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Abstract

The increasing burden of chronic illnesses and the demand
for uninterrupted medical supervision have intensified the
pursuit of intelligent healthcare technologies capable of
continuous patient observation. Conventional monitoring
approaches rely on intermittent manual assessment, which is
often limited by delayed response, human error, and
restricted accessibility to real-time clinical data. To overcome
these constraints, this work proposes a Smart Patient
Monitoring System that integrates Internet of Things (IoT)
sensing, cloud-assisted communication, and machine
learning-driven analytics for proactive healthcare support.
The system utilizes biomedical and environmental sensors
interfaced with a Raspberry Pi to continuously measure vital
parameters such as body temperature, blood oxygen
saturation (SpO:), pulse rate, and humidity. The collected
data are wirelessly transmitted to a cloud platform, where
they are visualized through an interactive dashboard with
automated emergency notifications. The implementation is
carried out in two phases: Phase-1 focuses on the
development of a real-time IoT monitoring architecture with
alert generation, whereas Phase-2 incorporates predictive
analytics using algorithms such as Random Forest, Support
Vector Machine (SVM), and Long Short-Term Memory
(LSTM) for early detection of abnormal physiological trends.
Experimental  observations  demonstrate  that LSTM
effectively captures temporal variations in health signals,
offering improved predictive performance. The proposed
system enhances patient safety through timely intervention,
remote accessibility, and data-driven decision support,
making it suitable for hospital, home-care, and elderly
monitoring applications.
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I .INTRODUCTION

The digital transformation of healthcare has significantly
shifted clinical practices from manual, episodic observations
toward continuous, intelligent, and technology-assisted
monitoring. Conventional patient monitoring approaches—
relying heavily on periodic assessments performed manually

by nurses or clinicians—are increasingly insufficient in
modern clinical environments [1].These traditional systems
often fail to detect subtle physiological variations, suffer from
delayed response times during emergencies, and impose
considerable workload on medical staff who manage multiple
patients simultaneously.[2]

Such limitations are particularly severe in the management of
chronic diseases, post-operative care, infectious conditions,
geriatric  populations, and clinical cases requiring
uninterrupted surveillance, where delayed intervention may
lead to irreversible health deterioration. [3]

SMART PATIENT MONITORING SYSTEM

Fig 1. Smart Patient Monitoring System Overview

The advent of the Internet of Things (IoT) has introduced new
opportunities for creating intelligent, autonomous, and
interconnected medical monitoring  platforms. IoT
architectures allow continuous acquisition of physiological
parameters through distributed sensor networks and
embedded computing devices [4]. Biomedical sensors such
as DHTI11 for temperature—humidity measurement and
MAX30102-based SpO- modules enable non-invasive, real-
time monitoring of vital signs with low power consumption
and high operational reliability. [5]

When integrated with edge-computing platforms such as the
Raspberry Pi, these sensors form a scalable hardware
infrastructure capable of processing raw signals, filtering
noise, and transmitting validated data to cloud storage using
wireless protocols such as Wi-Fi and MQTT [6] — [§]. Such
IoT-driven systems improve the accessibility of healthcare by
enabling clinicians to remotely observe real-time patient data
through cloud dashboards, reducing the dependency on
physical proximity and manual supervision.
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The Smart Patient Monitoring System designed in this work
adopts a comprehensive two-phase architecture integrating
IoT sensing, cloud connectivity, machine learning analytics,
and GPS-enabled emergency response. Phase-1 focuses on
constructing a real-time IoT monitoring framework in which
temperature, humidity, heart rate, and oxygen saturation are
continuously measured using DHT11 and SpO: sensors
interfaced to a Raspberry Pi. Physiological readings are
uploaded to a cloud dashboard, enabling 24/7 visibility and
automated threshold-based alerts when abnormal conditions
arise. Experimental results from Phase-1 wvalidate the
system’s stability, data accuracy, and dashboard reliability,
demonstrating successful real-time communication between
sensors, the processing unit, and cloud interfaces. [9]

While real-time monitoring enhances patient supervision,
modern healthcare increasingly demands predictive analytics
capable of forecasting deterioration before critical thresholds
are crossed. Phase-2 integrates machine learning (ML)
models such as Random Forest, Support Vector Machine
(SVM), and Long Short-Term Memory (LSTM) networks to
classify patient conditions and detect anomalous
physiological patterns [10]. Prior studies have shown that
LSTM architectures outperform conventional ML models in
handling biomedical time-series data due to their ability to
learn long-term temporal dependencies [11]. Random Forest
models, conversely, are known for their robustness in
handling multi-parameter physiological datasets and their
resilience against noise and data imbalance [12]. By training
these models on sensor data collected in Phase-1, the system
transitions from reactive monitoring to proactive healthcare
intelligence, thereby enhancing early-warning capabilities
and reducing emergency response time.

