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Abstract - The fast rise of the world's population makes it 

harder to keep food safe, hence smart farming methods need to 

be used. This research introduces an all-encompassing smart 

farming prediction model that utilizes machine learning and 

real-time sensor data to assess soil production and suggest the 

most suitable crops. A set of IoT sensors, including soil 

moisture, pH, salinity, and temperature, is used to collect and 

process data using advanced algorithms including Deep Neural 

Networks (DNN), Multivariate Adaptive Regression Splines 

(MARS), and Long Short-Term Memory (LSTM) networks. 

The DNN model was better than previous algorithms at 

estimating crop yield, with a prediction accuracy of 94.2% and 

an RMSE of 0.45. The system gives useful information on 

nutrient deficiencies, irrigation needs, and crop appropriateness. 

This shows that it has a lot of potential to improve the 

sustainability of farming, the efficiency of resources, and 

decision-making in precision farming. 

 

Key Words: Soil productivity, precision agriculture, machine 

learning, IoT sensors, crop recommendation, deep neural 

networks, sustainable farming. 

1. INTRODUCTION 
Agriculture, the cornerstone of human civilization, is presently 

experiencing a revolutionary revolution propelled by 

technological innovation. The world's population is expected to 

reach 9.7 billion by 2050, putting unprecedented pressure on the 

agricultural industry to boost food production by almost 70%. At 

the same time, it is facing new problems like climate change, soil 

degradation, water scarcity, and less land that can be used for 

farming [1]. This combined challenge of improving output while 

guaranteeing environmental sustainability needs a paradigm 

change from old farming practices to intelligent, data-driven 

agricultural systems. 

The Fourth Industrial Revolution, which is marked by the coming 

together of digital, biological, and physical technology, has 

opened up new possibilities for agricultural innovation. AI and 

the Internet of Things (IoT) have shown that they can change 

farming in amazing ways [2]. AI systems can look at a lot of 

agricultural data and find useful information, while IoT devices 

let you keep an eye on soil and environmental conditions in real 

time. When combined, these technologies build smart farming 

ecosystems that can suggest the best farming techniques for a 

given situation, estimate crop yields, and make the best use of 

resources [3]. 

This research article introduces a sophisticated smart farming 

system that combines IoT-based soil sensing with cutting-edge 

machine learning algorithms to assess soil productivity and 

suggest the best crops to grow. The solution fills a major hole in 

present agricultural technology: there aren't any integrated, real- 

time decision support systems that use predictive analytics to 

incorporate different soil metrics. This research seeks to create a 

comprehensive model that takes into account soil moisture, pH, 

salinity, temperature, and nutrient levels. The goal is to give 

farmers a scientifically sound way to increase productivity while 

also encouraging environmentally friendly agricultural methods. 

The importance of this effort goes beyond only technical 

advancements; it also includes social, economic, and 

environmental factors. Small and medium-sized farmers, who 

make up around 80% of all farmers in developing countries, often 

don't have access to advanced agricultural consultancy services 

[4]. The suggested method is a cheap, scalable way to make 

precision agriculture technologies available to everyone. This 

might lower input prices, raise yields, and lessen environmental 

consequences by using resources more efficiently. 
 

Figure 1: System Architecture Diagram 

2. LITERATURE REVIEW 
2.1 The Growth of Precision Agriculture 

Precision agriculture began in the 1990s as a way to manage 

crops and soil so that they get exactly what they need to be 

healthy and productive [5]. Early systems used GPS and GIS 

technologies mostly for variable rate applications. With the 

introduction of remote sensing, it became easier to keep an eye 

on crops. Recent advances in IoT and AI have made it possible 

to have real-time, automated decision support systems [6]. The 

evolution has moved from just gathering data to making 

predictions and giving advice. 

