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Abstract - The fast rise of the world's population makes it
harder to keep food safe, hence smart farming methods need to
be used. This research introduces an all-encompassing smart
farming prediction model that utilizes machine learning and
real-time sensor data to assess soil production and suggest the
most suitable crops. A set of IoT sensors, including soil
moisture, pH, salinity, and temperature, is used to collect and
process data using advanced algorithms including Deep Neural
Networks (DNN), Multivariate Adaptive Regression Splines
(MARS), and Long Short-Term Memory (LSTM) networks.
The DNN model was better than previous algorithms at
estimating crop yield, with a prediction accuracy of 94.2% and
an RMSE of 0.45. The system gives useful information on
nutrient deficiencies, irrigation needs, and crop appropriateness.
This shows that it has a lot of potential to improve the
sustainability of farming, the efficiency of resources, and
decision-making in precision farming.

Key Words: Soil productivity, precision agriculture, machine
learning, IoT sensors, crop recommendation, deep neural
networks, sustainable farming.

1.LINTRODUCTION

Agriculture, the cornerstone of human civilization, is presently
experiencing a revolutionary revolution propelled by
technological innovation. The world's population is expected to
reach 9.7 billion by 2050, putting unprecedented pressure on the
agricultural industry to boost food production by almost 70%. At
the same time, it is facing new problems like climate change, soil
degradation, water scarcity, and less land that can be used for
farming [1]. This combined challenge of improving output while
guaranteeing environmental sustainability needs a paradigm
change from old farming practices to intelligent, data-driven
agricultural systems.

The Fourth Industrial Revolution, which is marked by the coming
together of digital, biological, and physical technology, has
opened up new possibilities for agricultural innovation. Al and
the Internet of Things (IoT) have shown that they can change
farming in amazing ways [2]. Al systems can look at a lot of
agricultural data and find useful information, while IoT devices
let you keep an eye on soil and environmental conditions in real
time. When combined, these technologies build smart farming
ecosystems that can suggest the best farming techniques for a
given situation, estimate crop yields, and make the best use of
resources [3].

This research article introduces a sophisticated smart farming
system that combines loT-based soil sensing with cutting-edge
machine learning algorithms to assess soil productivity and
suggest the best crops to grow. The solution fills a major hole in
present agricultural technology: there aren't any integrated, real-
time decision support systems that use predictive analytics to
incorporate different soil metrics. This research seeks to create a

comprehensive model that takes into account soil moisture, pH,
salinity, temperature, and nutrient levels. The goal is to give
farmers a scientifically sound way to increase productivity while
also encouraging environmentally friendly agricultural methods.
The importance of this effort goes beyond only technical
advancements; it also includes social, economic, and
environmental factors. Small and medium-sized farmers, who
make up around 80% of all farmers in developing countries, often
don't have access to advanced agricultural consultancy services
[4]. The suggested method is a cheap, scalable way to make
precision agriculture technologies available to everyone. This
might lower input prices, raise yields, and lessen environmental
consequences by using resources more efficiently.
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Figure 1: System Architecture Diagram

2. LITERATURE REVIEW

2.1 The Growth of Precision Agriculture

Precision agriculture began in the 1990s as a way to manage
crops and soil so that they get exactly what they need to be
healthy and productive [5]. Early systems used GPS and GIS
technologies mostly for variable rate applications. With the
introduction of remote sensing, it became easier to keep an eye
on crops. Recent advances in IoT and Al have made it possible
to have real-time, automated decision support systems [6]. The
evolution has moved from just gathering data to making
predictions and giving advice.

2.2 IoT Uses for Monitoring Soil

In recent years, there has been a lot of interest in using loT
sensors to monitor soil. Capacitance-based and time-domain
reflectometry (TDR) sensors are two types of soil moisture
sensors that are commonly used for managing irrigation [7]. pH
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sensors, which are mostly made of Ion-Selective Field-Effect
Transistors (ISFET) or glass electrodes, give important
information about how acidic or alkaline the soil is [8]. Salinity
sensors that monitor electrical conductivity can assist you take
care of soils that have too much salt in them [9]. Temperature
sensors keep an eye on the temperature of the environment,
which affects how microbes work and how nutrients are available
[10]. But most current systems only use these sensors on their
own, which makes it hard to get a complete picture of soil health.