Furthermore, the system incorporates a GPS module and
emergency push button to augment patient safety [7]. The
GPS unit transmits real-time geographical coordinates
alongside alert notifications, enabling rapid localization of
patients during medical emergencies. The push-button serves
as a manual override mechanism, allowing the patient or
caretaker to trigger immediate alerts even before vital signs
reflect a crisis.[13]

Such  dual-alert functionality aligns with recent
advancements in telemedicine and emergency-response IoT
systems, where real-time communication and location
awareness significantly improve survival outcomes.

Overall, the proposed Smart Patient Monitoring System
represents an integrated, scalable, and cost-effective
healthcare solution that merges continuous physiological
monitoring, predictive ML analytics, and emergency alerting
into a unified framework. Its applicability spans hospitals,
intensive care units, elderly care centers, and remote or home-
based medical environments. By bridging the gap between
IoT sensing and Al-driven clinical decision-making, the
system contributes to the growing paradigm of intelligent,
patient-centric, and data-driven healthcare infrastructures.

II. RELATED WORK

Research on intelligent patient monitoring systems has
expanded significantly over the past decade with the
convergence of IoT architectures, biomedical sensing
technologies, and machine learning methodologies. Kumar et

capable of continuously measuring vital parameters such as
heart rate and temperature using low-cost sensors. While the
system demonstrated feasibility for remote monitoring, it
lacked predictive analytics and did not address emergency
alerting mechanisms. Similarly, Sharma and Singh [14]
developed a cloud-assisted IoT health monitoring system
emphasizing real-time visualization, but the architecture was
limited by its absence of multi-parameter fusion and
intelligent decision-making capabilities.

A series of studies have investigated the integration of loT-
enabled communication in remote patient surveillance.
Rahman and Lee [15] employed MQTT protocols for
efficient data synchronization between sensor nodes and
cloud dashboards, illustrating the benefits of lightweight
communication channels for healthcare IoT ecosystems.
Smith et al. [16] explored Bluetooth-based wearable
monitoring devices; however, limited transmission range and
latency issues rendered their solution insufficient for clinical-
scale deployments. These limitations motivated the adoption
of Wi-Fi/MQTT hybrid architectures in more recent systems,
addressing scalability and communication robustness.

Machine learning approaches have received considerable
scholarly attention for health state classification and anomaly
detection. Gupta et al. [ 17] applied Long Short-Term Memory
(LSTM) networks to heart-rate time-series data and
demonstrated high predictive accuracy for detecting
abnormal cardiac fluctuations. However, their work focused
on single-parameter analysis, limiting applicability in multi-
sensor environments. Fernandes et al. [18] employed
Random Forest models for medical classification tasks,
highlighting the advantages of ensemble learning for
heterogeneous  physiological  datasets[19].  External
investigations have confirmed that ensemble models such as
Random Forest outperform single-learner algorithms in
mixed-signal biomedical classification scenarios [20].

In parallel, extensive research has been conducted on
wearable biomedical sensors. Zhang et al. [21] developed a
wearable device integrating SpO: and ECG sensing modules,
capable of providing robust long-term monitoring. Despite
technological advantages, the system’s manufacturing cost
and complexity restricted deployment to high-resource
settings. Conversely, low-cost sensor solutions such as
DHT11 and MAX30102 modules have been widely adopted
for research prototypes and academic deployments owing to
their affordability, ease of integration, and adequate accuracy
for non-critical monitoring [4], [5]

Deep learning—driven anomaly detection has also been
investigated. Thompson et al. [22] proposed an Al pipeline
capable of predicting sudden patient deterioration by
analyzing multi-signal biomedical data. However, the
computational overhead of the model limited its suitability
for low-power embedded systems. Chen et al. [23] extended
this paradigm by demonstrating the potential of convolutional
and recurrent neural networks for early disease detection,
emphasizing that predictive analytics can significantly
improve clinical outcomes when integrated with IoT-driven
architectures.

