
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28761 | Page 1

Software Defect Prediction Using Ensemble Modelling and Class Balancing

Ms. Pooja Gupta1, Ms.Komal Ahuja2

M.Tech , Computer Science Engineering, Global Research institute of Management & Technology,

Radaur

Assistant Professor, Computer Science Engineering, Global Research institute of Management &

Technology, Radaur

 Abstract

Software product is a kind of software whose

development is done to accomplish a precise

requirement. Meanwhile, engineering is branch

which is related to develop a product based on

explicit technical fundamentals and techniques.

There are diverse phases executed to predict the

defect in software such as to employ the data for

input, pre-process it, extract the attributes and

classify the defect. This research work presents

numerous algorithms, namely gaussian naive bayes

(GNB), Bernoulli NB, random forest (RF) and

multi-layer perceptron (MLP), for predicting the

software defect. This work focuses on developing

an ensemble algorithm to enhance the efficacy of

predicting the defects. This ensemble consisted of

Principal Component Analysis (PCA) algorithm

with class balancing. Python is executed for

simulating the introduced model. Diverse

parameters such as accuracy, precision and recall

are employed for analyzing the results.

Keywords—Software Defect, Gaussian Naive

Bayes, Bernoulli Naive Bayes, Random Forest,

PCA, Class Balancing

1. Introduction

Due to the growing complexity of modern software

and the increased risk of failures, ensuring

reliability has become a crucial focus.

Organizations like Google employ code review and

unit testing to detect issues in new code and

enhance reliability. However, testing every code

unit is impractical, and human code reviews are

labour-intensive [1]. With limited funding for

software projects, it is beneficial to identify

potential issues early. Consequently, software

defect prediction algorithms are commonly

employed to automatically detect possible flaws,

enabling developers to make efficient use of their

resources. Software defect prediction involves

creating classifiers that analyze data such as change

history and code complexity to identify code

segments with potential flaws. This practice allows

code reviewers to allocate their efforts strategically

and receive warnings about potentially buggy code

regions based on the prediction results [2]. These

code sections could include modifications, files, or

procedures. In the typical fault prediction process,

there are two main stages: feature extraction from

source files and the creation of a classifier using

various machine learning techniques. Previous

research focused on enhancing the precision of

predictions has primarily involved manually

crafting discriminative features or combining

features [3]. Examples include Halstead features

based on operators and operands, McCabe features

based on dependencies, and CK features for object-

oriented programs. However, traditional hand-

crafted features often overlook the intricate

semantics and well-defined syntax concealed in the

Abstract Syntax Trees (ASTs) of programs.

Abstract Syntax Trees (ASTs) offer structural

information that details the interactions between

adjacent tokens or nodes to execute specific

functions [4]. Even a slight change in local

structure can lead to a wide range of program

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28761 | Page 2

outcomes, including crashes. Consequently,

conventional forecasting approaches may yield

insufficient results. Recently, machine learning has

proven to be a powerful tool for automated feature

development due to its ability to effectively capture

highly complex non-linear features. The process of

pinpointing code sections that might harbour faults

is termed “software defect prediction”, aiding

developers in optimizing their testing resources by

prioritizing a review of potentially problematic

code [5]. Modern large-scale software heavily

relies on defect prediction to ensure its reliability.

Figure 1 illustrates a commonly employed file-level

fault prediction procedure.

Figure 1: Defect Prediction Process

In the depicted procedure, the initial stage involves

collecting source code files (instances) from

software archives and classifying them as either

clean or buggy [6]. The labelling procedure

depends on the number of post-release flaws in

each file. If a file has at least one post-release bug,

it is classified as buggy; otherwise, it is marked as

clean. The second phase involves preparing

features for each file. Conventional features, as

defined in prior research, can be categorized into

two groups: process metrics (like change histories)

and code metrics (such as McCabe features and CK

features) [7]. The examples with matching

characteristics and labels are then used to train

machine learning algorithms, such SVM, Naive

Bayes, and Dictionary Learning, to create

predictive classifiers. Ultimately, fresh examples

are added to the trained classifier, enabling it to

forecast whether the files are error-free or not. The

test set consists of the cases used to assess the

learnt classifier, whereas the training set consists of

the instances used to develop the classifier [8].