2.3 Using Machine Learning to Predict Things in Farming
Machine learning algorithms have shown a lot of promise in
several areas of agriculture. Table 1 compares machine learning
applications in agriculture by showing how well they work, what
their limits are, and the most important studies.

Table 1: Comparative Analysis of Machine Learning
Applications in Agriculture

Application Common Accur Key
pp Algorithm | acy Limitations | Studi
Area
s Range es
Crop Yield | Random | 75- Requires | [11],
Prediction Forest, 92% large [12]
CNN Dataset
Disease Tran; for 80- quality [13],
Detection L . 95% dependent, | [14]
carning overfitting
. K-means, .
Soil | Hicrarchic | 70- | SPatal sy
Classificatio variability
n al 88% challenges [16]
Clustering g
Reinforce Real-ti
Irrigation ment 78- a;: ;;g:; [17],
Scheduling | Learning, | 90% | | P [18]
Decision 1mitations
Nutrient Regressio 7. Soil [19]
Recommend | n Models, heterogene ’
: . 85% L [20]
ation Bayesian 1ty 1ssues

2.4 Integrated Smart Farming Systems

Recent studies have concentrated on creating integrated farming
systems that amalgamate several technology. Yaser et al. [21]
suggested a cloud-based framework for managing agricultural
data, and Nair et al. [22] created a system for analyzing soil
nutrients using Al. But these technologies generally don't have
the ability to react in real time or give full decision assistance.
The idea of digital twins in agriculture, which means making
virtual copies of real farms, is the most advanced way to combine
these two fields, but it is still mostly theoretical for small-scale
uses [23].

2.5 Gaps in Existing Research
A thorough examination of the current literature uncovers
numerous substantial deficiencies:

i.Fragmented Solutions: Most current systems just deal
with certain parts of farming, such irrigation or
fertilization, and don't give integrated advice [24].

ii. Limited Real-time Adaptation: Only a few systems
change their recommendations in real time based on
how the environment changes and how the crops grow
[25].

iii. Scalability Constraints: A lot of modern systems need
a lot of money to build, which makes them hard for
small-scale farmers to use [26].

iv.Incomplete Soil Health Assessment: Current
methodologies frequently neglect the synergistic
impacts of many soil characteristics on agricultural
productivity [27].

v. Lack of Contextual Recommendations: Most systems
give general advice without taking into account things
like the weather, the market, or the farmer's preferences
[28].

3. RESEARCH GAP IDENTIFICATION AND
PROBLEM FORMULATION
The extensive literature study reveals a significant deficiency in
contemporary agricultural technology: the lack of an integrated,
adaptive, and accessible system that merges real-time soil
monitoring  with advanced predictive analytics for
comprehensive farm management. Current systems either
concentrate on discrete factors or necessitate advanced
infrastructure, so constraining their practical utility, especially in
developing agricultural settings [29].
The principal research issue examined in this paper is the creation
of a holistic soil productivity assessment system that:

L. Integrates multiple soil parameters for holistic
assessment

2. Provides real-time, adaptive recommendations
3. Remains accessible and cost-effective for
diverse farming communities

4. Incorporates both scientific rigor and practical
usability

3.1 Goals of the Research

To fill these deficiencies, this research sets the following goals:
1. To create and put into action an IoT-based
sensor network that can keep an eye on several soil
characteristics at once, such as moisture, pH, salinity,
temperature, and nutrient levels.
2. To create a machine learning framework that
combines sensor data with historical and environmental
data to make predictions about soil productivity and
suggest the best crops to grow.
3. To make sure the method is correct, reliable,
and useful in real life by testing it in a variety of farming
situations.
4. To design an interface that is easy to use and
shows complicated analytical results in a way that is
easy for farmers with different levels of technical
knowledge to understand.
5. To build a flexible architecture that can handle
more data sources and work in different types of
farming.

3.2 Research Hypotheses
The following hypotheses direct our research:

1. An integrated method that takes into account
more than one soil characteristic will give more accurate
productivity estimates than systems that only look at
one parameter.

2. Deep learning algorithms will do a better job
than typical machine learning methods at finding
complicated correlations between soil and crops.
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3. Real-time adaptive recommendations will lead
to quantifiable enhancements in resource efficiency and
agricultural production.

