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 Abstract 

Software product is a kind of software whose 

development is done to accomplish a precise 

requirement. Meanwhile, engineering is branch 

which is related to develop a product based on 

explicit technical fundamentals and techniques. 

There are diverse phases executed to predict the 

defect in software such as to employ the data for 

input, pre-process it, extract the attributes and 

classify the defect. This research work presents 

numerous algorithms, namely gaussian naive bayes 

(GNB), Bernoulli NB, random forest (RF) and 

multi-layer perceptron (MLP), for predicting the 

software defect. This work focuses on developing 

an ensemble algorithm to enhance the efficacy of 

predicting the defects. This ensemble consisted of 

Principal Component Analysis (PCA) algorithm 

with class balancing. Python is executed for 

simulating the introduced model. Diverse 

parameters such as accuracy, precision and recall 

are employed for analyzing the results. 

Keywords—Software Defect, Gaussian Naive 

Bayes, Bernoulli Naive Bayes, Random Forest, 

PCA, Class Balancing 

1. Introduction 

Due to the growing complexity of modern software 

and the increased risk of failures, ensuring 

reliability has become a crucial focus. 

Organizations like Google employ code review and 

unit testing to detect issues in new code and 

enhance reliability. However, testing every code 

unit is impractical, and human code reviews are 

labour-intensive [1]. With limited funding for 

software projects, it is beneficial to identify 

potential issues early. Consequently, software 

defect prediction algorithms are commonly 

employed to automatically detect possible flaws, 

enabling developers to make efficient use of their 

resources. Software defect prediction involves 

creating classifiers that analyze data such as change 

history and code complexity to identify code 

segments with potential flaws. This practice allows 

code reviewers to allocate their efforts strategically 

and receive warnings about potentially buggy code 

regions based on the prediction results [2]. These 

code sections could include modifications, files, or 

procedures. In the typical fault prediction process, 

there are two main stages: feature extraction from 

source files and the creation of a classifier using 

various machine learning techniques. Previous 

research focused on enhancing the precision of 

predictions has primarily involved manually 

crafting discriminative features or combining 

features [3]. Examples include Halstead features 

based on operators and operands, McCabe features 

based on dependencies, and CK features for object-

oriented programs. However, traditional hand-

crafted features often overlook the intricate 

semantics and well-defined syntax concealed in the 

Abstract Syntax Trees (ASTs) of programs. 

Abstract Syntax Trees (ASTs) offer structural 

information that details the interactions between 

adjacent tokens or nodes to execute specific 

functions [4]. Even a slight change in local 

structure can lead to a wide range of program 
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outcomes, including crashes. Consequently, 

conventional forecasting approaches may yield 

insufficient results. Recently, machine learning has 

proven to be a powerful tool for automated feature 

development due to its ability to effectively capture 

highly complex non-linear features. The process of 

pinpointing code sections that might harbour faults 

is termed “software defect prediction”, aiding 

developers in optimizing their testing resources by 

prioritizing a review of potentially problematic 

code [5]. Modern large-scale software heavily 

relies on defect prediction to ensure its reliability. 

Figure 1 illustrates a commonly employed file-level 

fault prediction procedure. 

 

Figure 1: Defect Prediction Process 

In the depicted procedure, the initial stage involves 

collecting source code files (instances) from 

software archives and classifying them as either 

clean or buggy [6]. The labelling procedure 

depends on the number of post-release flaws in 

each file. If a file has at least one post-release bug, 

it is classified as buggy; otherwise, it is marked as 

clean. The second phase involves preparing 

features for each file. Conventional features, as 

defined in prior research, can be categorized into 

two groups: process metrics (like change histories) 

and code metrics (such as McCabe features and CK 

features) [7].  The examples with matching 

characteristics and labels are then used to train 

machine learning algorithms, such SVM, Naive 

Bayes, and Dictionary Learning, to create 

predictive classifiers. Ultimately, fresh examples 

are added to the trained classifier, enabling it to 

forecast whether the files are error-free or not. The 

test set consists of the cases used to assess the 

learnt classifier, whereas the training set consists of 

the instances used to develop the classifier [8]. 

