
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM31425 | Page 1

Software Bug Prediction Using Machine Learning

Mr. S. Anil Kumar1, Bhimavarapu Siva Prasanna2,

Arigela Grace Mani3 , Gorantla Deepika4, Bhavanam Venkata Ajay Kumar Reddy5

1Associate Professor, Department of Computer Science and Engineering, Tirumala Engineering College

2,3,4,5Student, Department of Computer Science and Engineering, Tirumala Engineering College

---***---
Abstract - Software bug prediction is a crucial aspect of

software development and maintenance as it directly impacts

the overall success of the software. By identifying potential

bugs early on, software quality, reliability, and efficiency can

be improved while also helping to reduce costs. Creating a

reliable bug prediction model is a complex task, with various

techniques proposed in the literature. In this paper, a bug

prediction model utilizing machine learning algorithms is

introduced. Three supervised machine learning algorithms

have been incorporated to forecast future software faults using

historical data. The evaluation process revealed that Machine

Learning algorithms, specifically Naïve Bayes (NB), Decision

Tree (DT), and Artificial Neural Networks (ANNs), can be

effectively utilized with a high level of accuracy. Additionally,

a comparison measure was implemented to assess the proposed

prediction model against other methods. The findings indicated

that the Machine Learning approach outperformed other

techniques in terms of performance.

Key Words: Bug Prediction, Reliability, Efficiency, Quality,

Machine Learning, Performance Metrics

1.INTRODUCTION
Software bugs have a significant impact on the reliability,

quality, and cost of maintaining software. Despite careful
development, it is difficult to create bug-free software due to
hidden bugs. Developing a software bug prediction model to
identify faulty modules early on is a major challenge in the field
of software engineering. Predicting software bugs is crucial in
software development as it allows for identifying problematic
modules before deployment, leading to higher user satisfaction
and improved software performance. However, building a
reliable bug prediction model is a challenging task, and various
techniques have been suggested in the research literature. In
this study, a software bug prediction model based on machine
learning (ML) is presented. By analyzing historical data, three
supervised ML algorithms—Naive Bayes (NB), Decision
Trees (DT), and Convolutional Neural Networks (CNN)—
were used to forecast future software faults.

Many methods have been suggested for addressing the issue
of software bug prediction (SBP). The most commonly used
methods are those based on machine learning (ML). ML
techniques are widely employed in SBP for forecasting
problematic modules by analyzing past fault records, key
metrics, and various software computational methods.

In this research, we explored the effectiveness of three
supervised machine learning classifiers in the context of SBP.
Specifically, we looked at the Naïve Bayes (NB) classifier, the
Decision Tree (DT) classifier, and the Artificial Neural
Networks (ANNs) classifier. These classifiers were tested on
three distinct datasets from previous works [1] and [2].
Furthermore, we conducted a comparison between these
classifiers, analyzing their performance based on various
evaluation metrics, including accuracy, precision, recall, F-
measures, and ROC curves.

2. LITERATURE SURVEY
Numerous studies have been conducted on predicting

software bugs using machine learning methods. For instance, a

study cited introduced a linear Auto-Regression (AR)

technique for forecasting faulty modules. This study relied on

past software fault data to anticipate future issues. The research

also assessed and contrasted the AR model with the known

power model (POWM), utilizing the root Mean Square Error

(RMSE) metric. Furthermore, three datasets were employed in

the evaluation, yielding promising outcomes.

In recent research papers, the effectiveness of different

machine learning techniques for predicting faults has been

examined. Sharma and Chandra also summarized key findings

from previous studies on each machine learning method and

current developments in using machine learning for predicting

software bugs. This study serves as a foundational starting

point for future research in software bug prediction.

R. Malhotra conducted a thorough systematic review of

software bug prediction techniques, utilizing Machine

Learning (ML). The study covered research from 1991 to 2013,

examined ML methods for bug prediction models, evaluated

their effectiveness, compared ML with statistical methods,

compared various ML techniques, and highlighted the strengths

and weaknesses of ML approaches. The paper sets a standard

for easy comparison among different bug prediction methods.

The research conducted a detailed analysis comparing various

bug prediction methods, introducing a new approach, and

assessing its effectiveness through a thorough comparison with

other approaches using a standardized benchmark. D. L. Gupta

and K. Saxena [7] created a model for predicting software bugs

in an object-oriented context, combining relevant defect

datasets from the Promise Software Engineering Repository.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM31425 | Page 2

The model was evaluated based on accuracy metrics, with

results showing an average accuracy of 76.27% for the

proposed approach.