4. The suggested technique will show that it may
be used in numerous types of crops and agricultural
areas.

4. METHODOLOGY

4.1 System Architecture Design

The suggested system has a three-tier design that makes it easy
for data to go from physical sensors to useful recommendations.
The architecture is built on the ideas of modularity and
scalability, which means it can be changed and expanded in the
future.
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Figure 2: Methodology Flowchart

The Data Acquisition Tier is the first tier of the system. It is
where IoT sensors in agricultural fields keep an eye on soil
conditions all the time. There is a capacitive soil moisture sensor
(SEN0193) that can measure water content from 0% to 100% and
has an accuracy of £3%. There is also a pH sensor (SEN0O161)
that uses a combination electrode and has an accuracy of +£0.1 pH
unit. The soil salinity sensor (DFR0300) measures electrical
conductivity and can measure from 0 to 20 mS/cm. Finally, the
digital temperature sensor (DS18B20) can measure temperatures
from -55°C to +125°C with an accuracy of £0.5°C [30]. An
Arduino Mega 2560 microcontroller connects to these sensors. It

collects data and sends it wirelessly to a cloud-based storage
system using GSM modules that function on the 4G network.
The intermediate Processing and Analytics Tier is on a cloud
platform. Here, raw sensor data is preprocessed. This includes
finding outliers using the interquartile range method, filling in
missing values using the k-nearest neighbors algorithm, and
normalizing the data using min-max scaling [31]. Feature
engineering techniques find patterns in both time and space.
These patterns can be used to make new features like nutrient
ratios, soil health indices, and growth degree days. This level is
where the machine learning models work. They are trained on
past data and are updated with new data every so often to keep
their predictions accurate.

The top Application Tier lets users interact with apps on both web
and mobile devices. This level turns model outputs into useful
suggestions and shows information through easy-to-understand
graphs and alerts. A farmer dashboard shows the present state of
the soil, the expected yields, and detailed advice on how to
fertilize, water, and choose crops. The system has a feedback
loop that lets farmers report what really happened, which lets the
model be improved all the time.

4.2 Data Gathering Procedure

The data collection process followed a strict set of rules to make
sure that the data was of high quality and consistent. The research
took place over six months, from January to June 2024, in four
separate agricultural zones in Haryana, India. Each zone has its
own type of soil and way of growing crops [32]. To record
changes in the vertical soil profile, each monitoring site had a
sensor array installed at three depths (15 cm, 30 cm, and 45 cm).
Data was collected every 15 minutes, which meant that there
were more than 85,000 data for each parameter.

Along with sensor data, extra information was gathered from a
number of other places. The Indian Meteorological Department
[33] gave us historical meteorological data, such as rainfall,
temperature, humidity, and sun radiation. Soil lab tests gave us
real-world measurements to use for calibration and validation.
Crop production data from prior seasons and Sentinel-2 satellite
photography with a 10-meter spatial resolution provided
supplementary context for model training [34].

4.3 Engineering and Choosing Features

We did a lot of feature engineering on the raw sensor data to find
useful patterns and relationships. The main characteristics were
direct sensor readings that were added up every day, week, and
month. To get a better picture of how soil changes over time, we
used derived characteristics. For example, we used a Soil Health
Index (SHI) that was a weighted combination of pH, salinity, and
organic matter content. The formula for SHI was SHI = 0.4 x
(ideal pH score) + 0.3 x (salinity score) + 0.3 x (organic matter
score) [35]. We figured out the nutrient ratios by looking at how
sensor readings and lab tests were related to each other. The
nitrogen-to-phosphorus (N:P) and potassium-to-magnesium
(K:Mg) ratios were the most important ones.

Temporal aspects recorded seasonal trends and patterns, such as
moving averages, rates of change, and cumulative metrics like
growth degree days (GDD), which were computed as GDD =
Y[(Tmax + Tmin)/2 - Toase], Where Tpase is the crop-specific base
temperature [37]. Spatial characteristics examined the diversity
within fields by statistical measures of dispersion and spatial
autocorrelation indices [38].

