
            International Journal of Scientific Research in Engineering and Management (IJSREM) 

                         Volume: 09 Issue: 12 | Dec - 2025                                SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM55422                                       |        Page 1 
 

“Smart Patient Monitoring System” 

 

Abstract  

The increasing burden of chronic illnesses and the demand 

for uninterrupted medical supervision have intensified the 

pursuit of intelligent healthcare technologies capable of 

continuous patient observation. Conventional monitoring 

approaches rely on intermittent manual assessment, which is 

often limited by delayed response, human error, and 

restricted accessibility to real-time clinical data. To overcome 

these constraints, this work proposes a Smart Patient 

Monitoring System that integrates Internet of Things (IoT) 

sensing, cloud-assisted communication, and machine 

learning-driven analytics for proactive healthcare support. 

The system utilizes biomedical and environmental sensors 

interfaced with a Raspberry Pi to continuously measure vital 

parameters such as body temperature, blood oxygen 

saturation (SpO₂), pulse rate, and humidity. The collected 

data are wirelessly transmitted to a cloud platform, where 

they are visualized through an interactive dashboard with 

automated emergency notifications. The implementation is 

carried out in two phases: Phase-1 focuses on the 

development of a real-time IoT monitoring architecture with 

alert generation, whereas Phase-2 incorporates predictive 

analytics using algorithms such as Random Forest, Support 

Vector Machine (SVM), and Long Short-Term Memory 

(LSTM) for early detection of abnormal physiological trends. 

Experimental observations demonstrate that LSTM 

effectively captures temporal variations in health signals, 

offering improved predictive performance. The proposed 

system enhances patient safety through timely intervention, 

remote accessibility, and data-driven decision support, 

making it suitable for hospital, home-care, and elderly 

monitoring applications. 
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I .INTRODUCTION 

The digital transformation of healthcare has significantly 

shifted clinical practices from manual, episodic observations 

toward continuous, intelligent, and technology-assisted 

monitoring. Conventional patient monitoring approaches—

relying heavily on periodic assessments performed manually  

 

 

 

 

 

 

by nurses or clinicians—are increasingly insufficient in 

modern clinical environments [1].These traditional systems 

often fail to detect subtle physiological variations, suffer from 

delayed response times during emergencies, and impose 

considerable workload on medical staff who manage multiple 

patients simultaneously.[2]  

Such limitations are particularly severe in the management of 

chronic diseases, post-operative care, infectious conditions, 

geriatric populations, and clinical cases requiring 

uninterrupted surveillance, where delayed intervention may 

lead to irreversible health deterioration. [3] 

 

Fig 1. Smart Patient Monitoring System Overview 

The advent of the Internet of Things (IoT) has introduced new 

opportunities for creating intelligent, autonomous, and 

interconnected medical monitoring platforms. IoT 

architectures allow continuous acquisition of physiological 

parameters through distributed sensor networks and 

embedded computing devices [4]. Biomedical sensors such 

as DHT11 for temperature–humidity measurement and 

MAX30102-based SpO₂ modules enable non-invasive, real-

time monitoring of vital signs with low power consumption 

and high operational reliability. [5]  

When integrated with edge-computing platforms such as the 

Raspberry Pi, these sensors form a scalable hardware 

infrastructure capable of processing raw signals, filtering 

noise, and transmitting validated data to cloud storage using 

wireless protocols such as Wi-Fi and MQTT [6] – [8]. Such 

IoT-driven systems improve the accessibility of healthcare by 

enabling clinicians to remotely observe real-time patient data 

through cloud dashboards, reducing the dependency on 

physical proximity and manual supervision. 
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The Smart Patient Monitoring System designed in this work 

adopts a comprehensive two-phase architecture integrating 

IoT sensing, cloud connectivity, machine learning analytics, 

and GPS-enabled emergency response. Phase-1 focuses on 

constructing a real-time IoT monitoring framework in which 

temperature, humidity, heart rate, and oxygen saturation are 

continuously measured using DHT11 and SpO₂ sensors 

interfaced to a Raspberry Pi. Physiological readings are 

uploaded to a cloud dashboard, enabling 24/7 visibility and 

automated threshold-based alerts when abnormal conditions 

arise. Experimental results from Phase-1 validate the 

system’s stability, data accuracy, and dashboard reliability, 

demonstrating successful real-time communication between 

sensors, the processing unit, and cloud interfaces. [9]  