SVM is mostly used to determine the best method 

for separating data into two classes. In other words, 

the decision determines the hyperplanes or limits 

them for this purpose. In high-dimensional space, it 

works well. When there are more dimensions than 

there are samples, it works well. To ensure the 

resilience of the decision to new information, the 

boundary line needs to be positioned as close as 

possible to the boundaries of the two classes [9]. 

Support points refer to those points that are closest 

to this boundary line. 

Decision nodes in a decision tree consist of basic 

elements such as branches and leaves. The input 

space of a Decision Tree (DT) is divided into 

intersensory areas, and data points are identified by 

assigning a value or label to each region. The 

structure of a DT is observable, and its mechanism 

is transparent [10]. Typically, DTs go through two 

phases: first, a large tree is constructed, and in the 

second phase, it is pruned to prevent overgrowth 

issues. Following that, the tree is applied to the 

categorization and pruning processes. Named after 

the mathematician Thomas Bayes, the Naive Bayes 

classification algorithm employs a set of 

computations grounded in probability concepts to 

ascertain the class of the provided data [11]. In NB 

classification, the system is trained with a specific 

dataset, and a class of data must be provided for 

instruction. Probability operations are then applied 

to the trained data, allowing the system to process 

newly supplied test data and determine its category 

based on previously derived probability values. The 

accuracy of determining the true type of test data 

tends to improve with more data being incorporated 

into the training process [12]. 

In the K-Nearest Neighbour algorithm, the number 

of elements to be considered during the 

categorization phase depends on the specified k 

value. The algorithm involves training data, and 

when a new value is introduced, distances are 

calculated to the k nearest neighbours. Distance 

calculation methods, such as Manhattan and 

Euclidean distances, can be applied in this process. 

The algorithm comprises five stages [13]. Initially, 

the value of k is determined, followed by the 

computation of Euclidean distances between the 

target object and other items. The closest 

neighbours are identified by sorting distances based 

on minimum values. The categories associated with 

the closest neighbours are then combined, and the 

neighbour type that best fits the situation is chosen. 

It is crucial to select the k value wisely and have a 
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substantial training set for optimal results [14]. The 

Random Forest Classifier method aims to enhance 

the classification value by generating multiple 

Decision Trees (DT) during the classification 

process. These individually produced DTs 

collaborate to construct a decision forest. In this 

approach, each DT comprises randomly selected 

portions of the dataset to which they are associated. 

This method yields results quite rapidly. In the 

Adaboost algorithm, one approach involves 

focusing the pre-predictor more on missing 

education data to correct its predictions. The 

process begins by training and estimating the 

classifier training kit before constructing an 

Adaboost Classifier (AC) [15]. The “Relative 

Weight” of incorrectly identified training data is 

then increased. These higher weights are utilized to 

train and re-estimate the second classifier. The 

weights are updated once more and remain 

constant. Estimates are generated using bagging or 

pasting techniques after all the forecasters have 

undergone training, considering each forecaster's 

accuracy ratio. The Gradient Boosting Classifier 

(GBC) is a machine learning method designed for 

addressing gradient boosting, regression, and 

classification problems. It creates a model by 

combining weak prediction models, typically 

Decision Trees (DT) [16]. The primary objective of 

any supervised learning algorithm, including GBC, 

is to identify and minimize a loss function. 

2. Literature Review 

M. Ali, et.al (2024) suggested an intelligent 

ensemble-based framework in which various 

classification methods were integrated to predict 

software defects [17]. A two-phase procedure was 

executed for detecting defective modules. The 

initial phase was emphasized on 4 supervised 

machine learning (SML) methods such as Random 

Forest (RF), Support Vector Machine (SVM), 

Naïve Bayes (NB), and Artificial Neural Network 

(ANN). An iterative parameter optimization was 

utilized for optimizing these methods for attaining 

superior accuracy. The next phase aimed to 

incorporate the accuracy of every method into a 

voting ensemble for predicting defects in software. 

This framework made the process of predicting 

software defects more accurate and reliable.  The 

suggested framework was simulated on 7 datasets 

taken from NASA MDP repository. The 

experimental results depicted the superiority of 

suggested framework over existing methods to 

predict software defects.  

