Two-way communication 

Data Collection 
Monthly Data (Interval Data: 15/30 

min) 

15/30/60 min (Configurable) for applying 

dynamic pricing 

Business Opportunities Monthly consumption billing 

• Consumer payment option 

• Pricing options 

• Utility operations 

• Demand response 

• Emergency response 

Business Processes 
Billing consumer information 

system 

• Billing 

• Consumer Information system 

• Consumer data display 

• Outage Management 

• Emergency demand response 

Consumer Participation None 
• In-home display 

• Demand response 

 

 

2.2. Smart Meter Benefits [6]: 

The smart meter benefits for the customers are: 

A. If there is an outage, the smart meter will enable quicker outage detection and service restoration. 
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B. Customers will have more control over how much electricity they use on their own. Due to the various 

pricing plans that are offered to the customers and giving them more opportunities to check their electricity 

use and the bills received, they become available with the functions of time-based rates and the range 

expands. 

C. Customers that receive smart meters will have access to the electricity used the day before, and usage will be 

tracked through the utility website. 

D. By removing the need for new power plants, smart meters will benefit the environment. Utilities will refrain 

from using peaked plants to satisfy the increased demand since doing so would be environmentally 

detrimental because peaked plants often produce more greenhouse gases and other air pollutants. 

E. Because information about power usage can be communicated in accordance with the automatic utility 

procedure of billing without on-site visits by the utility, it will increase privacy. The utility can check the 

meter. 

F. The primary preference for a smart grid is smart metres. Every component of the sector, including production, 

distribution, transmission, and consumer interface, will integrate digital technology in order to use the smart 

grid. With the aid of the smart grid's sense, it is possible to observe what is occurring to the energy flows, 

maintain their balance, and subsequently increase their dependability. 

 

2.3. Challenges faced in implementation of Smart Meters and AMI: 

In lieu of redesigning the current grid, efficient grid management can be an alternate approach. The integration of 

the smart grid, however, represents a viable strategy for managing the current grid due to its technical benefits 

and improvements to operating capability. The design, implementation, and maintenance of the smart metre 

system, however, present numerous problems and difficulties. 

Several billion dollars are needed to install and maintain the network in order to implement the smart metre 

technology in the distribution system. It is challenging to justify the investment. As a result, this expenditure must 

be achieved in proportion to the anticipated rise in energy demand and the share of distributed generation. [7].  

The process of replacing the existing energy meters with a smart meter system will be a challenge for utility 

companies. Lack of proper infrastructure for synchronizing this new technology with the existing ones might 

interrupt the introduction of smart meters. Collection and transmission of energy consumption data is a 

continuous process that is done automatically, but it is a tedious and expense job. [8]. 

A smart metre and the server at the base station must send enormous amounts of data in order for the system to 

function. Data administration, maintenance, and storage may be a laborious task. The majority of smart metre 

communication networks have inadequate bandwidth, which results in excessive traffic and restricts the amount 

of data that can be sent. Energy consumption data transmitted through public communication networks like 

cellular networks might involve security risks. [7]. 

Smart meters are often located in open and insecure environments and need proper shelter to be physically secure. 

Quantification of the potential benefits is very difficult due to the lack of historical data. Future of smart metering 

depends on the policies of utility companies and respective governments. Figs. 3, 4, 5 illustrate various issues and 

challenges in design, deployment, utilization and maintenance of the smart meter system. 

 
Figure 3: Design issues for a smart meter system 
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Figure 4: Maintenance Issues for a Smart Meter System 

 
Figure 5: Challenges with data transfer for a smart meter system. 

2.4. Communication technologies used in smart grid: 

One of the most important achievements in smart grid is AMI system that is used to measure, acquire, and 

analyze the data about energy consumption and power quality of each consumer. Any SM with AMI 

infrastructure involves communication facility with metering devices on demand. The bidirectional 

communication is performed between utility supplier and consumer to improve maintenance, demand 

management, and planning capability of supplier [9]. 
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Figure 6: Distributed communication and management architecture in smart grid. 