While real-time monitoring enhances patient supervision, 

modern healthcare increasingly demands predictive analytics 

capable of forecasting deterioration before critical thresholds 

are crossed. Phase-2 integrates machine learning (ML) 

models such as Random Forest, Support Vector Machine 

(SVM), and Long Short-Term Memory (LSTM) networks to 

classify patient conditions and detect anomalous 

physiological patterns [10]. Prior studies have shown that 

LSTM architectures outperform conventional ML models in 

handling biomedical time-series data due to their ability to 

learn long-term temporal dependencies [11]. Random Forest 

models, conversely, are known for their robustness in 

handling multi-parameter physiological datasets and their 

resilience against noise and data imbalance [12]. By training 

these models on sensor data collected in Phase-1, the system 

transitions from reactive monitoring to proactive healthcare 

intelligence, thereby enhancing early-warning capabilities 

and reducing emergency response time. 

Furthermore, the system incorporates a GPS module and 

emergency push button to augment patient safety [7]. The 

GPS unit transmits real-time geographical coordinates 

alongside alert notifications, enabling rapid localization of 

patients during medical emergencies. The push-button serves 

as a manual override mechanism, allowing the patient or 

caretaker to trigger immediate alerts even before vital signs 

reflect a crisis.[13]  

Such dual-alert functionality aligns with recent 

advancements in telemedicine and emergency-response IoT 

systems, where real-time communication and location 

awareness significantly improve survival outcomes. 

Overall, the proposed Smart Patient Monitoring System 

represents an integrated, scalable, and cost-effective 

healthcare solution that merges continuous physiological 

monitoring, predictive ML analytics, and emergency alerting 

into a unified framework. Its applicability spans hospitals, 

intensive care units, elderly care centers, and remote or home-

based medical environments. By bridging the gap between 

IoT sensing and AI-driven clinical decision-making, the 

system contributes to the growing paradigm of intelligent, 

patient-centric, and data-driven healthcare infrastructures. 

II. RELATED WORK 

Research on intelligent patient monitoring systems has 

expanded significantly over the past decade with the 

convergence of IoT architectures, biomedical sensing 

technologies, and machine learning methodologies. Kumar et 

al. [13] presented an IoT-based monitoring framework 

capable of continuously measuring vital parameters such as 

heart rate and temperature using low-cost sensors. While the 

system demonstrated feasibility for remote monitoring, it 

lacked predictive analytics and did not address emergency 

alerting mechanisms. Similarly, Sharma and Singh [14] 

developed a cloud-assisted IoT health monitoring system 

emphasizing real-time visualization, but the architecture was 

limited by its absence of multi-parameter fusion and 

intelligent decision-making capabilities. 

A series of studies have investigated the integration of IoT-

enabled communication in remote patient surveillance. 

Rahman and Lee [15] employed MQTT protocols for 

efficient data synchronization between sensor nodes and 

cloud dashboards, illustrating the benefits of lightweight 

communication channels for healthcare IoT ecosystems. 

Smith et al. [16] explored Bluetooth-based wearable 

monitoring devices; however, limited transmission range and 

latency issues rendered their solution insufficient for clinical-

scale deployments. These limitations motivated the adoption 

of Wi-Fi/MQTT hybrid architectures in more recent systems, 

addressing scalability and communication robustness. 

Machine learning approaches have received considerable 

scholarly attention for health state classification and anomaly 

detection. Gupta et al. [17] applied Long Short-Term Memory 

(LSTM) networks to heart-rate time-series data and 

demonstrated high predictive accuracy for detecting 

abnormal cardiac fluctuations. However, their work focused 

on single-parameter analysis, limiting applicability in multi-

sensor environments. Fernandes et al. [18] employed 

Random Forest models for medical classification tasks, 

highlighting the advantages of ensemble learning for 

heterogeneous physiological datasets[19]. External 

investigations have confirmed that ensemble models such as 

Random Forest outperform single-learner algorithms in 

mixed-signal biomedical classification scenarios [20]. 