SVM is mostly used to determine the best method

for separating data into two classes. In other words,

the decision determines the hyperplanes or limits

them for this purpose. In high-dimensional space, it

works well. When there are more dimensions than

there are samples, it works well. To ensure the

resilience of the decision to new information, the

boundary line needs to be positioned as close as

possible to the boundaries of the two classes [9].

Support points refer to those points that are closest

to this boundary line.

Decision nodes in a decision tree consist of basic

elements such as branches and leaves. The input

space of a Decision Tree (DT) is divided into

intersensory areas, and data points are identified by

assigning a value or label to each region. The

structure of a DT is observable, and its mechanism

is transparent [10]. Typically, DTs go through two

phases: first, a large tree is constructed, and in the

second phase, it is pruned to prevent overgrowth

issues. Following that, the tree is applied to the

categorization and pruning processes. Named after

the mathematician Thomas Bayes, the Naive Bayes

classification algorithm employs a set of

computations grounded in probability concepts to

ascertain the class of the provided data [11]. In NB

classification, the system is trained with a specific

dataset, and a class of data must be provided for

instruction. Probability operations are then applied

to the trained data, allowing the system to process

newly supplied test data and determine its category

based on previously derived probability values. The

accuracy of determining the true type of test data

tends to improve with more data being incorporated

into the training process [12].

In the K-Nearest Neighbour algorithm, the number

of elements to be considered during the

categorization phase depends on the specified k

value. The algorithm involves training data, and

when a new value is introduced, distances are

calculated to the k nearest neighbours. Distance

calculation methods, such as Manhattan and

Euclidean distances, can be applied in this process.

The algorithm comprises five stages [13]. Initially,

the value of k is determined, followed by the

computation of Euclidean distances between the

target object and other items. The closest

neighbours are identified by sorting distances based

on minimum values. The categories associated with

the closest neighbours are then combined, and the

neighbour type that best fits the situation is chosen.

It is crucial to select the k value wisely and have a

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28761 | Page 3

substantial training set for optimal results [14]. The

Random Forest Classifier method aims to enhance

the classification value by generating multiple

Decision Trees (DT) during the classification

process. These individually produced DTs

collaborate to construct a decision forest. In this

approach, each DT comprises randomly selected

portions of the dataset to which they are associated.

This method yields results quite rapidly. In the

Adaboost algorithm, one approach involves

focusing the pre-predictor more on missing

education data to correct its predictions. The

process begins by training and estimating the

classifier training kit before constructing an

Adaboost Classifier (AC) [15]. The “Relative

Weight” of incorrectly identified training data is

then increased. These higher weights are utilized to

train and re-estimate the second classifier. The

weights are updated once more and remain

constant. Estimates are generated using bagging or

pasting techniques after all the forecasters have

undergone training, considering each forecaster's

accuracy ratio. The Gradient Boosting Classifier

(GBC) is a machine learning method designed for

addressing gradient boosting, regression, and

classification problems. It creates a model by

combining weak prediction models, typically

Decision Trees (DT) [16]. The primary objective of

any supervised learning algorithm, including GBC,

is to identify and minimize a loss function.

2. Literature Review

M. Ali, et.al (2024) suggested an intelligent

ensemble-based framework in which various

classification methods were integrated to predict

software defects [17]. A two-phase procedure was

executed for detecting defective modules. The

initial phase was emphasized on 4 supervised

machine learning (SML) methods such as Random

Forest (RF), Support Vector Machine (SVM),

Naïve Bayes (NB), and Artificial Neural Network

(ANN). An iterative parameter optimization was

utilized for optimizing these methods for attaining

superior accuracy. The next phase aimed to

incorporate the accuracy of every method into a

voting ensemble for predicting defects in software.

This framework made the process of predicting

software defects more accurate and reliable. The

suggested framework was simulated on 7 datasets

taken from NASA MDP repository. The

experimental results depicted the superiority of

suggested framework over existing methods to

predict software defects.

Y. Al-Smadi, et.al (2023) introduced an innovative

method in order to predict software defects in

which 11 machine learning (ML) techniques were

implemented over 12 diverse datasets [18]. Four

diverse meta-heuristic algorithms: particle swarm

optimization (PSO), genetic algorithm (GA),

harmony algorithm (HA), and ant colony

optimization (ACO), were implemented to select

features. Furthermore, the synthetic minority

oversampling technique (SMOTE) was

implemented for dealing with imbalanced data.