Emergency alerting and location-based medical response
have been studied in intelligent healthcare systems. Raj and
Chandrasekar [24] demonstrated the role of GPS-assisted

al. [13] presented an IoT-based monitoring framework
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emergency notifications in reducing response time during
critical events. Manoj and Kumar [25] integrated a push-
button mechanism with IoT platforms to enable patient-
initiated alerts, reporting faster caregiver response and
improved patient safety. External investigations have
similarly highlighted the significance of real-time location-
tracking systems for ambulance coordination and emergency
prediction systems [26], [27].

Recent studies further emphasize the necessity of combining
IoT architectures with machine learning and cloud
intelligence. Islam et al. [28] provided a comprehensive
survey on Healthcare IoT ecosystems, outlining the
importance of integrating security, scalability, and
interoperability in modern remote-monitoring systems.
Palanisamy et al. [29] highlighted the effectiveness of IoT
dashboards for chronic disease management, whereas Albahri
et al. [30] demonstrated that hybrid IoT-ML systems
significantly enhance predictive healthcare performance
across diverse clinical applications.

Despite extensive research on loT monitoring, machine
learning prediction, wearable sensing, and emergency
communication systems, existing literature reveals a
persistent gap: very few systems integrate real-time
physiological ~ sensing, = ML-based  multi-parameter
classification, GPS-enabled emergency response, patient-
triggered alerting, and cloud-based dashboards into a unified,
affordable platform. The proposed Smart Patient Monitoring
System addresses this gap by integrating these capabilities
into a cohesive and scalable architecture suitable for
hospitals, elderly care environments, and home-based patient
monitoring.

HLIMPLEMENTATION

The implementation of the Smart Patient Monitoring System
is structured to integrate biomedical sensing, embedded
computation,  wireless = communication, cloud-based
visualization, and intelligent machine learning analytics into
a unified healthcare monitoring architecture. The system has
been engineered to operate continuously, provide high
reliability, and support early detection of abnormalities
through automated alerts and predictive modeling. The
implementation is divided into hardware integration,
software development, cloud and communication layer, and
machine learning—based analytics, all interacting in a
cohesive workflow to ensure seamless operation.

A. Hardware Implementation
1.1 Central Computing Unit: Raspberry Pi

The Raspberry Pi functions as the primary computational
platform responsible for orchestrating sensor
communication, data acquisition, preprocessing, and local
inference. As a compact Linux-driven microcomputer, it
possesses the computational capability required for executing
Python-based data pipelines, interacting with cloud APIs, and
running lightweight machine learning models.Its GPIO
header enables direct interfacing with biomedical sensors,
while built-in Wi-Fi facilitates wireless communication. The
board’s robustness, multitasking capability, and low power
footprint make it ideal for continuous patient monitoring
applications that demand reliability and real-time
responsiveness.
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Fig 3. Block Diagram
Physiological Sensing Modules
1.2 DHT11 Temperature & Humidity Sensor

The DHTI11 is employed to measure environmental
temperature and humidity surrounding the patient. Such
parameters are clinically significant, especially for
individuals with respiratory or cardiovascular sensitivities.
The sensor outputs calibrated digital signals using a single-
wire protocol, simplifying integration with the Raspberry Pi.
Its low cost and energy efficiency allow for long-duration
monitoring without thermal drift or excessive power
consumption.

1.3 SpO: and Pulse Rate Sensor (MAX30102 Module)

The MAX30102-based optical sensor module monitors
oxygen saturation (SpO:) and pulse rate using dual-
wavelength photoplethysmography (PPG). The module
includes internal filtering to reduce noise from ambient light
and patient motion. A digital [?C interface ensures rapid and
accurate communication with the Raspberry Pi, enabling
high-frequency sampling necessary for real-time tracking of
cardiac and respiratory fluctuations. Continuous acquisition
of SpO: and pulse rate is critical for identifying early signs of
respiratory distress or hypoxia, especially in vulnerable
patients.