In parallel, extensive research has been conducted on 

wearable biomedical sensors. Zhang et al. [21] developed a 

wearable device integrating SpO₂ and ECG sensing modules, 

capable of providing robust long-term monitoring. Despite 

technological advantages, the system’s manufacturing cost 

and complexity restricted deployment to high-resource 

settings. Conversely, low-cost sensor solutions such as 

DHT11 and MAX30102 modules have been widely adopted 

for research prototypes and academic deployments owing to 

their affordability, ease of integration, and adequate accuracy 

for non-critical monitoring [4], [5]  

Deep learning–driven anomaly detection has also been 

investigated. Thompson et al. [22] proposed an AI pipeline 

capable of predicting sudden patient deterioration by 

analyzing multi-signal biomedical data. However, the 

computational overhead of the model limited its suitability 

for low-power embedded systems. Chen et al. [23] extended 

this paradigm by demonstrating the potential of convolutional 

and recurrent neural networks for early disease detection, 

emphasizing that predictive analytics can significantly 

improve clinical outcomes when integrated with IoT-driven 

architectures. 

Emergency alerting and location-based medical response 

have been studied in intelligent healthcare systems. Raj and 

Chandrasekar [24] demonstrated the role of GPS-assisted 
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emergency notifications in reducing response time during 

critical events. Manoj and Kumar [25] integrated a push-

button mechanism with IoT platforms to enable patient-

initiated alerts, reporting faster caregiver response and 

improved patient safety. External investigations have 

similarly highlighted the significance of real-time location-

tracking systems for ambulance coordination and emergency 

prediction systems [26], [27]. 

Recent studies further emphasize the necessity of combining 

IoT architectures with machine learning and cloud 

intelligence. Islam et al. [28] provided a comprehensive 

survey on Healthcare IoT ecosystems, outlining the 

importance of integrating security, scalability, and 

interoperability in modern remote-monitoring systems. 

Palanisamy et al. [29] highlighted the effectiveness of IoT 

dashboards for chronic disease management, whereas Albahri 

et al. [30] demonstrated that hybrid IoT–ML systems 

significantly enhance predictive healthcare performance 

across diverse clinical applications. 

Despite extensive research on IoT monitoring, machine 

learning prediction, wearable sensing, and emergency 

communication systems, existing literature reveals a 

persistent gap: very few systems integrate real-time 

physiological sensing, ML-based multi-parameter 

classification, GPS-enabled emergency response, patient-

triggered alerting, and cloud-based dashboards into a unified, 

affordable platform. The proposed Smart Patient Monitoring 

System addresses this gap by integrating these capabilities 

into a cohesive and scalable architecture suitable for 

hospitals, elderly care environments, and home-based patient 

monitoring. 

III.IMPLEMENTATION 

The implementation of the Smart Patient Monitoring System 

is structured to integrate biomedical sensing, embedded 

computation, wireless communication, cloud-based 

visualization, and intelligent machine learning analytics into 

a unified healthcare monitoring architecture. The system has 

been engineered to operate continuously, provide high 

reliability, and support early detection of abnormalities 

through automated alerts and predictive modeling. The 

implementation is divided into hardware integration, 

software development, cloud and communication layer, and 

machine learning–based analytics, all interacting in a 

cohesive workflow to ensure seamless operation. 

A. Hardware Implementation 

1.1 Central Computing Unit: Raspberry Pi 

The Raspberry Pi functions as the primary computational 

platform responsible for orchestrating sensor 

communication, data acquisition, preprocessing, and local 

inference. As a compact Linux-driven microcomputer, it 

possesses the computational capability required for executing 

Python-based data pipelines, interacting with cloud APIs, and 

running lightweight machine learning models.Its GPIO 

header enables direct interfacing with biomedical sensors, 

while built-in Wi-Fi facilitates wireless communication. The 

board’s robustness, multitasking capability, and low power 

footprint make it ideal for continuous patient monitoring 

applications that demand reliability and real-time 

responsiveness.  