Additionally, the decisive features were highlighted

through Shapley additive explanation (SAE)

framework. The experimental outcomes depicted

that the gradient boosting (GB), stochastic gradient

boosting (SGB), decision trees (DTs), and

categorical boosting (CB) algorithms were

performed more effectively and offered an

accuracy and ROC-AUC over 90%. Moreover, the

supremacy of last algorithm was proved against

other methods for predicting software defects.

C. Yu, et.al (2021) emphasized on deploying

homomorphic encryption (HE) to predict defect,

and formulated a new technique called HOPE [19].

An algorithm approximation (AA) method was

presented for approximating the sigmoid function

and selecting the Paillier homomorphic encryption

(PHE) algorithm to execute Logistical regression

(LR). The real time projects were considered as

experimental subjects for generating MORPH

dataset for computing the formulated technique.

Thereafter, 3 control groups were deployed for

simulating 3 diverse scenarios on the basis of

whether the client led to transmit the encrypted data

to server and whether formulated technique was

employed in server. According to results, in case of

deployment of original LR in server for generating

this technique on the encrypted data, a same

performance was obtained from the trained model

that results in protecting the privacy of data.

Furthermore, the formulated technique was more

efficient concerning least computing cost.

R. Haque, et.al (2024) presented an innovative

technique known as heterogeneous cross-project

defect prediction (HCDP) in which encoder

networks and transfer learning (ENTL) model was

implemented to predict defects occurred in

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28761 | Page 4

software [20]. The encoder networks (ENs) were

exploited for extracting significant features from

source and target data sets. Besides, the negative

transfer was mitigated in transfer learning (TL)

using an augmented dataset containing pseudo-

labels and the source dataset. The presented model

was trained on a single dataset and quantified on

sixteen datasets, generated via 4 public projects. A

comparative analysis was conducted on presented

model against traditional methods. The cost-

sensitive learning (CL) method was utilized for

dealing with the imbalanced class issue. The

experimental results indicated that the presented

method was more robust to predict software defects

with respect to PD, PF, F1-score, G-mean and

AUC.

W. Wen, et.al (2022) developed a class code

similarity-based cross-project software defect

prediction (CCS-CPDP) method to predict software

defects [21]. At first, this technique was focused on

converting the code set taken from Abstract Syntax

Tree (AST), into a vector set. For this, a Doc2Bow

and TF-IDF (DTI) method was employed. The

second task was to compute similarity amid the

vector set of target projects and training projects.

At last, the principle of the majority decision

subordinate category was considered in K-Nearest

Neighbor (KNN) to verify the number of same

class occurrences of training project. The class

instance was selected to refine the source project,

and their prediction and computation was done on

software defects. The developed method was

computed against the traditional methods.

According to experiments, the developed method

was effective and offered higher recall and f1-score

while predicting software defects in contrast to

other methods.

S. Kassaymeh, et.al (2022) constructed a Salp

Swarm Algorithm (SSA) with a backpropagation

neural network (BPNN) for predicting software

fault [22]. The SSA-BPNN, their integrated

method, was presented for enhancing the accuracy

to predict defects when the optimal metrics were

optimized. Various datasets were applied to

compute the presented method for dealing with the

issue related to predict software defects with

respect to various parameters, such as AUC,

confusion matrix, sensitivity, specificity, accuracy,

and error rate. The size and complexity of these

datasets was varied. The simulation outcomes

indicated that the presented method was performed

more effectively in comparison with the

conventional methods and yielded a higher

accuracy to predict software defects. In addition,

this technique was proved as an effective tool to

tackle the problems related to software engineering.

W. Wen, et.al (2022) designed a cross-project

defect prediction (CPDP) model known as BSLDP

to predict defects occurred in software [23]. A

bidirectional long and short-term memory (Bi-

LSTM) algorithm was deployed with self-attention

(SA) method to extract semantic information about

source code files. Generally, the ALC model was

executed for extracting source code semantics on

the basis of source code files, and a classifier was

projected depending upon the semantic information

of source project and target project, called BSL, for

generating a predictive framework. An equal

meshing method was adopted for extracting

semantic information on small fragments when the

numerical token vector was split for enhancing the

designed model. A PROMISE dataset was applied

for computing the designed model. Based on

experiments, the designed model was capable of

predicting defects and enhanced the F1 up to

14.2%, 34.6%, 32.2% and 23.6% against 4

techniques respectively.