Additionally, research was conducted and explored using

different machine learning methods, which highlighted their

role in predicting software defects. These studies supported

developers in utilizing valuable software metrics and selecting

appropriate data mining techniques to improve software

quality. Specifically, the study identified key metrics for

effective defect prediction, including response for class (ROC),

line of code (LOC), and lack of coding quality (LOCQ).

However, many other studies have delved into various

machine learning techniques and datasets. Previous research

has primarily concentrated on the optimization of SBP metrics

for efficiency, while other studies have put forth alternative

methods for predicting software bugs instead of relying solely

on ML techniques.

3. PROPOSED SYSTEM

The aim of the model is to predict software bugs using machine

learning algorithms. By analyzing past data, the model can

anticipate future software issues, leading to enhancements in

software quality, reliability, efficiency, and cost reduction. The

model incorporates Naïve Bayes, Decision Tree, Random

Forest, and Convolutional Neural Networks as supervised

machine learning classifiers. Evaluation results indicate that the

system achieves high accuracy rates and is effective in

forecasting software faults.

The new software bug prediction system that uses machine

learning algorithms offers many benefits. It can help improve

software quality by identifying and fixing bugs before

deployment, leading to a higher quality software product that

meets user needs. Discovering and resolving software bugs is a

time-consuming and costly process. By anticipating bugs and

dealing with them at an early stage in the development process,

the suggested system can aid in cutting down the overall

expenses of software development and maintenance. Thanks to

the suggested system, software developers can detect and solve

bugs sooner in the development cycle, leading to a quicker

development process and reducing time to market.

4. METHODOLOGY

Software bug prediction involves using a variety of machine

learning techniques, including Support Vector Classification

(SVC), Random Forest (RF), Nu-Support Vector Classification

(NuSVC), and Multi-Layer Perceptron (MLP). The first step is

to gather three testing/debugging datasets from reliable sources

to cover a range of software fault scenarios. Data pre-

processing includes normalizing numerical features and

addressing class imbalances to improve model training.

Techniques are used to select important software metrics that

help improve the accuracy of predictive models. Three machine

learning classifiers (SVC, RF, and NuSVC) are then trained on

processed and balanced datasets with historical fault data and

essential metrics. The MLP, a neural network method, adds

complexity to the predictive modeling process. The use of

ensemble learning, particularly stacking, aims to blend the

unique abilities of different classifiers to create a more

powerful bug prediction model. This model is then used to

forecast future software issues, and a detailed analysis is

conducted to measure the performance of each classifier,

emphasizing the influence of ensemble learning.

● Data Collection and Data Preprocessing

Gathering data is an important next step in the process,

where we identify and collect relevant information

sources related to software development and bug

tracking. We gather historical data on software

development activities, such as code changes, bug

reports, and resolutions, to train our machine learning

model. It is crucial to ensure the quality of the data by

addressing issues like missing values and outliers at

this stage. After that, we preprocess the collected data

to get it ready for model training. This includes

cleaning the data by handling missing values and

outliers, as well as transforming the data through

scaling, normalization, and encoding categorical

variables.

● Feature Engineering and Model Selection

In this phase, the AI identifies key elements from the

gathered data. It can also generate fresh attributes

based on its knowledge in a particular field to

highlight distinct aspects of software creation and

code structure. Choosing the right model is crucial, as

it involves picking machine learning techniques like

logistic regression, decision trees, random forests,

SVM, and neural networks based on the issue and

dataset. Various metrics are employed to evaluate

different algorithms and select the most efficient one

for further training.

● Model Training and Model Evaluation

After preparing the data, the chosen machine learning

model is trained. Hyperparameters are adjusted using

techniques like cross-validation to avoid overfitting.

The model's effectiveness is verified by assessing its

performance on the training dataset. Next, the model

is evaluated using a different validation dataset to test

its generalization abilities. If needed, the model's

parameters are fine-tuned to enhance its performance.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM31425 | Page 3

● Model Deployment

After the model is trained and assessed, it is put into

use to predict bugs in a live setting. The model is

connected to current software development tools and

processes, and its progress is monitored continuously.

Regular updates and upkeep are carried out to

maintain the model's effectiveness.