 

Fig 3. Block Diagram 

Physiological Sensing Modules 

1.2 DHT11 Temperature & Humidity Sensor 

The DHT11 is employed to measure environmental 

temperature and humidity surrounding the patient. Such 

parameters are clinically significant, especially for 

individuals with respiratory or cardiovascular sensitivities. 

The sensor outputs calibrated digital signals using a single-

wire protocol, simplifying integration with the Raspberry Pi. 

Its low cost and energy efficiency allow for long-duration 

monitoring without thermal drift or excessive power 

consumption. 

1.3 SpO₂ and Pulse Rate Sensor (MAX30102 Module) 

The MAX30102-based optical sensor module monitors 

oxygen saturation (SpO₂) and pulse rate using dual-

wavelength photoplethysmography (PPG). The module 

includes internal filtering to reduce noise from ambient light 

and patient motion. A digital I²C interface ensures rapid and 

accurate communication with the Raspberry Pi, enabling 

high-frequency sampling necessary for real-time tracking of 

cardiac and respiratory fluctuations. Continuous acquisition 

of SpO₂ and pulse rate is critical for identifying early signs of 

respiratory distress or hypoxia, especially in vulnerable 

patients. 

Human–Machine Interface Components 

1.4 LCD Display 

An LCD module is integrated to provide local visualization 

of real-time physiological parameters and predicted health 

status. By offering immediate feedback at the patient’s 

bedside, the display ensures usability even when network 

connectivity is unavailable. The LCD is programmed to 

refresh continuously, presenting the temperature, humidity, 

oxygen saturation, pulse rate, and classification outcomes 

from the machine learning module. 
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1.5 Emergency Push Button 

A manually triggered push button is incorporated to support 

patient-initiated emergency alerts. Upon activation, the 

Raspberry Pi instantly sends a distress notification to the 

cloud platform. This component ensures that the patient or 

caregiver can signal for help even in scenarios where 

abnormalities have not yet manifested in physiological 

signals, thereby adding redundancy and improving fail-safe 

operation. 

1.6 GPS Module 

To facilitate location-aware emergency assistance, a GPS 

receiver is interfaced with the system. The module retrieves 

geospatial coordinates (latitude and longitude), which are 

transmitted automatically during critical events. This 

capability is essential for remote patient care applications 

where patients may not be in fixed locations, enabling 

caregivers or medical responders to identify their exact 

position promptly. 

B. Software Implementation 

Data Acquisition Layer 

Python scripts running on the Raspberry Pi manage the 

acquisition of real-time physiological signals. Each sensor’s 

data is read at predefined intervals, filtered to remove random 

noise, and normalized to ensure consistency across different 

measurement cycles. Data preprocessing includes removal of 

outliers, basic smoothing, and conversion into formats 

compatible with cloud dashboards and machine learning 

models. 

Cloud Communication Layer 

The processed sensor data is transmitted to a cloud server 

using Wi-Fi/MQTT communication channels. This layer is 

responsible for:  

Table 1 Comparison Table  

Ref. Author & Year Objective / Focus Key Contribution 

[20] Y. Luo, 2021 Comparative evaluation of ML 

algorithms for health prediction 

Demonstrated that RF and SVM provide high 

accuracy in classifying physiological health 

states. 

[21] X. Zhang, W. Li & 

C. Zhou, 2021 

Development of wearable SpO₂ 

and ECG monitoring system 

Introduced a real-time wearable platform for 

reliable vitals measurement. 

[22] K. Thompson et al., 

2021 

Detecting health deterioration 

using deep learning 

Proposed a CNN–LSTM model achieving high 

early-risk identification accuracy. 

[23] M. Chen et al., 2021 AI-based emergency medical 

prediction 

Presented neural network models to forecast 

emergency health risks proactively. 

[24] Y. Raj & S. Verma, 

2021 

IoT and GPS-assisted emergency 

care system 

Developed a remote alert mechanism integrating 

GPS for patient location tracking. 