L. Yang, et.al (2021) investigated a hybrid of

particle swarm optimization (PSO) and Salp Swarm

Algorithm (SSA) called SSA-PSO for augmenting

the convergence prior to individual update of SSA

[24]. Meanwhile, a novel maximum likelihood

estimation (MLE)-based fitness function (FF) of

metrics was presented and employed to initialize

metrics. Five sets of actual datasets were employed

to evaluate the investigated approach against an

individual technique. The experimental results

revealed the stability of investigated approach over

others with respect to higher convergence speed

and accuracy. Besides, the novel FF was assisted in

tackling the issues related to slow convergence

speed and lower accuracy of solution. The

investigated approach was proved more applicable

to estimate and predict defects occurred in

software.

S. Kwon, et.al (2023) projected a function-level

just-in-time (JIT)-software defect prediction (SDP)

technique depending upon a pre-trained method for

dealing with the drawback of predicting software

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28761 | Page 5

defects [25]. For this, the limited testing resources

were prioritized for the defect-prone functions [25].

The transformer-based deep learning (TDL) model

was utilized and its training was done a large

corpus of code snippets, which further provided a

defect proneness for the altered functions at a

commit level. The CodeBERT, GraphCodeBERT

and UniXCoder methods were computed on edge-

cloud systems. The primary emphasis was on

analyzing the efficacy of these methods for edge-

cloud systems. The results exhibited that the last

method was performed better as compared to others

in the WPDP environment. moreover, the projected

technique was proved stable to predict software

defects.

A. Wang, et.al (2023) developed a federal

prototype learning based on prototype averaging

(FPLPA) method in which federated learning (FL)

was integrated with prototype learning (PL) to

predict heterogeneous defect in software [26]. The

one-sided selection (OSS) algorithm was

implemented for eliminating noise from local

training data, and the Chi-Squares Test algorithm

was employed for selecting the optimal subset of

features. Thereafter, the convolution prototype

network (CPN) model was put forward for creating

their own local prototypes. This model had offered

more robustness against heterogeneous data in

contrast to convolutional neural networks (CNN),

to avoid the deviation impact of class imbalances in

software data. The prototype was taken in account

as the communication subject amid clients and

server. The local prototype was developed

irreversibly for protecting privacy in the

communication procedure. The last task was to

update the presented model using the loss of local

prototype and global prototype as regularization.

The AEEEM, NASA and Relink datasets were

applied for quantifying the developed method. The

simulation outcomes depicted the superiority of

developed method over traditional methods for

predicting defect.

3. Research Methodology

The presented methodology is conducted on
various models, called random forest, Gaussian
Naïve Bayes, BNB and Decision Tree. This work
projects an ensemble algorithm for predicting the
defect in software. This algorithm is an integration
of Gaussian Naïve Bayes, BNB, Random Forest
and Multilayer Perceptron. In the end, PCA

algorithm is implemented to extract the features.
The utilized algorithms are discussed as:

A. Multilayer Perceptron

It is a kind of FFN. More than one
perceptron is involved in this algorithm. The
outcome generated from one perceptron is
fed into the next one as input. Furthermore,
the state of a neuron is evaluated using a
nonlinear function. Figure 3 represents a
general framework of Multilayer Perceptron
algorithm.

Figure 2: Multilayer Perceptron

In the given figure:

𝑎𝑖= activity of the 𝑖th unit.

𝑎𝑜=1: activity of 1 of the bias unit

𝑤𝑖𝑗= weight from unit j to unit 𝑖

𝑤𝑖𝑜= = 𝑏𝑖 : bias weight of unit 𝑖

W: number of weights

N: number of units

I: number of inputs units (1 ≤ 𝑖 ≤ 𝐼) placed in
the first layer called the input layer

O: number of output units (𝑁 − 𝑂 + 1 ≤ 𝑖 ≤
𝑁) available in the last layer called the output layer

M: number of hidden units (𝐼 < 𝑖 ≤ 𝑁 − 𝑂)
present in the hidden layers.

L: number of layers, at which 𝐿𝑣 illustrates the
index set of the 𝑣𝑡ℎ layer; 𝐿1 = {1, … . , 𝐼} and 𝐿1 =
{𝑁 − 𝑂 + 1, … . . , 𝑁}

𝑛𝑒𝑡𝑖 : network input to the 𝑖th unit (I <𝑖)
calculated as:

𝑛𝑒𝑡𝑖 = ∑𝑁
𝑗=0 𝑤𝑖𝑗𝑎𝑗 (1)

f: activation function with

𝑎𝑖 = 𝑓(𝑛𝑒𝑡𝑖) (2)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28761 | Page 6

A number of activation functions (AFs) 𝑓𝑖 are
defined for distinct units. AF is also called the
transfer function.