Feature selection utilized a hybrid methodology that integrated
domain expertise with statistical techniques. Cross-validation
and recursive feature removal found the most useful features,
while correlation analysis got rid of extra variables [39]. The final
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set of features included 15 variables that included soil qualities,
ambient circumstances, historical trends, and management
techniques.
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Figure 3:Feature Importance Scores from
Random Forest Analysis

4.4 Machine Learning Model Development

Three different machine learning methods were used and
compared to find the best algorithm for estimating soil
productivity:

4.4.1 Multivariate Adaptive Regression Splines (MARS)

The Earth package in R was used to set up the MARS model with
a maximum of 50 basis functions and second-degree interactions
[40]. MARS is great at finding nonlinear relationships and
threshold effects. This makes it perfect for soil-crop response
functions, which typically have saturation points and interaction
effects.

4.4.2 Deep Neural Network (DNN)

The DNN structure has five completely linked layers with sizes
[15, 64, 128, 64, 1]. The input layer was made up of the 15
features that were chosen [41]. The hidden layers used Rectified
Linear Unit (ReLU) activation functions, whereas the output
layer used linear activation for continuous prediction. The model
used dropout regularization with a rate of 0.2 after each hidden
layer and L2 weight regularization with A = 0.01 [42] to keep it
from overfitting. Over 200 training epochs with a batch size of
32, the Adam optimizer with a learning rate of 0.001 and
exponential decay rates (Bl = 0.9, B2 = 0.999) optimized the
mean squared error loss function [43].

4.4.3 Long Short-Term Memory (LSTM)

The LSTM network was made to find temporal dependencies in
the sensor data [44]. There were two LSTM layers in the
architecture, each with 50 units. Then there were dropout layers
with a rate of 0.3 to keep the model from getting too good. The
network learned how soil properties change over time by
processing sequences of data from seven days in a row. The last
dense layer with linear activation gave us the productivity
estimate. The model was trained using the same optimization
settings as the DNN, but with sequence-based batching.

4.5 Framework for Training and Validating Models

A strict validation framework made sure that the models that
were generated were reliable and could be used in other
situations. The dataset was split into two parts: 80% for training
and 20% for testing. Stratification was used to make sure that

condition [45]. Five-fold cross-validation was used to test the
model's stability even more. Each fold stood for a different
geographical area to see if the model could be used in other areas
[46].

Evaluation of performance used several measures to measure
different parts of prediction quality: Mean Absolute Error (MAE)
measured how far off the average prediction was, Root Mean
Square Error (RMSE) punished bigger mistakes more harshly,
the Coefficient of Determination (R?) measured how much
variance was explained, and for classification tasks (crop
suitability), accuracy, precision, recall, and F1-score gave a full
picture [47]. We also looked at how fast the models could run by
measuring their training duration and inference latency.

For deep learning parts, implementation used Python 3.9 with
TensorFlow 2.8 and for classic machine learning techniques, it
used scikit-learn 1.0 [48]. Docker was used to containerize the
whole pipeline so that it could be used again and easily deployed
in multiple computing environments [49].

5. RESULTS AND DISCUSSION
5.1 Model Performance Comparison
The comparative analysis of the three machine learning models
revealed distinct performance characteristics. Table 2 presents
the comprehensive evaluation metrics for each algorithm.

Table 2: Performance Metrics of Different Algorithms

Train

2

Algorit Accur RM | MA R ing querence

acy Scor ) Time
hm SE E Time

(%) e (ms)

(s)

MARS | 87.5 0.89 | 0.72 | 0.86 | 45.2 2.1
DNN 94.2 045 | 038 | 093 | 320.5 | 8.7
LSTM | 90.1 0.67 | 0.55 | 0.89 | 580.3 | 15.2

The DNN model did better than all the other models on
all the main criteria. It got 94.2% accuracy in crop suitability
classification and an RMSE of 0.45 tonnes/hectare in yield
prediction. This is a 6.7% better classification accuracy than
MARS and a 4.1% better classification accuracy than LSTM.
The DNN's ability to find complicated nonlinear links between
soil characteristics and crop responses was a big reason why it
worked better than other models [50].
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Figure 4: Model Performance Comparison
5.2 Analysis of Feature Importance
Feature importance analysis showed that soil moisture content
was the most important predictor, explaining 85% of the variance

both sets had the same number of each crop type and soil

in crop output estimates. The next most important factors were
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soil pH level (73%), nitrogen concentration (68%), and
temperature (62%). These results are in line with agronomic
principles that say soil water availability and pH are the most
important factors that affect crop productivity [51].