[25] K. Samuel & P. 

Reuben, 2022 

Patient-triggered IoT emergency 

alert platform 

Enabled manual user-initiated alerting via IoT 

devices for immediate assistance. 

[26] D. Li et al., 2021 Location-aware IoT emergency 

response framework 

Designed IoT architecture supporting real-time 

geolocation for medical response. 

[27] J. Huang et al., 2021 GPS-based telemedicine support Integrated GPS to improve remote telemedicine 

accuracy and patient monitoring. 

[28] A. Islam & M. 

Rashid, 2021 

Secure IoT ecosystem for remote 

healthcare 

Implemented secure communication protocols 

ensuring encrypted medical data transmission. 

[29] P. Palanisamy & A. 

Dinesh, 2022 

IoT digital health monitoring 

dashboard 

Developed a dashboard for visualizing real-time 

physiological metrics. 

[30] A. Albahri et al., 

2020 

Hybrid IoT–ML predictive 

healthcare architecture 

Proposed a cloud-integrated predictive system 

combining IoT sensing with ML models. 
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• publishing sensor readings to the cloud in 

real time, 

• updating dashboard interfaces, 

• logging historical values for long-term 

trend analysis, 

• triggering server-side alerting mechanisms 

when abnormalities occur. 

The cloud dashboard provides caregivers with a continuous, 

remote-access view of patient vitals. The ability to monitor 

multiple patients simultaneously improves scalability in 

clinical and home-care settings. 

 

Machine Learning Implementation 

2.1 Model Training and Deployment 

The machine learning module is developed using the sensor 

data collected during system testing. The physiological 

parameters — SpO₂, pulse rate, temperature, and humidity — 

are used as input features. Multiple algorithms including 

Random Forest, Support Vector Machine (SVM), and Long 

Short-Term Memory (LSTM) networks are trained to classify 

the patient’s condition into: 

• Normal 

• Moderate 

• Critical 

Following model evaluation, the best-performing classifier 

(often LSTM for time-series data) is deployed on the 

Raspberry Pi. The ML model runs at the edge to minimize 

latency, allowing instant classification without relying on 

cloud computations. 

2.2  Real-Time Inference 

During operation, each new sensor reading is fed into the ML 

model, which outputs a health-state prediction. If the 

classification result indicates “Critical,” the alert subsystem 

activates immediately. 

Emergency Alert and Notification System 

The alerting module is composed of both automated and 

manual subsystems: 

• Automated alerts are triggered when sensor 

readings cross predefined thresholds or when 

machine learning predicts a dangerous condition. 

• Manual alerts occur when the patient 

presses the emergency button. 

In both cases, the system transmits the patient’s vital signs, 

health classification, and GPS location to the cloud 

dashboard, ensuring rapid caregiver intervention. 

C. System Integration and Continuous Operation 

The fully integrated system operates in a continuous loop: 

1. Sensors acquire physiological and 

environmental parameters. 

2. Raspberry Pi preprocesses and evaluates 

the readings. 

3. ML model predicts the patient’s health 

status. 

4. LCD displays updated values at the 

patient’s bedside. 

5. Cloud dashboard receives real-time data 

streams. 

6. Alerts (automated/manual) are triggered 

when necessary. 

7. GPS module provides patient location 

during emergencies. 

This integrated workflow demonstrates a seamless fusion of 

IoT sensing, cloud intelligence, embedded computing, and 

predictive analytics, enabling a reliable, scalable, and 

intelligent healthcare monitoring environment. 

IV. METHODOLOGY 

The methodology adopted for the Smart Patient Monitoring 

System represents a structured, multi-layered workflow that 

integrates biomedical sensing, embedded processing, 

intelligent analytics, cloud communication, and emergency-

response automation into a unified healthcare monitoring 

pipeline. The approach is designed to ensure continuous 

acquisition of vital physiological parameters, accurate 

computational processing, real-time visualization, and 

predictive anomaly detection. The complete methodology is 

divided into five major stages: (1) data sensing and 

acquisition, (2) signal preprocessing, (3) machine learning–

based health state prediction, (4) IoT-enabled transmission 

and visualization, and (5) alert and emergency management. 