Y. Al-Smadi, et.al (2023) introduced an innovative 

method in order to predict software defects in 

which 11 machine learning (ML) techniques were 

implemented over 12 diverse datasets [18]. Four 

diverse meta-heuristic algorithms: particle swarm 

optimization (PSO), genetic algorithm (GA), 

harmony algorithm (HA), and ant colony 

optimization (ACO), were implemented to select 

features. Furthermore, the synthetic minority 

oversampling technique (SMOTE) was 

implemented for dealing with imbalanced data. 

Additionally, the decisive features were highlighted 

through Shapley additive explanation (SAE) 

framework. The experimental outcomes depicted 

that the gradient boosting (GB), stochastic gradient 

boosting (SGB), decision trees (DTs), and 

categorical boosting (CB) algorithms were 

performed more effectively and offered an 

accuracy and ROC-AUC over 90%. Moreover, the 

supremacy of last algorithm was proved against 

other methods for predicting software defects.  

C. Yu, et.al (2021) emphasized on deploying 

homomorphic encryption (HE) to predict defect, 

and formulated a new technique called HOPE [19]. 

An algorithm approximation (AA) method was 

presented for approximating the sigmoid function 

and selecting the Paillier homomorphic encryption 

(PHE) algorithm to execute Logistical regression 

(LR). The real time projects were considered as 

experimental subjects for generating MORPH 

dataset for computing the formulated technique. 

Thereafter, 3 control groups were deployed for 

simulating 3 diverse scenarios on the basis of 

whether the client led to transmit the encrypted data 

to server and whether formulated technique was 

employed in server. According to results, in case of 

deployment of original LR in server for generating 

this technique on the encrypted data, a same 

performance was obtained from the trained model 

that results in protecting the privacy of data. 

Furthermore, the formulated technique was more 

efficient concerning least computing cost. 

R. Haque, et.al (2024) presented an innovative 

technique known as heterogeneous cross-project 

defect prediction (HCDP) in which encoder 

networks and transfer learning (ENTL) model was 

implemented to predict defects occurred in 
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software [20]. The encoder networks (ENs) were 

exploited for extracting significant features from 

source and target data sets. Besides, the negative 

transfer was mitigated in transfer learning (TL) 

using an augmented dataset containing pseudo-

labels and the source dataset. The presented model 

was trained on a single dataset and quantified on 

sixteen datasets, generated via 4 public projects. A 

comparative analysis was conducted on presented 

model against traditional methods. The cost-

sensitive learning (CL) method was utilized for 

dealing with the imbalanced class issue. The 

experimental results indicated that the presented 

method was more robust to predict software defects 

with respect to PD, PF, F1-score, G-mean and 

AUC. 

W. Wen, et.al (2022) developed a class code 

similarity-based cross-project software defect 

prediction (CCS-CPDP) method to predict software 

defects [21]. At first, this technique was focused on 

converting the code set taken from Abstract Syntax 

Tree (AST), into a vector set. For this, a Doc2Bow 

and TF-IDF (DTI) method was employed.  The 

second task was to compute similarity amid the 

vector set of target projects and training projects. 

At last, the principle of the majority decision 

subordinate category was considered in K-Nearest 

Neighbor (KNN) to verify the number of same 

class occurrences of training project. The class 

instance was selected to refine the source project, 

and their prediction and computation was done on 

software defects. The developed method was 

computed against the traditional methods. 

According to experiments, the developed method 

was effective and offered higher recall and f1-score 

while predicting software defects in contrast to 

other methods. 

S. Kassaymeh, et.al (2022) constructed a Salp 

Swarm Algorithm (SSA) with a backpropagation 

neural network (BPNN) for predicting software 

fault [22]. The SSA-BPNN, their integrated 

method, was presented for enhancing the accuracy 

to predict defects when the optimal metrics were 

optimized. Various datasets were applied to 

compute the presented method for dealing with the 

issue related to predict software defects with 

respect to various parameters, such as AUC, 

confusion matrix, sensitivity, specificity, accuracy, 

and error rate. The size and complexity of these 

datasets was varied. The simulation outcomes 

indicated that the presented method was performed 

more effectively in comparison with the 

conventional methods and yielded a higher 

accuracy to predict software defects. In addition, 

this technique was proved as an effective tool to 

tackle the problems related to software engineering.   