Human—Machine Interface Components
1.4 LCD Display

An LCD module is integrated to provide local visualization
of real-time physiological parameters and predicted health
status. By offering immediate feedback at the patient’s
bedside, the display ensures usability even when network
connectivity is unavailable. The LCD is programmed to
refresh continuously, presenting the temperature, humidity,
oxygen saturation, pulse rate, and classification outcomes
from the machine learning module.
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1.5 Emergency Push Button

A manually triggered push button is incorporated to support
patient-initiated emergency alerts. Upon activation, the
Raspberry Pi instantly sends a distress notification to the
cloud platform. This component ensures that the patient or
caregiver can signal for help even in scenarios where
abnormalities have not yet manifested in physiological
signals, thereby adding redundancy and improving fail-safe
operation.

1.6 GPS Module

To facilitate location-aware emergency assistance, a GPS
receiver is interfaced with the system. The module retrieves
geospatial coordinates (latitude and longitude), which are
transmitted automatically during critical events. This
capability is essential for remote patient care applications
where patients may not be in fixed locations, enabling

caregivers or medical responders to identify their exact
position promptly.

B. Software Implementation
Data Acquisition Layer

Python scripts running on the Raspberry Pi manage the
acquisition of real-time physiological signals. Each sensor’s
data is read at predefined intervals, filtered to remove random
noise, and normalized to ensure consistency across different
measurement cycles. Data preprocessing includes removal of
outliers, basic smoothing, and conversion into formats
compatible with cloud dashboards and machine learning
models.

Cloud Communication Layer

The processed sensor data is transmitted to a cloud server
using Wi-FI/MQTT communication channels. This layer is

Table 1 Comparison Table

responsible for:

Ref. | Author & Year Objective / Focus Key Contribution
[20] | Y. Luo, 2021 Comparative evaluation of ML | Demonstrated that RF and SVM provide high
algorithms for health prediction accuracy in classifying physiological health
states.
[21] | X. Zhang, W. Li & | Development of wearable SpO: | Introduced a real-time wearable platform for
C. Zhou, 2021 and ECG monitoring system reliable vitals measurement.
[22] | K. Thompson et al., | Detecting health deterioration | Proposed a CNN-LSTM model achieving high
2021 using deep learning early-risk identification accuracy.
[23] | M. Chen et al., 2021 | Al-based emergency medical | Presented neural network models to forecast
prediction emergency health risks proactively.
[24] | Y. Raj & S. Verma, | IoT and GPS-assisted emergency | Developed a remote alert mechanism integrating
2021 care system GPS for patient location tracking.
[25] | K. Samuel & P. | Patient-triggered IoT emergency | Enabled manual user-initiated alerting via IoT
Reuben, 2022 alert platform devices for immediate assistance.
[26] | D. Lietal., 2021 Location-aware IoT emergency | Designed IoT architecture supporting real-time
response framework geolocation for medical response.
[27] | J. Huang et al., 2021 | GPS-based telemedicine support | Integrated GPS to improve remote telemedicine
accuracy and patient monitoring.
[28] | A. TIslam & M. | Secure IoT ecosystem for remote | Implemented secure communication protocols
Rashid, 2021 healthcare ensuring encrypted medical data transmission.
[29] | P. Palanisamy & A. | IoT digital health monitoring | Developed a dashboard for visualizing real-time
Dinesh, 2022 dashboard physiological metrics.
[30] | A. Albahri et al, | Hybrid IoT-ML  predictive | Proposed a cloud-integrated predictive system
2020 healthcare architecture combining IoT sensing with ML models.
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. publishing sensor readings to the cloud in
real time,

. updating dashboard interfaces,

. logging historical values for long-term

trend analysis,

. triggering server-side alerting mechanisms
when abnormalities occur.

The cloud dashboard provides caregivers with a continuous,
remote-access view of patient vitals. The ability to monitor
multiple patients simultaneously improves scalability in
clinical and home-care settings.

Machine Learning Implementation
2.1 Model Training and Deployment

The machine learning module is developed using the sensor
data collected during system testing. The physiological
parameters — SpO:, pulse rate, temperature, and humidity —
are used as input features. Multiple algorithms including
Random Forest, Support Vector Machine (SVM), and Long
Short-Term Memory (LSTM) networks are trained to classify
the patient’s condition into:

° Normal
° Moderate
. Critical

Following model evaluation, the best-performing classifier
(often LSTM for time-series data) is deployed on the
Raspberry Pi. The ML model runs at the edge to minimize
latency, allowing instant classification without relying on
cloud computations.

2.2 Real-Time Inference

During operation, each new sensor reading is fed into the ML
model, which outputs a health-state prediction. If the
classification result indicates “Critical,” the alert subsystem
activates immediately.