An FF-MLP has only links which are taken
from units in lower layers to units of superior ones:

𝑖 ∈ 𝐿𝑣 𝑎𝑛𝑑 𝑗 ∈ 𝐿𝑣′ 𝑎𝑛𝑑 𝑣′ ≤ 𝑣 ⇒ 𝑤𝑖𝑗 = 0

(3)

The traditional algorithm only uses associations
or weights between successive layers. Other
weights have been given the value of zero. After
that, the input is considered for the node in the
output layer or hidden layer v, where ν > 1.

∀𝑖𝜖𝐿𝑣
: 𝑛𝑒𝑡𝑖 = ∑𝑁

𝑗:𝑗𝜖𝐿𝑉=1
𝑤𝑖𝑗 𝑎𝑗 (4)

Non-adjacent associates amongst units, present
in layers are known as shortcut connections.

Activation Functions

Sigmoid function is a major kind of AFs. The
logistic function is expressed as:

𝑓(𝑎) =
1

1+𝑒𝑥𝑝 (−𝑎)
 (5)

and tanh AF is defined below in given equation:

𝑓(𝑎) =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑎) =
𝑒𝑥𝑝𝑒𝑥𝑝 (𝑎) −𝑒𝑥𝑝 (−𝑎)

𝑒𝑥𝑝𝑒𝑥𝑝 (𝑎) +𝑒𝑥𝑝 (−𝑎)

(6)

B. Bernoulli Naive Bayes

This algorithm aims to train Naïve Bayes (NB)
and classification models are included in this
algorithm for distributes data with regard to
multivariate Bernoulli distributions. It implies the
availability of a variety of attributes. In addition,
each attribute is employed as a binary-valued
variable. Hence, there is necessity of samples for
the class which are utilized as feature vectors of
binary value. This algorithm is responsible for
binarizing its input when it handles other type of
data. Its decision rule is expressed as:

𝑃(𝑥𝑖|𝑦) = 𝑃(𝑖|𝑦)𝑥𝑖 + (1 − 𝑃(𝑖|𝑦)) (1 − 𝑥𝑖) (7)

Unlike the multinomial NB’s rule, this rule is
executed to penalize the non-occurrence of attribute
𝑖 and this attribute is considered as a factor for class
𝑦. The multinomial variant doesn’t consider this
attribute. Bernoulli Naive Bayes is simulated and
trained on the basis of word occurrence vectors to
classify the text. On some data sets of smaller
documents, this algorithm offers efficiency. The
major task is of computing the frameworks
concerning time.

C. Gaussian Naive Bayes

The Gaussian distributions is implemented in
the Naive Bayes (NB) algorithm for handling the
continuous features in order to illustrate the
likelihoods of the features related to the classes.

Therefore, a Gaussian PDF assists in defining every
feature as:

𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2) (8)

The shape of Gaussian probability density
function is similar to a bell and it can be defined
mathematically as:

𝑁 (𝜇, 𝜎2)(𝑥) =
1

√2𝜋𝜎2
𝑒 −

(𝑥−𝜇)2

2𝜎2 (9)

In which, 𝜇 is used to signify the mean and 𝜎2
defines the variance. The parameters employed in
NB model must be available as 𝑂(𝑛, 𝑘) in which n
is total features and the number of classes is
illustrated with 𝑘. In particular, every continuous
feature has a normal distribution 𝑃(𝑋𝑖 ∖ 𝐶) ∽
𝑁(𝜇, 𝜎2). The metrics of these normal distributions
are expressed as

𝜇
𝑋𝑖|𝐶=𝑐

=
1

𝑁𝑐
∑𝑁𝑐

𝑖=1 𝑥𝑖 (10)

𝜎2
𝑋𝑖|𝐶=𝑐 =

1

𝑁𝑐
∑𝑁𝑐

𝑖=1 𝑥𝑖
2 − 𝜇2 (11)

In which, 𝑁𝑐 is used to denote the number of
instances in which 𝐶 is equal to c and 𝑁 denotes the
total instances available to train the data. The
relative frequencies are assisted in computing
𝑃(𝐶 = 𝑐) for all the classes as:

𝑃(𝐶 = 𝑐) =
𝑁𝑐

𝑁
 (12)

D. Random Forest

It is considered as an ensemble system. The
notion, related to develop a tiny decision tree (DT)
on the basis of some features, is considered. This
algorithm consumes least cost. The trees are
combined after creating various small and weak
DTs in parallel so that a single and strong learner is
developed subsequent to achieve the majority
votes. This algorithm is presented as an effective
learning method of superior accuracy in the
training stage.