Because measured billing data plays such a major part in the smart grid, data management is one of the more 

crucial jobs. A metering data management system (MDMS), which handles data processing and storage, makes 

up the centre component. A MDMS is made up of the following components: a DMS, an outage management 

system (OMS), a GIS (geographic information system), a CIS (consumer information system), and an OMS 

(outage management system). [10].  

MDMS can be viewed as a supervisor for the entire system, with responsibility for managing and forecasting 

power quality and load demand rates. Several distributed operation centres that are planned in the same MDMS 

framework as the central operation centre can be added to it. Data including utility location, usage rates, and 

billing information for SM and consumers must be collected using the GIS and CIS systems. [10].  

The communication between operation centre and SM can be applied in several ways by using two ways such as 

wireline and/or wireless. Wire line communication is done by using transmission lines and widely known method 

is the PLC. PLC applications provide data transmission rates upto 200 Mbps for a single-phase system. It is also 

possible to use several wireless communication methods based on IEEE 802.22 protocol wireless regional area 

network (WRAN) or IEC 802.15.4 protocol that is wireless personal area Network (WPAN). 

The communication architecture of the smart grid is defined by IEEE 2030-2011 standard that is important to 

understand applications and infrastructures at a hierarchical arrangement. The standard is intended to create a 

consensus on the numerous confusing descriptions by clearly indicating a logical structure for the different sub-

networks. The last network type described by the standard is core network for the utility sections such as 

generation and transmission layers. It includes broadband communication architectures such as voice over 

internet protocol (VoIP) and GIS. 

http://www.ijsrem.com/
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Figure 7: Smart Grid Communication Techniques 

 

Table 3: Overview of network types and requirements [11] 

Network Type 
Coverage 

(km) 

Data Rate 

Requirements 

Data 

Rate 

Technology Alternatives 

Wireless Wired 

WAN 10-100 

High data rate. Devices 

such as routers and 

switches. 

10 MBPS 

– 1 GBPS 

WiMAX, 3G, 

4G, 5G. 

Ethernet, Fiber 

Optic 

NAN/FAN 0.01 – 10 

Highly dependent on 

node density and 

topology. 

100 

KBPS – 

10 MBPS 

ZigBee, WiFi, 

WiMAX, 

Cellular 

Power Line 

Communication 

HAN/BAN/IAN 0.001-0.1 

Dependent on 

application. Generally 

low data rate required. 

10-100 

KBPS 

ZigBee, Z-

wave, WiFi. 

Ethernet, 

HomePlug, M-Bus 

 

Table 4: Overview of wired communication technologies in SG [12] 

Technology 
Data 

Rate 
Coverage Application Advantages Disadvantages 

Network 

Type 

Ethernet 

Upto 

100 

Gbps 

Upto 

100m 

In-home 

communication, 

SCADA 

Good on short 

distances 

Coverage 

Limitations 

Premise 

network, 

NAN/FAN, 

WAN 

Broadband 

PLC 

Upto 

300 

Mbps 

Upto 

1500m 

SCADA, 

Backbone 

communication in 

power generation 

domain 

Existing 

infrastructure 

standardized, 

High reliability 

Noisy channel 

environment, 

Disturbance 

NAN/FAN, 

WAN 

Narrowband 10-500 Upto 3 SCADA, Existing Noisy channel NAN/FAN, 
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PLC Kbps Km Backbone 

communication in 

power generation 

domain 

infrastructure 

standardized, 

High reliability 

environment, 

Disturbance 

WAN 

HomePlug 
4,5,10 

Mbps 

Upto 

200m 

In-home 

communication, 

Smart Appliances 

Low cost, Low 

energy 

Coverage 

Limitations, 

Disturbance  

Premise 

Network 

Fibre Optic 

Upto 

100 

Gbps 

Upto 100 

Km 

SCADA, 

Backbone 

communication in 

power generation 

domain 

High bandwidth, 

High data rate, 

not susceptible to 

electromagnetic 

interference 

Costly WAN 

 

Table 5: Overview of wireless communication technologies in SG [12] 