The significant relevance of soil moisture comes from the fact
that it serves two purposes: it makes nutrients available and helps
plants grow. Soil pH has a big effect on nutrient solubility and
microbial activity, which is why it is so important. Nitrogen is
the most important nutrient in farming systems since it is the most
prevalent limiting nutrient. Temperature has a big effect on
microbial activity, nutrient mineralization, and plant metabolic
rates [52].
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Figure 5: Actual vs Predicted Crop Yield (DNN Model)

5.3 Crop Yield Prediction Results

The DNN model did a great job of predicting crop yields for
different types of crops and soil conditions. Figure 6 shows the
actual yield values compared to the anticipated yield values for
10 representative field samples. The model predictions and the
measured outcomes are very similar to each other.

The accuracy of the predictions was best for wheat (R? = 0.94)
and rice (R?=0.92), okay for pulses (R?=0.87), and not as good
for vegetables (R? = 0.81). This diversity is due to the fact that
different types of crops have different levels of complexity when
it comes to yield determinants. For example, cereal crops tend to
respond to soil conditions in a more predictable way than
horticulture crops, which have more complicated quality factors
[53].

Table 3: Optimal Crop Recommendations Based on
Soil Parameters

Soil pH | N P K Recomme tlz)épec
Condit | Ran | (kg/ | (kg/ | (kg/ | nded )
ion e ha) ha) ha) Crops Yield
g P (t/ha)
Aljid;f 55 [>12 | 40- | 150- | oo o | 45
3 160 |0 60 [200 | ST |50
Neutra
1, 6.5- | 80- | 60- | 180- | Wheat, 5.0-
Balanc | 7.0 100 80 220 | Pulses 5.8
ed
fl*elkah 75 [60- | | 120- | Barley, |33
’ 80 |80 150 | Cotton 45
Low P
Ej‘é?:r 7.0- | 70- | 40- | 100- | Sorghum, | 3.5-
o 75 190 |50 | 130 | Millet 42

The suitability matrix shows how well the technology can turn
complicated soil data into useful advice for growing crops. The
suggestions take into account both productivity potential and
sustainability factors. For example, they suggest planting salt-
tolerant crops in saline environments to stop the soil from getting
worse [54].

5.5 Nutrient Deficiency Impact Analysis

The method was able to diagnose vitamin deficits with 89%
accuracy, which made it possible to act quickly. Table 4 shows
the visual signs, effects on yield, and suggested fixes for key
nutrient shortages.

The system's monitoring capabilities helped find nutrient
deficiencies early on, which stopped big production losses in
field experiments. Farmers who took the suggested steps to fix
the problem within seven days of finding it had yields that were
22% greater than those who waited to do so [55].

Table 4: Visual Symptoms and Impact of Nutrient Deficiencies

Nutrient Deficienc | Visual Eel;l Recommen
B Sail Moisture y Level Symptoms ot p ded Action
& Soil pH
& Nitrogen Chlorosis 0
: I]"l .’.'..‘:;. :: .I:,I' Nitrogen <30 (yellowin ;S 7 Apply urea
= % kg/ha ), stunted o, | (50kg/ha)
B Others -50%
growth
Legond: Feature Categoris=% Plll‘ple
_ o
@ i Phosphor | <30 leaves, 25% 1 Apply DAP
- R us ke/ha poorroot | 10 4 o ha)
i N developm | -40%
.S ent
. . Leaf -20%
Potassiu ;1 00 scorching, | to zz%pliy/l;l/[OP
Figure 6: Actual vs Predicted Crop Yield m g/ha weak -35% (30 ke/ha)
) Multiple . .
5.4 Soil Nutrient-Crop Suitability Matrix Combine Multiple symptoms -50% | Soil testing
The system generated a comprehensive crop suitability matrix d deficienci , very to . + balanced
based on soil nutrient profiles and environmental conditions. €s poor -70% | fertilization
Table 3 presents the optimal crop recommendations for different
soil conditions, along with expected yield ranges.
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5.6 Results of Field Implementation