W. Wen, et.al (2022) designed a cross-project 

defect prediction (CPDP) model known as BSLDP 

to predict defects occurred in software [23]. A 

bidirectional long and short-term memory (Bi-

LSTM) algorithm was deployed with self-attention 

(SA) method to extract semantic information about 

source code files. Generally, the ALC model was 

executed for extracting source code semantics on 

the basis of source code files, and a classifier was 

projected depending upon the semantic information 

of source project and target project, called BSL, for 

generating a predictive framework. An equal 

meshing method was adopted for extracting 

semantic information on small fragments when the 

numerical token vector was split for enhancing the 

designed model. A PROMISE dataset was applied 

for computing the designed model. Based on 

experiments, the designed model was capable of 

predicting defects and enhanced the F1 up to 

14.2%, 34.6%, 32.2% and 23.6% against 4 

techniques respectively. 

L. Yang, et.al (2021) investigated a hybrid of 

particle swarm optimization (PSO) and Salp Swarm 

Algorithm (SSA) called SSA-PSO for augmenting 

the convergence prior to individual update of SSA 

[24]. Meanwhile, a novel maximum likelihood 

estimation (MLE)-based fitness function (FF) of 

metrics was presented and employed to initialize 

metrics. Five sets of actual datasets were employed 

to evaluate the investigated approach against an 

individual technique. The experimental results 

revealed the stability of investigated approach over 

others with respect to higher convergence speed 

and accuracy. Besides, the novel FF was assisted in 

tackling the issues related to slow convergence 

speed and lower accuracy of solution. The 

investigated approach was proved more applicable 

to estimate and predict defects occurred in 

software. 

S. Kwon, et.al (2023) projected a function-level 

just-in-time (JIT)-software defect prediction (SDP) 

technique depending upon a pre-trained method for 

dealing with the drawback of predicting software 
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defects [25]. For this, the limited testing resources 

were prioritized for the defect-prone functions [25]. 

The transformer-based deep learning (TDL) model 

was utilized and its training was done a large 

corpus of code snippets, which further provided a 

defect proneness for the altered functions at a 

commit level. The CodeBERT, GraphCodeBERT 

and UniXCoder methods were computed on edge-

cloud systems. The primary emphasis was on 

analyzing the efficacy of these methods for edge-

cloud systems. The results exhibited that the last 

method was performed better as compared to others 

in the WPDP environment. moreover, the projected 

technique was proved stable to predict software 

defects. 

A. Wang, et.al (2023) developed a federal 

prototype learning based on prototype averaging 

(FPLPA) method in which federated learning (FL) 

was integrated with prototype learning (PL) to 

predict heterogeneous defect in software [26]. The 

one-sided selection (OSS) algorithm was 

implemented for eliminating noise from local 

training data, and the Chi-Squares Test algorithm 

was employed for selecting the optimal subset of 

features. Thereafter, the convolution prototype 

network (CPN) model was put forward for creating 

their own local prototypes. This model had offered 

more robustness against heterogeneous data in 

contrast to convolutional neural networks (CNN), 

to avoid the deviation impact of class imbalances in 

software data. The prototype was taken in account 

as the communication subject amid clients and 

server. The local prototype was developed 

irreversibly for protecting privacy in the 

communication procedure. The last task was to 

update the presented model using the loss of local 

prototype and global prototype as regularization. 

The AEEEM, NASA and Relink datasets were 

applied for quantifying the developed method. The 

simulation outcomes depicted the superiority of 

developed method over traditional methods for 

predicting defect. 