Technology Data 

Rate 

Coverage Application Advantages Disadvantages Network 

Type 

WiMAX 75 Mbps Upto 

50Km 

In-home 

communication, 

Smart meter 

reading 

Low cost, 

low energy 

Not widespread 

,Coverage 

Limitations 

NAN/FAN, 

WAN 

ZigBee 20-250 

kbps 

Upto 100m In-home 

communication, 

Smart appliances, 

Home automation 

Mesh 

capability, 

simplicity, 

mobility, 

Low cost, 

low energy 

Low data rate, 

short range, 

interference 

Premise 

network, 

NAN/FAN, 

WAN 

Z-Wave 9-40 

Kbps 

Upto 30 m Wireless mesh 

network 

Mesh 

capability, 

simplicity, 

mobility, 

Low cost, 

low energy 

Low data rate, 

short range, 

interference 

Premise 

network 

Wi-Fi 2Mbps-

1.7 Gbps 

Upto 100 

m 

In-home 

communication, 

Smart Appliances, 

Home automation, 

SCADA 

Good on 

short 

distances 

Security  Premise 

Network, 

NAN/FAN 

3G Upto 42 

Mbps 

70 Km SCADA, Smart 

meter reading 

Already 

existing 

network, high 

security, low 

cost, large 

coverage 

Network shared 

with consumers 

may result in 

congestion 

NAN/FAN, 

WAN 

4G/LTE Upto 

979 

Mbps 

Upto 16 

Km 

SCADA, Smart 

meter reading 

Already 

existing 

network, high 

security, low 

cost, large 

coverage 

Network shared 

with consumers 

may result in 

congestion 

NAN/FAN, 

WAN 

LTE-M 7 Mbps 11 Km Smart meter 

reading 

Low cost, 

low energy, 

scalability, 

Low data rate NAN/FAN 
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coverage 

NB-IoT 159 

Kbps 

 Smart meter 

reading 

Low cost, 

low energy, 

scalability, 

coverage 

Low data rate NAN/FAN 

5G Upto 20 

Gbps 

 SCADA, Remote 

control , Smart 

meter reading 

Low cost, 

low latency, 

high data 

rate, 

scalability 

 NAN/FAN, 

WAN 

Satellite 50 Mbps  Backup, Remote 

location 

communication 

Good when 

no other 

alternative is 

viable 

High cost WAN 

 

2.5. Smart Metering Status in India: 

There are total 10 smart grid pilot projects that are implementing by state-owned distribution utilities in India. All 

selected pilot Projects involve installation of Smart Meters for the purpose of reduction in distribution losses and 

reliability improvement. The development of smart metering system is still in the early stage. Table VI provides 

summary of the smart meter implementation across the country. [13]. 

Table 6:Overview of Smart Meter deployment in different states [13] 

States 
 

Major Utilities 

Date of 

Award 

Sanctioned Cost 

(Crores) 
No. of Consumers 

Assam 
APDCL 

SGIA- Phoenix 

Mar'15  

 

29.94  

 
15,083 

Tripura 
TSECL 

SGIA- WIPRO 

Sep'15  

 

24.08  

 

42,676  

 

West Bengal 

WBSEDCL, SGIA-

Chemtrols  

 

Jun'15  

 

7.03  

 

5,275  

 

Haryana 

UHBVNL  

SGIA- NEDO, Japan  

 

Apr'14  

 
20.07 

11,000  

 

Himachal Pradesh 

HPSEBL 

SGIA- Alstom 

 

Feb'15  

 
19.45 1,251 

Punjab 

PSPCL 

SGIA-  Kalkitech  

 

Mar'15  

 
10.11 2,734 

Puducherry 
PED 

SGIA- Dongfang 

May'16  

 
46.11 

34,000  

 

Karnataka 

CESCL  

SGIA - Enzen  

 

Mar'14  

 

32.59  

 

21,824 

 

Gujarat  

 

UGVCL  
July’15 48.78 39,422 

Telangana 
TSPDCL 

 SGIA - ECIL  
Oct'15  41.82  11,904  
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Figure 8: Conceptual architecture being deployed by the utilities 

Mesh networking provides a means of connecting short-range communication to a wider geographic area. Mesh 

RF Technology typically operates at a frequency of 915 MHz and features acceptable latency and broad 

bandwidth. RF mesh technology is used to create a Neighborhood Area Network (NAN), in which data is sent 

from various meters to a DCU mounted on the poles. [14] 

 

2.5.1. Key challenges for Smart Meter implementation: 

Several distributed operation centres that are planned in the same MDMS framework as the central operation 

centre can be added to it [15]. The major challenges to be faced while implementing the smart metering 

technology are as follows. 