REAL-TIME SENSOR READINGS

FeldID:  FS¥04007 Locmbe  Sooipet Hevam
o Sail Molsture: 68% 85-73%
Date: 50691 Carrest Crop:©~ Whaw Crowth Stage: Flowering

o Soll pH: 6.8 [6.5-7.5

¢ Temperature: 28°C [25-30°C

o Salinity: 1.2d8/m ;; 20
o N-P-K Status: N: Medinms, P: Low, K: High

RECOMMENDATIONS

Predicted Yied: 5.2 tonnes /ha (025) s

Optimal Harvest Date: 25-07-2024 =3 days
Figure 7: Farm Smart Dashboard
The system was set up on 50 farms in Haryana, India, covering a
total area of 125 hectares. The results of the implementation
showed that agricultural efficiency had improved a lot:
i.Resource Optimization: By using precision
application based on the actual nutritional condition of
the soil instead of blanket recommendations, fertilizer
use went down by 22% [56].

ii. Output Enhancement: The average crop output across
all monitored plots went up by 18%, with the biggest
gains seen in areas that had been poor in productivity
before [57].

iii. Water Conservation: By keeping an eye on the soil
moisture levels in real time and optimizing the schedule,
the amount of water used for irrigation was cut by 35%
[58].

iv. Economic Benefits: Farmers made 28% more money
because they got higher yields and lower input costs.
The benefit-cost ratios for diverse agricultural
enterprises ranged from 2.3 to 3.1 [59].

v. Environmental Impact: Precise nutrient control cut
nitrate leaching by 40% and greenhouse gas emissions
from using fertilizer by 31% [60].

5.7 Discussion

There are a number of reasons why the DNN model works better
than others. First, it was able to find more accurate predictions
than linear methods like MARS [61] because it could find
complicated nonlinear correlations between soil properties.
Second, deep networks' ability to learn features in a hierarchical
way helped the model find patterns in the data that simpler
methods would overlook [62]. Third, regularization strategies

worked well to stop overfitting even if the training dataset was
small [63].

The LSTM model seemed like it could work for predicting
things over time, but it was limited by the fact that it only had
six months of data to work with. LSTM architectures should
show better results for seasonal and interannual prediction tasks
if they are used to collect data over a longer period of time [64].
The MARS model yielded comprehensible findings with
adequate precision, rendering it appropriate for scenarios where
model clarity is valued more than peak prediction capability
[65].

The system's real-world use brought up a number of key points.
Sensor calibration and maintenance were essential for enduring
accuracy, with monthly calibration advised for optimal
functionality [66]. Because it was hard to get data in rural
locations, offline  functionality =~ with periodic  cloud
synchronization had to be created [67]. User interface design
was very important for adoption rates. Simplified visuals and
support for local languages made farmers much more interested
[68].

The economic research showed that the system's benefits went
beyond just higher yields. Lower input prices, better use of
resources, and better decision-making skills all led to big
economic gains [69]. Environmental benefits, including less
fertilizer runoff and better water use, were key results of
sustainability [70].

6. CONCLUSIONS

This study successfully created a smart farming system that uses
IoT-based soil sensors and advanced machine learning
algorithms to work together to estimate soil production and
suggest the best crops to grow. The Deep Neural Network
(DNN) model was the best, with a forecast accuracy of 94.2%
for crop suitability and better results than older techniques. The
study makes several important contributions: (1) an end-to-end
system architecture that brings together data collection,
processing, and actionable recommendations, solving the
problem of existing solutions being too spread out; (2) an
adaptive learning framework where models get better with more
data; (3) a practical and cost-effective implementation that was
tested in the field; and (4) documented results that show big
improvements in resource efficiency, crop yields, and farmer
income while having less of an effect on the environment. This
system connects advanced technology with practical farm
management. It is a scalable tool that helps people make better
decisions, encourages sustainable practices, and helps keep the
world's food supply safe.

FUTURE SCOPE

Future work will focus on improving the system by combining
data from drones and satellites in different ways, creating
federated learning models that protect privacy, and adding
climate resilience planning. There will also be more work on
blockchain-enabled traceability, edge computing for real-time
processing, and making it easier for farmers to use the system by
adding offline and multi-language capabilities. The system's
knowledge base will be expanded to encompass a wider range
of crops and agroecological methods. New community elements
will also encourage farmers to work together and share what
they know.
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