Particularly, RF is a predictive tool in which
diverse randomized base regression trees are
implemented as {𝑟𝑛(𝑥,⊝𝑚, 𝐷𝑛), 𝑚 ≥ 1}, here,
⊝1,⊝2 …. have not any association among one
another. This algorithm employs Regression Trees
for creating the aggregated regression estimate as:

𝑟𝑛(𝑋, 𝐷𝑛) = 𝐸⊝[𝑟𝑛(𝑋,⊝, 𝐷𝑛)], (13)

This equation contains 𝐸⊝ to represent the

expectation with random metric, that is conditioned
on 𝑋 and the data set 𝐷𝑛. This algorithm aims to
exclude the dependence of the estimates in the
sample which can alleviate a notation, and to write
it for defining 𝑟𝑛(𝑋) rather than 𝑟𝑛(𝑋, 𝐷𝑛). In

particular, the above expression is quantified on the
basis of Monte Carlo. For this, the random trees are
extracted and the average of the discrete results are
utilized. The efficiency of consecutive cuts is
computed with respect to randomizing variable ⊝.
Random Forest algorithm emphasizes on creating

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28761 | Page 7

the trees individually for selecting the coordinate so
that the split and its position are comprised. The
variable ⊝ is used to define an independent
variable 𝑋 and 𝐷𝑛 is the training sample.

E. Principal Component Analysis

It is a robust method that is effective to alter the
group of consistent elements into a set of linearly
unconnected subsets which are depending on a
conversion, and the distinct variables are generated
using this method. This method is also called as an
orthogonal linear transformation (LT) and its
implementation is done to project the primary
dataset with another projection system. The
projection of the 1st coordinate is considered in the
largest variance, and a projection of the 2nd one is
kept in the 2nd largest variance. This algorithm

helps in locating the LT as 𝑧 = 𝑊𝑘
𝑇 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑥 ∈

 𝑅𝑑, and 𝑟 < 𝑑, enhancing the variance of the data
in the projected space. The 𝑋 = {𝑥1, 𝑥2, … … . . , 𝑥𝑖},

𝑥𝑖 ∈ 𝑅𝑑, 𝑧 ∈ 𝑅𝑟 and 𝑟 < 𝑑 is utilized to denote
the data matrix and a set of p-dimensional vectors

of weights 𝑊 = {𝑤1, 𝑤2, … … . . , 𝑤𝑝}, 𝑤𝑝 ∈ 𝑅𝑘 are

considered for defining the transformation that
contains every 𝑥𝑖vector of X’s matching with

𝑡𝑘(𝑖) = 𝑊|(𝑖)𝑇𝑥𝑖
 (14)

For maximizing the variance, an initial weight
𝑊1 must have to satisfy a condition:

𝑊𝑖 = 𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥
|𝑤|

= {∑𝑖 (𝑥𝑖 ∙ 𝑊)2}

(15)

This condition is further expanded as:

This algorithm aims to analyze a symmetric
grid 𝑋𝑇𝑋 successfully after attaining the chief
Eigen value of the matrix as 𝑊. Subsequent to
generate𝑊1, this algorithm focuses on projecting
the primary data matrix 𝑋 projected onto the 𝑊1 in
the space for assuming the preliminary PC in the
conversion. This results in attaining the additional
segments along these lines when the attained
elements are subtracted.

Figure 3 Proposed Methodology

4. Results and Discussion

This work aims to analyse and implement the
“CM1/Software Defect Prediction” whose
extraction is done from PROMISE SE Repository.
This dataset has498 records and twenty-two
features. Moreover, it also contains five diverse
lines of code measure, 3 McCabe parameters, 4
base Halstead, 8 derived Halstead, a branch count,
and 1 goal field. This work chooses this sample
data as it is generated through the authentic source
and it is present publicly.