• Power theft 

• Lack of awareness 

• Inadequate grid infrastructure 

• Cyber security and data privacy 

• Financial issue 

 

Key Challenges during the pilot stage: 

• Testing facilities for Smart Meters 

• Interoperability Issues and Integration with existing system  

• Adoption of Smart Grid Regulations 

• Business Case on Smart Grid 

• Skill development of utility staff 

 

3. Neural Networks for NTL Detection: 

3.1. Recurrent Neural Networks: 

RNNs are a class of Neural Networks that deals with sequential data. Given a sequence of data, it holds memory 

of all previous computations and uses that for future calculations. Since RNNs can store memory, they have been 

very useful in Natural Language Processing and in Speech Recognition. 
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Figure 9: Framework of a Vanilla Recurrent Neural Network 

The diagram above demonstrates how an RNN can be unrolled according to time steps or the quantity of 

sequences. For instance, the RNN can be unrolled into a 10-layer neural network if there are 10 sequences [16].  

 
Figure 10: Long Short-Term Memory Architecture 

• xt is the input at time step t. x is a vector of 6 data points which corresponds to the power consumption values 

for every half an hour. 

• U is the weight associated with the input x. This indicates how strong the connection x is with the neuron s. 

• st is the hidden state which is calculated at time step t and is responsible for the memory. Connection from the 

previous time step and the current time step are considered for calculating the hidden time step value. 

• W is the weight associated with the incoming connection from the previous hidden state. 

• The linear combination of [W × st−1] and [U × xt] is passed through an activation function to calculate the 

value of the present hidden state st. This function is calculated for all hidden states.  

• ot is the output that is calculated by evaluating the SoftMax of st. In this case, ot will be a vector of 

probabilities, the highest value belonging to the class in which the predicted power consumption value lies. 

 

3.2. Long-Short Term Memory: 

A specialised recurrent neural network called Long Short Term Memory (LSTM) is capable of learning long-term 

dependencies [17]. The issue of vanishing and bursting gradients affects conventional RNNs. Weights in the 

network's early layers are updated by very small values in vanishing gradients, which causes the network to train 

very slowly. This is due to the fact that weight updates are inversely proportional to the gradient of the error 

function, and in the initial layers of backpropagation, gradients continually multiply with low activation levels, 

leading to further lower values. Similar to exploding gradients, it is more difficult to reach an optimal value since 

the gradients grow too wide and update the weight parameters by a significant amount. 

i = σ(xtUi + st−1Wi)   (1) 

f = σ(xtUf + st−1Wf )   (2) 

o = σ(xtUo + st−1Wo)   (3) 

g = tanh(xtUg + st−1Wg)   (4) 

ct = ct−1 ◦ f + g ◦ i   (5) 

st = tanh(ct) ◦ o    (6) 

 

3.3. Dataset [16]: 

3.3.1. Sequential Dataset 

Power consumption values are viewed as a collection of sequential patterns in this learning approach. The data is 

trained using the mathematical approach known as Sequence to Sequence Learning. The power being utilised 

http://www.ijsrem.com/
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now depends on the power that was consumed earlier because it is sequential. Future power usage figures follow 

the same pattern. 

3.3.2. Intuition Behind Learning: 

Utilizing a mathematical model that can recognise these patterns and retain some recall of the data's sequence is 

the aim. As soon as it has been trained, the model will accept a fixed vector of inputs and predict the best-possible 

value to come after the sequence. The next corresponding power output is predicted after the output is predicted, 

and the window of sequences is sided by one step. Once every projected value has been acquired, it is compared 

to actual values to identify any anomalies. 