A. Data Sensing and Acquisition 

The first stage involves the continuous acquisition of 

physiological parameters using integrated biomedical 

sensors. The system employs: 

• DHT11 sensor to capture ambient 

temperature and humidity, 

• SpO₂ module (MAX30102) to measure 

oxygen saturation and pulse rate, 

• Supplemental modules such as push-button 

and GPS receiver for manual alerts and location 

tracking. 

These sensors are interfaced with the Raspberry Pi via its 

GPIO/I²C communication channels. Data acquisition is 

performed at fixed sampling intervals to ensure consistent 

temporal resolution and uninterrupted monitoring. The 

Raspberry Pi acts as the local data aggregation point, 

collecting signals concurrently and preparing them for 

downstream processing. This architecture supports multi-

parameter monitoring, which is essential for detecting 

correlated physiological abnormalities rather than relying on 

isolated measurements. 

https://ijsrem.com/
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B. Signal Preprocessing and Data Conditioning 

The raw physiological measurements acquired from 

embedded sensors are often affected by various artifacts 

originating from ambient interference, motion disturbances, 

or sudden fluctuations in environmental conditions. To ensure 

reliable interpretation, the system incorporates a 

comprehensive preprocessing stage that systematically 

refines the data before analytical processing. This stage is 

responsible for enhancing data quality through noise 

attenuation, value normalization, and structured arrangement 

of relevant attributes. By delivering refined signals to the next 

processing layer, the system minimizes spurious variations 

and ensures that the predictive model receives consistent, 

high-quality input. 

Noise Filtering 

To achieve stable physiological measurements, digital 

smoothing algorithms are applied to suppress unwanted 

fluctuations. High-frequency distortion present in pulse 

measurements is weakened through filtering, while temporal 

inconsistencies observed in DHT11 temperature–humidity 

readings are stabilized using suppression techniques. 

Additionally, fluctuations affecting peripheral oxygen 

saturation values are reduced to ensure continuous, noise-

minimized monitoring. This filtering process significantly 

improves signal reliability and preserves clinically relevant 

features. 

Normalization and Scaling 

Once the raw streams are filtered, the resulting values 

undergo normalization to ensure uniformity across 

parameters with diverse numerical ranges. This 

transformation process prevents the machine learning 

classifier from being disproportionately influenced by 

variables exhibiting larger magnitudes. As a result, all 

physiological attributes contribute equitably during 

classification and prediction tasks. 

Feature Structuring 

The refined values of four vital indicators—temperature, 

humidity, oxygen saturation (SpO₂), and pulse rate—are 

systematically organized into a structured dataset. This 

feature-structured dataset is continuously updated, enabling 

both real-time decision-making and long-term trend 

monitoring. The structured representation plays a crucial role 

in reinforcing consistency and supporting time-based 

predictive analytics. 

C. Machine Learning–Based Health State Prediction 

The intelligent component of the proposed system is driven 

by machine learning, transforming conventional monitoring 

into predictive and preventive healthcare assistance. The 

preprocessed physiological data serve as inputs for multiple 

supervised learning models, namely Random Forest (RF), 

Support Vector Machine (SVM), and Long Short-Term 

Memory (LSTM) networks. These algorithms collectively 

enhance decision-making by learning distinct health-state 

patterns and forecasting possible anomalies before they 

evolve into critical medical conditions. 

 

Training and Model Development 

The training phase utilizes labeled datasets that categorize 

health conditions as normal, moderate, or critical. The RF 

algorithm develops multiple decision trees and synthesizes 

their outputs to achieve robust classification, whereas SVM 

identifies optimal hyperplanes separating physiological 

clusters across diverse health ranges. The LSTM model 

processes sequential patterns to detect progressive anomalies, 

particularly relevant in time-dependent indicators such as 

oxygen saturation and pulse rhythm. Model performance is 

evaluated through quantitative metrics including accuracy, 

precision, recall, and loss measurement, typically showing 

superior results for LSTM due to its temporal learning 

capacity. 