Emergency Alert and Notification System

The alerting module is composed of both automated and
manual subsystems:

. Automated alerts are triggered when sensor
readings cross predefined thresholds or when
machine learning predicts a dangerous condition.

. Manual alerts occur when the patient
presses the emergency button.

In both cases, the system transmits the patient’s vital signs,
health classification, and GPS location to the cloud
dashboard, ensuring rapid caregiver intervention.

C. System Integration and Continuous Operation

The fully integrated system operates in a continuous loop:

1. Sensors  acquire  physiological and
environmental parameters.

2. Raspberry Pi preprocesses and evaluates
the readings.

3. ML model predicts the patient’s health
status.

4. LCD displays updated values at the
patient’s bedside.

5. Cloud dashboard receives real-time data
streams.

6. Alerts (automated/manual) are triggered

when necessary.

7. GPS module provides patient location
during emergencies.

This integrated workflow demonstrates a seamless fusion of
IoT sensing, cloud intelligence, embedded computing, and
predictive analytics, enabling a reliable, scalable, and
intelligent healthcare monitoring environment.

IV. METHODOLOGY

The methodology adopted for the Smart Patient Monitoring
System represents a structured, multi-layered workflow that
integrates biomedical sensing, embedded processing,
intelligent analytics, cloud communication, and emergency-
response automation into a unified healthcare monitoring
pipeline. The approach is designed to ensure continuous
acquisition of wvital physiological parameters, accurate
computational processing, real-time visualization, and
predictive anomaly detection. The complete methodology is
divided into five major stages: (1) data sensing and
acquisition, (2) signal preprocessing, (3) machine learning—
based health state prediction, (4) loT-enabled transmission
and visualization, and (5) alert and emergency management.

A. Data Sensing and Acquisition

The first stage involves the continuous acquisition of
physiological parameters using integrated biomedical
sensors. The system employs:

. DHT11 sensor to capture ambient
temperature and humidity,

. SpO:2 module (MAX30102) to measure
oxygen saturation and pulse rate,

. Supplemental modules such as push-button
and GPS receiver for manual alerts and location
tracking.

These sensors are interfaced with the Raspberry Pi via its
GPIO/I’C communication channels. Data acquisition is
performed at fixed sampling intervals to ensure consistent
temporal resolution and uninterrupted monitoring. The
Raspberry Pi acts as the local data aggregation point,
collecting signals concurrently and preparing them for
downstream processing. This architecture supports multi-
parameter monitoring, which is essential for detecting
correlated physiological abnormalities rather than relying on
isolated measurements.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM55422 | Page 5


https://ijsrem.com/

SJIF Rating: 8.586

ISSN: 2582-3930

B. Signal Preprocessing and Data Conditioning

The raw physiological measurements acquired from
embedded sensors are often affected by various artifacts
originating from ambient interference, motion disturbances,
or sudden fluctuations in environmental conditions. To ensure
reliable interpretation, the system incorporates a
comprehensive preprocessing stage that systematically
refines the data before analytical processing. This stage is
responsible for enhancing data quality through noise
attenuation, value normalization, and structured arrangement
of relevant attributes. By delivering refined signals to the next
processing layer, the system minimizes spurious variations
and ensures that the predictive model receives consistent,
high-quality input.

Noise Filtering

To achieve stable physiological measurements, digital
smoothing algorithms are applied to suppress unwanted
fluctuations. High-frequency distortion present in pulse
measurements is weakened through filtering, while temporal
inconsistencies observed in DHT11 temperature—humidity
readings are stabilized using suppression techniques.
Additionally, fluctuations affecting peripheral oxygen
saturation values are reduced to ensure continuous, noise-
minimized monitoring. This filtering process significantly
improves signal reliability and preserves clinically relevant
features.

Normalization and Scaling

Once the raw streams are filtered, the resulting values
undergo normalization to ensure uniformity across
parameters with diverse numerical ranges. This
transformation process prevents the machine learning
classifier from being disproportionately influenced by
variables exhibiting larger magnitudes. As a result, all
physiological attributes contribute equitably during
classification and prediction tasks.

Feature Structuring

The refined values of four vital indicators—temperature,
humidity, oxygen saturation (SpO:), and pulse rate—are
systematically organized into a structured dataset. This
feature-structured dataset is continuously updated, enabling
both real-time decision-making and long-term trend
monitoring. The structured representation plays a crucial role
in reinforcing consistency and supporting time-based
predictive analytics.