5. CONCLUSION

In order to find a bug, developers rely not only on the

information provided in the bug report but also on their

knowledge of the software project. We have developed a

learning-to-rank technique that simulates how developers

locate bugs. This model identifies important connections

between a bug report and the source code files by taking into

account domain knowledge, such as API specifications, code

structure, and issue tracking data. Testing on six Java projects

revealed that our method successfully identifies the relevant

files in the top 10 suggestions for more than 70 percent of bug

reports in Eclipse Platform and Tomcat. In addition, the ranking

model we suggest is better than three other advanced methods.

Through feature evaluation tests using greedy backward feature

elimination, we found that all features are helpful. By analyzing

the runtime alongside the feature evaluation results, we can

choose a specific group of features to strike a balance between

system precision and runtime complexity. Three AI models

were utilized in the evaluation process: NB, DT, and ANNs.

The evaluation was conducted using three real testing and

debugging datasets. The experimental results were measured

based on accuracy, precision, recall, F-measure, and RMSE.

The findings indicate that machine learning techniques are

effective in predicting future software bugs. The comparison

revealed that the DT classifier outperformed the other models.

Additionally, the experimental results demonstrated that the

ML approach yielded better performance for the prediction

model compared to linear AR and POWM models. In future

work, other ML techniques will be explored to conduct a

thorough comparison among them. In the future, we plan to

incorporate additional machine learning methods and conduct

a thorough comparison between them. Additionally, including

a wider range of software metrics during the learning phase

could improve the accuracy of our prediction model.

6. FUTURE ENHANCEMENTS

In our upcoming research, we will make use of more forms of

expertise specific to the field, including the stack traces

provided along with bug reports and the revision history of

files. We will also incorporate characteristics that have been

utilized in previous defect prediction systems. Additionally, we

aim to employ ranking SVM with nonlinear kernels and

extensively test this methodology on projects written in

different programming languages.

7. ACKNOWLEDGEMENT

We are incredibly thankful to Mr. S. Anil Kumar for his

exceptional guidance and support during our project. His

expertise and motivation were essential to our success, and we

are sincerely appreciative of his consistent commitment and

mentorship. Additionally, we extend our gratitude to the faculty

in the Computer Science and Engineering Department at

Tirumala Engineering College for providing us with the

opportunity to participate in this research project, which has

been a valuable educational journey for us.

8. REFERENCES

1. Awni Hammouri, Mustafa Hammad, Mohammad

Alnabhan, Fatima Alsarayrah “Software Bug

Prediction using Machine Learning Approach”

(IJACSA) International Journal of Advanced

Computer Science and Applications,Vol. 9, No. 2,

2018

2. A. Sheta and D. Rine, “Modeling Incremental Faults

of Software Testing Process Using AR Models ”, the

Proceedings of 4th International Multi-Conferences

on Computer Science and Information Technology

(CSIT 2006), Amman, Jordan. Vol. 3. 2006.

3. M. M. Rosli, N. H. I. Teo, N. S. M. Yusop and N. S.

Moham, "The Design of a Software Fault Prone

Application Using Evolutionary Algorithm," IEEE

Conference on Open Systems, 2011.

4. G. Antoniol and Y.-G. Gueheneuc,“Feature

identification: A novel approach and a case study,” in

Proc. 21st IEEE Int. Conf. Softw. Maintenance,

Washington, DC, USA, 2005, pp. 357–366.

5. A. Bacchelli and C. Bird, “Expectations, outcomes,

and challenges of modern code review,” in Proc. Int.

Conf. Softw. Eng., Piscataway, NJ, USA, 2013, pp.

712–721.T.

6. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The

concept assignment problem in program

understanding,” in Proc. 15th Int. Conf. Softw. Eng.,

Los Alamitos, CA, USA, 1993, pp. 482–498.

7. D. Binkley and D. Lawrie, “Learning to rank improves

IR in SE,” in Proc. IEEE Int. Conf. Softw.

Maintenance Evol., Washington, DC, USA, 2014, pp.

441–445.

8. Malhotra, Ruchika. "A systematic review of machine

learning techniques for software fault prediction."

Applied Soft Computing 27 (2015): 504-518.

9. https://www.researchgate.net/figure/Architecture-of-

proposed-software-bug-prediction-

system_fig2_378338847

http://www.ijsrem.com/