Real-Time Inference 

Upon deployment on the Raspberry Pi, the trained model 

responds to continuously incoming sensor data by performing 

real-time classification and providing instant health-state 

feedback. The resulting categorization is simultaneously 

displayed to the user on the LCD module and transmitted to 

the cloud interface. This proactive system successfully 

identifies abnormal states even when parameter values appear 

close to borderline thresholds, thereby supporting timely 

interventions 

D. IoT-Enabled Data Transmission and Visualization 

To facilitate remote monitoring, the system integrates Wi-

Fi/MQTT-based connectivity between the Raspberry Pi and a 

cloud server, enabling real-time data transmission and 

synchronized visualization. The cloud analytics dashboard 

aggregates live physiological readings, graphical trends, and 

predicted states while maintaining historical archives for 

retrospective analysis. This cloud-enabled platform allows 

healthcare providers and caregivers to access vital metrics—

such as thermal variations, pulse fluctuations, oxygen 

saturation levels, and machine learning alerts—from any 

location. The scalable architecture further supports multi-user 

access and ensures efficient monitoring without physical 

dependence on medical staff. 

E. Automated Alerts, Risk Detection, and Emergency 

Response 

A layered alerting mechanism is implemented to enhance 

responsiveness and patient safety. The system identifies 

abnormalities either via threshold breaches or predictive 

machine learning outputs. In cases where parameter limits 

deviate abruptly—such as sudden hyperthermia, irregular 

pulse rhythm, or rapid decline in SpO₂ levels—an immediate 

alert is generated. Additionally, if the classifier anticipates a 

transition toward critical health status, the alert protocol is 

triggered even before the values cross dangerous limits. For 

high-risk circumstances, GPS-assisted emergency 

localization transmits the patient’s coordinates to designated 

caregivers, while a manual emergency switch empowers 

users to request assistance irrespective of sensor 

interpretations. This multi-modal alert design ensures rapid 

communication and fail-safe support during medical 

emergencies. 
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F. End-to-End System Workflow 

The complete operation of the system follows an integrated 

pipeline beginning with continuous sensor-based acquisition 

of physiological parameters, followed by signal refinement 

through preprocessing. The optimized data are then 

interpreted by the machine learning model to determine 

health categories, which are displayed locally and forwarded 

to the cloud dashboard. Based on the inferred results and 

detected anomalies, automated or manual alerts are generated 

along with GPS-based localization. This comprehensive 

workflow combines sensing, analytics, cloud 

communication, and emergency response to offer a reliable, 

intelligent healthcare monitoring solution suited for both 

clinical and home-based environments. 

V.RESULTS 

The Smart Patient Monitoring System was implemented and 

evaluated to assess its performance in real-time physiological 

sensing, cloud-based visualization, machine learning–driven 

prediction, and emergency alert automation. The 

experimental evaluation involved continuous monitoring of 

temperature, humidity, oxygen saturation (SpO₂), and pulse 

rate using DHT11 and MAX30102 sensors interfaced with 

the Raspberry Pi. The results obtained demonstrate that the 

system meets the requirements.  

 

Fig 3 . Hardware Connections 

for responsiveness, accuracy, and operational stability 

essential for remote healthcare environments. 

1. Sensor Performance and Real-Time Data Acquisition 

During system testing, the DHT11 and SpO₂ modules 

provided stable, continuous measurements without 

significant drift or packet loss. Temperature and humidity 

readings exhibited consistent behavior within expected 

clinical ranges, while the SpO₂ and pulse rate signals 

remained steady under varying lighting and motion 

conditions. This stability is attributed to digital filtering, 

built-in noise suppression in the MAX30102 module, and 

regular sampling intervals. 

 

Fig 4 . Real Time Data 

The Raspberry Pi successfully aggregated and processed all 

sensor inputs in real time, demonstrating its ability to handle 

multi-parameter physiological acquisition with minimal 

latency. No major interruptions, runtime crashes, or 

communication failures occurred during extended operation 

periods, confirming the reliability of the embedded platform 

for continuous patient monitoring. 