C. Machine Learning—Based Health State Prediction

The intelligent component of the proposed system is driven
by machine learning, transforming conventional monitoring
into predictive and preventive healthcare assistance. The
preprocessed physiological data serve as inputs for multiple
supervised learning models, namely Random Forest (RF),
Support Vector Machine (SVM), and Long Short-Term
Memory (LSTM) networks. These algorithms collectively
enhance decision-making by learning distinct health-state
patterns and forecasting possible anomalies before they
evolve into critical medical conditions.

Training and Model Development

The training phase utilizes labeled datasets that categorize
health conditions as normal, moderate, or critical. The RF
algorithm develops multiple decision trees and synthesizes
their outputs to achieve robust classification, whereas SVM
identifies optimal hyperplanes separating physiological
clusters across diverse health ranges. The LSTM model
processes sequential patterns to detect progressive anomalies,
particularly relevant in time-dependent indicators such as
oxygen saturation and pulse rhythm. Model performance is
evaluated through quantitative metrics including accuracy,
precision, recall, and loss measurement, typically showing
superior results for LSTM due to its temporal learning
capacity.

Real-Time Inference

Upon deployment on the Raspberry Pi, the trained model
responds to continuously incoming sensor data by performing
real-time classification and providing instant health-state
feedback. The resulting categorization is simultaneously
displayed to the user on the LCD module and transmitted to
the cloud interface. This proactive system successfully
identifies abnormal states even when parameter values appear
close to borderline thresholds, thereby supporting timely
interventions

D. IoT-Enabled Data Transmission and Visualization

To facilitate remote monitoring, the system integrates Wi-
Fi/MQTT-based connectivity between the Raspberry Pi and a
cloud server, enabling real-time data transmission and
synchronized visualization. The cloud analytics dashboard
aggregates live physiological readings, graphical trends, and
predicted states while maintaining historical archives for
retrospective analysis. This cloud-enabled platform allows
healthcare providers and caregivers to access vital metrics—
such as thermal variations, pulse fluctuations, oxygen
saturation levels, and machine learning alerts—from any
location. The scalable architecture further supports multi-user
access and ensures efficient monitoring without physical
dependence on medical staff.

E. Automated Alerts, Risk Detection, and Emergency
Response

A layered alerting mechanism is implemented to enhance
responsiveness and patient safety. The system identifies
abnormalities either via threshold breaches or predictive
machine learning outputs. In cases where parameter limits
deviate abruptly—such as sudden hyperthermia, irregular
pulse rhythm, or rapid decline in SpO: levels—an immediate
alert is generated. Additionally, if the classifier anticipates a
transition toward critical health status, the alert protocol is
triggered even before the values cross dangerous limits. For
high-risk circumstances, GPS-assisted  emergency
localization transmits the patient’s coordinates to designated
caregivers, while a manual emergency switch empowers
users to request assistance irrespective of sensor
interpretations. This multi-modal alert design ensures rapid
communication and fail-safe support during medical
emergencies.
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F. End-to-End System Workflow

The complete operation of the system follows an integrated
pipeline beginning with continuous sensor-based acquisition
of physiological parameters, followed by signal refinement
through preprocessing. The optimized data are then
interpreted by the machine learning model to determine
health categories, which are displayed locally and forwarded
to the cloud dashboard. Based on the inferred results and
detected anomalies, automated or manual alerts are generated
along with GPS-based localization. This comprehensive
workflow combines sensing, analytics, cloud
communication, and emergency response to offer a reliable,
intelligent healthcare monitoring solution suited for both
clinical and home-based environments.

V.RESULTS

The Smart Patient Monitoring System was implemented and
evaluated to assess its performance in real-time physiological
sensing, cloud-based visualization, machine learning—driven
prediction, and emergency alert automation. The
experimental evaluation involved continuous monitoring of
temperature, humidity, oxygen saturation (SpO:), and pulse
rate using DHT11 and MAX30102 sensors interfaced with
the Raspberry Pi. The results obtained demonstrate that the
system meets the requirements.

Fig 3 . Hardware Connections

for responsiveness, accuracy, and operational stability
essential for remote healthcare environments.