Figure 4 Proposed Methodology

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28761 | Page 8

Figure 4 demonstrates the implementation of
class balancing with PCA ensemble 1 algorithm
that put 4 algorithms, called Gaussian Naïve Bayes,
Bernoulli NB, Random Forest and C4.5 together.

TABLE I. RESULT ANALYSIS

Figure 5: Performance of Models

The implementation of different algorithms,
namely BNB, GNB, RF, DT, MLP and SVM is
done for predicting the defect occurred in software.
Figure 5 illustrates that for deploying an individual
algorithm, no technique of extracting features
including PCA or class balancing is considered
while predicting the software fault. The suggested
technique is an ensemble of BNB, GNB, RF and
MLP. PCA with class balancing is adopted to
extract the features. The suggested technique has
generated more optimal results in comparison with
the existing methods for predicting the faults
occurred in software.

Conclusion

Software defect and a basic component of
software product are the major elements of
software quality. The defects occurred on software
are unavoidable components. Furthermore, there is
not any surety of quality of software, and more
time is required to compute it. Different ways are
present to define the defects based on quality.
However, the complex task is to predict the defects
in software. This research work presents a number
of techniques such as, GNB, BNB, RF, C4.5, SVM
and MLP for predicting the software defect.

Moreover, it suggests an ensemble approach of
GNB, BNB, Random Forest and Multilayer
Perceptron to predict the software defects.
Moreover, PCA along with the ensemble 1 class
balance is adopted to predict the software defect.
The accuracy attained from the suggested technique
is calculated 96.67% as compared to the existing
methods.

References

[1] H. Chen, X. -Y. Jing and B. Xu,

"Heterogeneous Defect Prediction through Joint

Metric Selection and Matching," 2021 IEEE 21st

International Conference on Software Quality,

Reliability and Security (QRS), Hainan, China,

2021, pp. 367-377

[2] P Lakshmi, T. LathaMaheswari, “An effective

rank approach to software defect prediction using

software metrics”, 10th International Conference

on Intelligent Systems and Control (ISCO), vol. 3,

issue 21, pp. 679-684, 2019

[3] M. Kakkar, S. Jain, A. Bansal, P.S. Grover,

“Evaluating Missing Values for Software Defect

Prediction”, International Conference on Machine

Learning, Big Data, Cloud and Parallel Computing

(COMITCon), vol. 37, issue 14, pp. 543-554, 2019

[4] S. Agarwal, S. Gupta, R. Aggarwal, S.

Maheshwari, L. Goel, S. Gupta, “Substantiation of

Software Defect Prediction using Statistical

Learning: An Empirical Study”, 4th International

Conference on Internet of Things: Smart

Innovation and Usages (IoT-SIU), vol. 5, issue 11,

pp. 109-115, 2019

[5] J. Huang, X. Guan and S. Li, "Software Defect

Prediction Model Based on Attention Mechanism,"

2021 International Conference on Computer

Engineering and Application (ICCEA), Kunming,

China, 2021, pp. 338-345

[6] M. M. Ahmed, B. S. Kiran, P. H. Sai and M.

Bisi, "Software Fault-Prone Module Classification

Using Learning Automata based Deep Neural

Network Model," 2021 12th International

Conference on Computing Communication and

Networking Technologies (ICCCNT), Kharagpur,

India, 2021, pp. 1-6

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28761 | Page 9

[7] A. Joon, R. Kumar Tyagi and K. Kumar, "Noise

Filtering and Imbalance Class Distribution

Removal for Optimizing Software Fault Prediction

using Best Software Metrics Suite," 2020 5th

International Conference on Communication and

Electronics Systems (ICCES), Coimbatore, India,

2020, pp. 1381-1389

[8] S. Kassaymeh, S. Abdullah and M. Alweshah,

“Salp swarm optimizer for modeling the software

fault prediction problem”, Journal of King Saud

University - Computer and Information Sciences,

vol. 4, no. 5, pp. 1402-1406, 11 February 2021

[9] R. Chennappan and Vidyaathulasiraman, “An

automated software failure prediction technique

using hybrid machine learning algorithms”, Journal

of Engineering Research, vol. 11, no. 1, pp. 1-8 20

January 2023

[10] S. Moudache and M. Badri, "Software Fault

Prediction Based on Fault Probability and Impact,"

2019 18th IEEE International Conference On

Machine Learning And Applications (ICMLA),

Boca Raton, FL, USA, 2019, pp. 1178-1185

[11] J. Lee, J. Choi, D. Ryu and S. Kim, "Holistic

Parameter Optimization for Software Defect

Prediction," in IEEE Access, vol. 10, pp. 106781-

106797, 2022

[12] J. Deng, L. Lu, S. Qiu and Y. Ou, "A Suitable

AST Node Granularity and Multi-Kernel Transfer

Convolutional Neural Network for Cross-Project

Defect Prediction," in IEEE Access, vol. 8, pp.