3. Research Methodology 

The presented methodology is conducted on 
various models, called random forest, Gaussian 
Naïve Bayes, BNB and Decision Tree. This work 
projects an ensemble algorithm for predicting the 
defect in software. This algorithm is an integration 
of Gaussian Naïve Bayes, BNB, Random Forest 
and Multilayer Perceptron. In the end, PCA 

algorithm is implemented to extract the features. 
The utilized algorithms are discussed as: 

A. Multilayer Perceptron 

It is a kind of FFN. More than one 
perceptron is involved in this algorithm. The 
outcome generated from one perceptron is 
fed into the next one as input. Furthermore, 
the state of a neuron is evaluated using a 
nonlinear function. Figure 3 represents a 
general framework of Multilayer Perceptron 
algorithm. 

 

Figure 2: Multilayer Perceptron 

In the given figure: 

𝑎𝑖= activity of the 𝑖th unit. 

𝑎𝑜=1: activity of 1 of the bias unit 

𝑤𝑖𝑗= weight from unit j to unit 𝑖 

𝑤𝑖𝑜= = 𝑏𝑖 : bias weight of unit 𝑖 

W: number of weights 

N: number of units 

I: number of inputs units (1 ≤ 𝑖 ≤ 𝐼) placed in 
the first layer called the input layer 

O: number of output units (𝑁 − 𝑂 + 1 ≤ 𝑖 ≤
𝑁) available in the last layer called the output layer 

M: number of hidden units  (𝐼 < 𝑖 ≤ 𝑁 − 𝑂) 
present in the hidden layers. 

L: number of layers, at which  𝐿𝑣 illustrates the 
index set of the 𝑣𝑡ℎ layer; 𝐿1 = {1, … . , 𝐼} and 𝐿1 =
{𝑁 − 𝑂 + 1, … . . , 𝑁} 

𝑛𝑒𝑡𝑖 : network input to the 𝑖th unit (I <𝑖) 
calculated as: 

𝑛𝑒𝑡𝑖 = ∑𝑁
𝑗=0 𝑤𝑖𝑗𝑎𝑗                          (1) 

f: activation function with 

𝑎𝑖 = 𝑓(𝑛𝑒𝑡𝑖)                           (2) 
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A number of activation functions (AFs) 𝑓𝑖 are 
defined for distinct units. AF is also called the 
transfer function. 

An FF-MLP has only links which are taken 
from units in lower layers to units of superior ones: 

𝑖 ∈ 𝐿𝑣 𝑎𝑛𝑑 𝑗 ∈ 𝐿𝑣′  𝑎𝑛𝑑 𝑣′ ≤ 𝑣 ⇒  𝑤𝑖𝑗 = 0       

(3) 

The traditional algorithm only uses associations 
or weights between successive layers. Other 
weights have been given the value of zero. After 
that, the input is considered for the node in the 
output layer or hidden layer v, where ν > 1. 

∀𝑖𝜖𝐿𝑣
: 𝑛𝑒𝑡𝑖 = ∑𝑁

𝑗:𝑗𝜖𝐿𝑉=1
𝑤𝑖𝑗 𝑎𝑗                   (4) 

Non-adjacent associates amongst units, present 
in layers are known as shortcut connections. 

Activation Functions 

Sigmoid function is a major kind of AFs. The 
logistic function is expressed as: 

𝑓(𝑎) =
1

1+𝑒𝑥𝑝 (−𝑎)
                      (5) 

and tanh AF is defined below in given equation:  

𝑓(𝑎) =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑎)  =
𝑒𝑥𝑝𝑒𝑥𝑝 (𝑎) −𝑒𝑥𝑝 (−𝑎)

𝑒𝑥𝑝𝑒𝑥𝑝 (𝑎) +𝑒𝑥𝑝 (−𝑎)
             

(6) 

B. Bernoulli Naive Bayes 

This algorithm aims to train Naïve Bayes (NB) 
and classification models are included in this 
algorithm for distributes data with regard to 
multivariate Bernoulli distributions. It implies the 
availability of a variety of attributes. In addition, 
each attribute is employed as a binary-valued 
variable. Hence, there is necessity of samples for 
the class which are utilized as feature vectors of 
binary value. This algorithm is responsible for 
binarizing its input when it handles other type of 
data.  Its decision rule is expressed as: 

𝑃(𝑥𝑖|𝑦) = 𝑃(𝑖|𝑦)𝑥𝑖 + (1 − 𝑃(𝑖|𝑦)) (1 − 𝑥𝑖)     (7) 

Unlike the multinomial NB’s rule, this rule is 
executed to penalize the non-occurrence of attribute 
𝑖 and this attribute is considered as a factor for class 
𝑦. The multinomial variant doesn’t consider this 
attribute. Bernoulli Naive Bayes is simulated and 
trained on the basis of word occurrence vectors to 
classify the text. On some data sets of smaller 
documents, this algorithm offers efficiency. The 
major task is of computing the frameworks 
concerning time.    