1. Sensor Performance and Real-Time Data Acquisition

During system testing, the DHT11 and SpO: modules
provided stable, continuous measurements without
significant drift or packet loss. Temperature and humidity
readings exhibited consistent behavior within expected
clinical ranges, while the SpO: and pulse rate signals
remained steady under varying lighting and motion
conditions. This stability is attributed to digital filtering,
built-in noise suppression in the MAX30102 module, and
regular sampling intervals.

Fig 4 . Real Time Data

The Raspberry Pi successfully aggregated and processed all
sensor inputs in real time, demonstrating its ability to handle
multi-parameter physiological acquisition with minimal
latency. No major interruptions, runtime crashes, or
communication failures occurred during extended operation
periods, confirming the reliability of the embedded platform
for continuous patient monitoring.

2. Machine Learning Prediction Results

The machine learning models—Random Forest, Support
Vector Machine (SVM), and Long Short-Term Memory
(LSTM)—were trained using the dataset collected during
Phase-1 testing. Each model classified patient health status
into Normal, Moderate, or Critical conditions. Based on
experimental evaluation:

. LSTM achieved the highest prediction
accuracy, due to its capability to learn temporal
patterns from sequential physiological readings.

. Random Forest demonstrated robust
performance  in  handling  multi-parameter
classification, producing consistent outputs across
different testing samples.

. SVM, while accurate, showed lower
performance when processing noisy or borderline
physiological values.

Fig 5 . ML Prediction

These results validate the suitability of LSTM and Random
Forest models for real-time healthcare prediction tasks. The
classification results were displayed instantly on the LCD
screen and transmitted to the cloud dashboard for remote
monitoring.

3. Cloud Dashboard Visualization and Remote
Monitoring

The cloud interface successfully displayed real-time sensor
streams, predicted health status, and historical trends.
Temperature, humidity, SpO, and pulse rate values were
updated continuously on the dashboard without noticeable
delays. This demonstrates the effectiveness of Wi-Fi/MQTT-
based communication and confirms that the system can
support long-duration remote monitoring scenarios.

The dashboard also supported multiple concurrent
connections, allowing caregivers to observe the patient’s
status from different devices. This multi-user accessibility
reinforces the system’s scalability for clinical and home-care
environments.
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Fig 6. Dashboard
4. Emergency Alert and GPS Integration

The system’s emergency features were validated under
multiple test scenarios:

. Threshold-based alerts were triggered
when physiological parameters exceeded predefined
safe ranges.

. ML-based alerts were activated when the
model predicted a Critical condition.

. Manual alerts using the push button were
transmitted instantly regardless of sensor values.

Fig 7 .Emergency Alert

In all cases, the alerts were successfully sent to the cloud
dashboard with accompanying patient details and real-time
GPS coordinates. The GPS module consistently provided
accurate latitude and longitude values, enabling precise
location tracking during emergencies.

This multi-tier alerting mechanism significantly enhances
patient safety by ensuring rapid response capabilities in both
automated and manual emergency conditions

VI. CONCLUSION

The Smart Patient Monitoring System presented in this study
demonstrates the potential of integrating Internet of Things
(IoT) architectures, biomedical sensing modules, cloud
services, and machine learning algorithms to create a
comprehensive and intelligent healthcare monitoring
framework. Through the combined use of DHT11, SpO-, and
pulse sensors interfaced with the Raspberry Pi, the system
enables continuous acquisition of vital physiological
parameters with high temporal reliability. The incorporation
of machine learning models—including Random Forest,
Support Vector Machine, and Long Short-Term Memory
networks—enhances the framework by enabling predictive
assessment of patient health states rather than relying solely
on threshold-based detection.

The cloud-based dashboard, supported by Wi-Fi and MQTT
communication protocols, provides remote accessibility and

real-time visualization of patient vitals, facilitating timely
clinical oversight. The integration of a GPS module and
manual push-button further strengthens the system’s
emergency responsiveness by offering automated and user-
initiated alerts along with precise geolocation information.
Collectively, these features address the persistent limitations
of conventional monitoring systems, reducing manual
workload, improving early detection of physiological
anomalies, and enabling rapid intervention in critical
scenarios.

Overall, the system offers a scalable, low-cost, and robust
solution suitable for hospitals, home-care environments,
elderly monitoring, and remote healthcare settings. The
methodology and implementation presented in this work
demonstrate a promising direction for future smart healthcare
technologies,  particularly in  scenarios  requiring
uninterrupted supervision and data-driven clinical decision-
making.
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