66647-66661, 2020

[13] L. Šikić, A. S. Kurdija, K. Vladimir and M.

Šilić, "Graph Neural Network for Source Code

Defect Prediction," in IEEE Access, vol. 10, pp.

10402-10415, 2022

[14] R. Chennappan and Vidyaathulasiraman, “An

automated software failure prediction technique

using hybrid machine learning algorithms”, Journal

of Engineering Research, vol. 7, no. 4, pp. 127–

131, 20 January 2023

[15] A. Wang, Y. Zhao, G. Li, J. Zhang, H. Wu and

Y. Iwahori, "Heterogeneous Defect Prediction

Based on Federated Reinforcement Learning via

Gradient Clustering," in IEEE Access, vol. 10, pp.

87832-87843, 2022

[16] Z. Yuan, X. Chen, Z. Cui and Y. Mu,

"ALTRA: Cross-Project Software Defect

Prediction via Active Learning and Tradaboost," in

IEEE Access, vol. 8, pp. 30037-30049, 2020

[17] M. Ali et al., "Software Defect Prediction

Using an Intelligent Ensemble-Based Model," in

IEEE Access, vol. 13, no. 4, pp. 127-134, 2024,

doi: 10.1109/ACCESS.2024.3358201.

[18] Y. Al-Smadi, M. Eshtay and A. A. Abd El-

Aziz, “Reliable prediction of software defects using

Shapley interpretable machine learning models”,

Egyptian Informatics Journal, vol. 24, no. 3, pp.

386-394, 31 July 2023, doi:

10.1016/j.eij.2023.05.011.

[19] C. Yu, Z. Ding and X. Chen, "HOPE:

Software Defect Prediction Model Construction

Method via Homomorphic Encryption," in IEEE

Access, vol. 9, pp. 69405-69417, 2021, doi:

10.1109/ACCESS.2021.3078265.

[20] R. Haque, A. Ali, S. McClean, I. Cleland and

J. Noppen, "Heterogeneous Cross-Project Defect

Prediction Using Encoder Networks and Transfer

Learning," in IEEE Access, vol. 12, pp. 409-419,

2024, doi: 10.1109/ACCESS.2023.3343329.

[21] W. Wen et al., "Cross-Project Software Defect

Prediction Based on Class Code Similarity," in

IEEE Access, vol. 10, pp. 105485-105495, 2022,

doi: 10.1109/ACCESS.2022.3211401.

[22] S. Kassaymeh, S. Abdullah and M. Alweshah,

“Salp swarm optimizer for modeling the software

fault prediction problem”, Journal of King Saud

University - Computer and Information Sciences,

11 February 2021, vol. 34, no. 6, pp. 3365-3378,

June 2022, doi: 10.1016/j.jksuci.2021.01.015.

[23] W. Wen et al., "A Cross-Project Defect

Prediction Model Based on Deep Learning With

Self-Attention," in IEEE Access, vol. 10, pp.

110385-110401, 2022, doi:

10.1109/ACCESS.2022.3214536.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28761 | Page 10

[24] L. Yang, Z. Li, D. Wang, H. Miao and Z.

Wang, "Software Defects Prediction Based on

Hybrid Particle Swarm Optimization and Sparrow

Search Algorithm," in IEEE Access, vol. 9, pp.

60865-60879, 2021, doi:

10.1109/ACCESS.2021.3072993.

[25] S. Kwon, S. Lee, D. Ryu and J. Baik, "Pre-

Trained Model-Based Software Defect Prediction

for Edge-Cloud Systems," in Journal of Web

Engineering, vol. 22, no. 2, pp. 255-278, March

2023, doi: 10.13052/jwe1540-9589.2223.

[26] A. Wang, L. Yang, H. Wu and Y. Iwahori,

"Heterogeneous Defect Prediction Based on

Federated Prototype Learning," in IEEE Access,

vol. 11, pp. 98618-98632, 2023, doi:

10.1109/ACCESS.2023.3313001.

http://www.ijsrem.com/