C. Gaussian Naive Bayes 

The Gaussian distributions is implemented in 
the Naive Bayes (NB) algorithm for handling the 
continuous features in order to illustrate the 
likelihoods of the features related to the classes. 

Therefore, a Gaussian PDF assists in defining every 
feature as: 

𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2)                             (8) 

The shape of Gaussian probability density 
function is similar to a bell and it can be defined 
mathematically as: 

𝑁 (𝜇, 𝜎2)(𝑥) =
1

√2𝜋𝜎2
𝑒 −

(𝑥−𝜇)2

2𝜎2                    (9) 

In which, 𝜇 is used to signify the mean and 𝜎2 
defines the variance. The parameters employed in 
NB model must be available as 𝑂(𝑛, 𝑘) in which n 
is total features and the number of classes is 
illustrated with 𝑘. In particular, every continuous 
feature has a normal distribution 𝑃(𝑋𝑖 ∖ 𝐶) ∽
𝑁(𝜇, 𝜎2). The metrics of these normal distributions 
are expressed as 

𝜇
𝑋𝑖|𝐶=𝑐

=
1

𝑁𝑐
∑𝑁𝑐

𝑖=1 𝑥𝑖                    (10) 

𝜎2
𝑋𝑖|𝐶=𝑐 =

1

𝑁𝑐
∑𝑁𝑐

𝑖=1 𝑥𝑖
2 − 𝜇2           (11) 

In which, 𝑁𝑐 is used to denote the number of 
instances in which 𝐶 is equal to c and 𝑁 denotes the 
total instances available to train the data. The 
relative frequencies are assisted in computing 
𝑃(𝐶 = 𝑐) for all the classes as: 

𝑃(𝐶 = 𝑐) =
𝑁𝑐

𝑁
                     (12) 

D. Random Forest 

It is considered as an ensemble system. The 
notion, related to develop a tiny decision tree (DT) 
on the basis of some features, is considered. This 
algorithm consumes least cost. The trees are 
combined after creating various small and weak 
DTs in parallel so that a single and strong learner is 
developed subsequent to achieve the majority 
votes. This algorithm is presented as an effective 
learning method of superior accuracy in the 
training stage. 

Particularly, RF is a predictive tool in which 
diverse randomized base regression trees are 
implemented as {𝑟𝑛(𝑥,⊝𝑚, 𝐷𝑛), 𝑚 ≥ 1}, here, 
⊝1,⊝2 …. have not any association among one 
another. This algorithm employs Regression Trees 
for creating the aggregated regression estimate as: 

𝑟𝑛(𝑋, 𝐷𝑛) = 𝐸⊝[𝑟𝑛(𝑋,⊝, 𝐷𝑛)],            (13) 

This equation contains 𝐸⊝ to represent the 

expectation with random metric, that is conditioned 
on 𝑋 and the data set 𝐷𝑛. This algorithm aims to 
exclude the dependence of the estimates in the 
sample which can alleviate a notation, and to write 
it for defining 𝑟𝑛(𝑋) rather than 𝑟𝑛(𝑋, 𝐷𝑛). In 

particular, the above expression is quantified on the 
basis of Monte Carlo. For this, the random trees are 
extracted and the average of the discrete results are 
utilized. The efficiency of consecutive cuts is 
computed with respect to randomizing variable ⊝. 
Random Forest algorithm emphasizes on creating 
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the trees individually for selecting the coordinate so 
that the split and its position are comprised. The 
variable ⊝ is used to define an independent 
variable 𝑋 and 𝐷𝑛 is the training sample. 