2. Machine Learning Prediction Results 

The machine learning models—Random Forest, Support 

Vector Machine (SVM), and Long Short-Term Memory 

(LSTM)—were trained using the dataset collected during 

Phase-1 testing. Each model classified patient health status 

into Normal, Moderate, or Critical conditions. Based on 

experimental evaluation: 

• LSTM achieved the highest prediction 

accuracy, due to its capability to learn temporal 

patterns from sequential physiological readings. 

• Random Forest demonstrated robust 

performance in handling multi-parameter 

classification, producing consistent outputs across 

different testing samples. 

• SVM, while accurate, showed lower 

performance when processing noisy or borderline 

physiological values. 

 

Fig 5 . ML Prediction 

These results validate the suitability of LSTM and Random 

Forest models for real-time healthcare prediction tasks. The 

classification results were displayed instantly on the LCD 

screen and transmitted to the cloud dashboard for remote 

monitoring. 

3. Cloud Dashboard Visualization and Remote 

Monitoring 

The cloud interface successfully displayed real-time sensor 

streams, predicted health status, and historical trends. 

Temperature, humidity, SpO₂, and pulse rate values were 

updated continuously on the dashboard without noticeable 

delays. This demonstrates the effectiveness of Wi-Fi/MQTT-

based communication and confirms that the system can 

support long-duration remote monitoring scenarios. 

The dashboard also supported multiple concurrent 

connections, allowing caregivers to observe the patient’s 

status from different devices. This multi-user accessibility 

reinforces the system’s scalability for clinical and home-care 

environments. 
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Fig 6. Dashboard 

4. Emergency Alert and GPS Integration 

The system’s emergency features were validated under 

multiple test scenarios: 

• Threshold-based alerts were triggered 

when physiological parameters exceeded predefined 

safe ranges. 

• ML-based alerts were activated when the 

model predicted a Critical condition. 

• Manual alerts using the push button were 

transmitted instantly regardless of sensor values. 

 

Fig 7 .Emergency Alert 

In all cases, the alerts were successfully sent to the cloud 

dashboard with accompanying patient details and real-time 

GPS coordinates. The GPS module consistently provided 

accurate latitude and longitude values, enabling precise 

location tracking during emergencies. 

This multi-tier alerting mechanism significantly enhances 

patient safety by ensuring rapid response capabilities in both 

automated and manual emergency conditions 

VI. CONCLUSION 

The Smart Patient Monitoring System presented in this study 

demonstrates the potential of integrating Internet of Things 

(IoT) architectures, biomedical sensing modules, cloud 

services, and machine learning algorithms to create a 

comprehensive and intelligent healthcare monitoring 

framework. Through the combined use of DHT11, SpO₂, and 

pulse sensors interfaced with the Raspberry Pi, the system 

enables continuous acquisition of vital physiological 

parameters with high temporal reliability. The incorporation 

of machine learning models—including Random Forest, 

Support Vector Machine, and Long Short-Term Memory 

networks—enhances the framework by enabling predictive 

assessment of patient health states rather than relying solely 

on threshold-based detection. 

The cloud-based dashboard, supported by Wi-Fi and MQTT 

communication protocols, provides remote accessibility and 

real-time visualization of patient vitals, facilitating timely 

clinical oversight. The integration of a GPS module and 

manual push-button further strengthens the system’s 

emergency responsiveness by offering automated and user-

initiated alerts along with precise geolocation information. 

Collectively, these features address the persistent limitations 

of conventional monitoring systems, reducing manual 

workload, improving early detection of physiological 

anomalies, and enabling rapid intervention in critical 

scenarios. 

Overall, the system offers a scalable, low-cost, and robust 

solution suitable for hospitals, home-care environments, 

elderly monitoring, and remote healthcare settings. The 

methodology and implementation presented in this work 

demonstrate a promising direction for future smart healthcare 

technologies, particularly in scenarios requiring 

uninterrupted supervision and data-driven clinical decision-

making. 
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