3.3.3. Data Pre-processing: 

Since there was no power usage for numerous hours of that day, the dataset's original version had a large number 

of entries that were mostly zeros. This noise would be used to train the model. Zeros are eliminated, and outliers 

are substituted with the highest value determined using a box plot in place of outliers because the model is based 

on ideal power consumption numbers. 

(1) Box Plot: A box-and-whisker plot is used to remove outliers in the data. All power values present in the 

database of a particular locality is taken in a single vector and sorted in ascending order. The median value is 

found out and is used to split the data in two parts. Using the median, the data is split and the corresponding 

medians are calculated for each part. These values are plotted as lower (Q2) and upper (Q3) quartiles 

respectively. Interquartile range (IQR) is found out by the difference in the quartiles [Q3 − Q2].The 

maximum value is calculated by [Q3 + 1.5 × IQR] and minimum value by [Q2 − 1.5 × IQR]. All power 

values lying outside this maximum-minimum range are considered as outliers. The power values above the 

maximum value are replaced with the maximum value itself and all power entries that contained majorly 0 

are removed for better optimisation and generalisation of the model. 

 

(2) Normalization: After data pre-processing has been performed, the data is normalised by dividing each power 

value by the maximum power value present in the training data. 

Zi = xi / xmax 

This value is the maximum value found by the box plot. The power values get squashed in the range (0, 1]. 

(3) Feature Adjustment: After data pre-processing and normalisation, all power values in the dataset are 

unrolled into a single vector. This vector is split into input-output pairs for the LSTM model. A single input 

will contain 6 continuous power values and its corresponding output will be the next power value in that 

sequence. The output is then concatenated with the input time sequence as the Tth time and the previous (T − 

6)th value is removed from the input. It’s output would be the next power value in that sequence. A stride of 

one is used to move the window over the vector. This is repeated for the entire dataset to form input-output 

pairs. Intervals ranging from 0-100, 100-200, 200-300, etc. are created. The output value is converted to a 

categorical value by mapping it to it’s corresponding interval. It is then converted to a one-hot representation 

which is a vector consisting of 1 in it’s interval index and 0 in other interval indexes. The input-output pairs 

are divided into training set, that will be fed to the Recurrent Neural Network for training; validation set, for 

choosing the optimum parameters and hyper-parameters; and test set, for determining the accuracy of the 

model. 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 06 Issue: 10 | October - 2022                         Impact Factor: 7.185                     ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                          DOI: 10.55041/IJSREM16666                        |        Page 13 

 
Figure 11: Proposed Model Architecture 

The proposed model has LSTM layer(s), with each layer having certain number of cells. In the dataset, the rows 

denote data for a particular house on a particular day and the columns have power consumption values spaced at 

every half hour intervals. Since the architecture can model on data of a particular locality, we assume 5 

households from the dataset that are in the same place at the same time. 

A. Training process 

1) Function Evaluation: Adam serves as the model's optimizer, and Categorical Cross Entropy serves as the loss 

function. When compared to Mean Squared Error, Categorical Cross Entropy performs better because Mean 

Squared Error places too much focus on examples that are erroneously categorised and may impede training. 

With a learning rate of 0.001, a fuzz factor of 1e08 and no learning rate decay, the experimental findings are 

optimised. 

2) Experimental Values: Figure 15 shows the variation of the loss function with respect to the number of epochs. 

After 800 epochs, the loss function dropped to 0.5909. 

 
Figure 12: Training Loss vs Number of Epochs 

 
Figure 13: Validation Accuracy vs Number of Epochs 
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The training accuracy achieved after 800 epochs is 76.81%. The architecture that attained this accuracy consisted 

of two stacked Long Short-Term Memory (LSTM) units consisting of 64 nodes each. After 227 epochs, the 

weights are loaded and tested to give 73.45% on training accuracy and 72.93% on test data. The output that the 

model predicts belongs to classes 1 to 6, where each class denotes a lower bound and an upper bound value. 
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