E. Principal Component Analysis 

It is a robust method that is effective to alter the 
group of consistent elements into a set of linearly 
unconnected subsets which are depending on a 
conversion, and the distinct variables are generated 
using this method. This method is also called as an 
orthogonal linear transformation (LT) and its 
implementation is done to project the primary 
dataset with another projection system. The 
projection of the 1st coordinate is considered in the 
largest variance, and a projection of the 2nd one is 
kept in the 2nd largest variance. This algorithm 

helps in locating the LT as 𝑧 = 𝑊𝑘
𝑇  𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑥 ∈

 𝑅𝑑, and 𝑟 < 𝑑, enhancing the variance of the data 
in the projected space. The 𝑋 = {𝑥1, 𝑥2, … … . . , 𝑥𝑖}, 

𝑥𝑖 ∈  𝑅𝑑, 𝑧 ∈  𝑅𝑟  and 𝑟 < 𝑑  is utilized to denote 
the data matrix and a set of p-dimensional vectors 

of weights 𝑊 = {𝑤1, 𝑤2, … … . . , 𝑤𝑝}, 𝑤𝑝 ∈  𝑅𝑘 are 

considered for defining the transformation that 
contains every 𝑥𝑖vector of X’s matching with 

𝑡𝑘(𝑖) = 𝑊|(𝑖)𝑇𝑥𝑖
                              (14) 

For maximizing the variance, an initial weight 
𝑊1 must have to satisfy a condition: 

𝑊𝑖 = 𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥 
|𝑤|

= {∑𝑖 (𝑥𝑖 ∙ 𝑊)2}         

(15) 

This condition is further expanded as:  

 

This algorithm aims to analyze a symmetric 
grid 𝑋𝑇𝑋 successfully after attaining the chief 
Eigen value of the matrix as 𝑊. Subsequent to 
generate𝑊1, this algorithm focuses on projecting 
the primary data matrix 𝑋 projected onto the 𝑊1 in 
the space for assuming the preliminary PC in the 
conversion. This results in attaining the additional 
segments along these lines when the attained 
elements are subtracted. 

Figure 3 Proposed Methodology 

4. Results and Discussion 

This work aims to analyse and implement the 
“CM1/Software Defect Prediction” whose 
extraction is done from PROMISE SE Repository. 
This dataset has498 records and twenty-two 
features. Moreover, it also contains five diverse 
lines of code measure, 3 McCabe parameters, 4 
base Halstead, 8 derived Halstead, a branch count, 
and 1 goal field. This work chooses this sample 
data as it is generated through the authentic source 
and it is present publicly. 

 

Figure 4 Proposed Methodology 
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Figure 4 demonstrates the implementation of 
class balancing with PCA ensemble 1 algorithm 
that put 4 algorithms, called Gaussian Naïve Bayes, 
Bernoulli NB, Random Forest and C4.5 together. 

TABLE I.  RESULT ANALYSIS 

 

 

Figure 5: Performance of Models 

The implementation of different algorithms, 
namely BNB, GNB, RF, DT, MLP and SVM is 
done for predicting the defect occurred in software. 
Figure 5 illustrates that for deploying an individual 
algorithm, no technique of extracting features 
including PCA or class balancing is considered 
while predicting the software fault. The suggested 
technique is an ensemble of BNB, GNB, RF and 
MLP. PCA with class balancing is adopted to 
extract the features. The suggested technique has 
generated more optimal results in comparison with 
the existing methods for predicting the faults 
occurred in software. 

Conclusion 

Software defect and a basic component of 
software product are the major elements of 
software quality. The defects occurred on software 
are unavoidable components. Furthermore, there is 
not any surety of quality of software, and more 
time is required to compute it. Different ways are 
present to define the defects based on quality. 
However, the complex task is to predict the defects 
in software. This research work presents a number 
of techniques such as, GNB, BNB, RF, C4.5, SVM 
and MLP for predicting the software defect. 

Moreover, it suggests an ensemble approach of 
GNB, BNB, Random Forest and Multilayer 
Perceptron to predict the software defects. 
Moreover, PCA along with the ensemble 1 class 
balance is adopted to predict the software defect. 
The accuracy attained from the suggested technique 
is calculated 96.67% as compared to the existing 
methods. 
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