2.2 IoT Uses for Monitoring Soil 

In recent years, there has been a lot of interest in using IoT 

sensors to monitor soil. Capacitance-based and time-domain 

reflectometry (TDR) sensors are two types of soil moisture 

sensors that are commonly used for managing irrigation [7]. pH 
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sensors, which are mostly made of Ion-Selective Field-Effect 

Transistors (ISFET) or glass electrodes, give important 

information about how acidic or alkaline the soil is [8]. Salinity 

sensors that monitor electrical conductivity can assist you take 

care of soils that have too much salt in them [9]. Temperature 

sensors keep an eye on the temperature of the environment, 

which affects how microbes work and how nutrients are available 

[10]. But most current systems only use these sensors on their 

own, which makes it hard to get a complete picture of soil health. 

 

2.3 Using Machine Learning to Predict Things in Farming 

Machine learning algorithms have shown a lot of promise in 

several areas of agriculture. Table 1 compares machine learning 

applications in agriculture by showing how well they work, what 

their limits are, and the most important studies. 

 

Table 1: Comparative Analysis of Machine Learning 

Applications in Agriculture 

 

Application 

Area 

Common 

Algorithm 

s 

Accur 

acy 

Range 

 

Limitations 

Key 

Studi 

es 

Crop Yield 

Prediction 

Random 

Forest, 
75- 

92% 

Requires 

large 
[11], 

[12] 

 

Disease 

Detection 

CNN, 

Transfer 

Learning 

 

80- 

95% 

Dataset 

quality 

dependent, 

overfitting 

 

[13], 

[14] 

Soil 

Classificatio 

n 

K-means, 

Hierarchic 

al 

Clustering 

 

70- 

88% 

Spatial 

variability 

challenges 

 

[15], 

[16] 

 

Irrigation 

Scheduling 

Reinforce 

ment 

Learning, 

Decision 

 

78- 

90% 

Real-time 

adaptation 

limitations 

 

[17], 

[18] 

Nutrient 

Recommend 
ation 

Regressio 

n Models, 

Bayesian 

72- 

85% 

Soil 

heterogene 
ity issues 

[19], 

[20] 

 

2.4 Integrated Smart Farming Systems 

Recent studies have concentrated on creating integrated farming 

systems that amalgamate several technology. Yaser et al. [21] 

suggested a cloud-based framework for managing agricultural 

data, and Nair et al. [22] created a system for analyzing soil 

nutrients using AI. But these technologies generally don't have 

the ability to react in real time or give full decision assistance. 

The idea of digital twins in agriculture, which means making 

virtual copies of real farms, is the most advanced way to combine 

these two fields, but it is still mostly theoretical for small-scale 

uses [23]. 

 
2.5 Gaps in Existing Research 

A thorough examination of the current literature uncovers 

numerous substantial deficiencies: 

 

i. Fragmented Solutions: Most current systems just deal 

with certain parts of farming, such irrigation or 

fertilization, and don't give integrated advice [24]. 

ii. Limited Real-time Adaptation: Only a few systems 

change their recommendations in real time based on 

how the environment changes and how the crops grow 

[25]. 

iii. Scalability Constraints: A lot of modern systems need 

a lot of money to build, which makes them hard for 

small-scale farmers to use [26]. 

iv. Incomplete Soil Health Assessment: Current 

methodologies frequently neglect the synergistic 

impacts of many soil characteristics on agricultural 

productivity [27]. 

v. Lack of Contextual Recommendations: Most systems 

give general advice without taking into account things 

like the weather, the market, or the farmer's preferences 

[28]. 

3. RESEARCH GAP IDENTIFICATION AND 

PROBLEM FORMULATION 
The extensive literature study reveals a significant deficiency in 

contemporary agricultural technology: the lack of an integrated, 

adaptive, and accessible system that merges real-time soil 

monitoring with advanced predictive analytics for 

comprehensive farm management. Current systems either 

concentrate on discrete factors or necessitate advanced 

infrastructure, so constraining their practical utility, especially in 

developing agricultural settings [29]. 

The principal research issue examined in this paper is the creation 

of a holistic soil productivity assessment system that: 

1. Integrates multiple soil parameters for holistic 

assessment 

2. Provides real-time, adaptive recommendations 

3. Remains accessible and cost-effective for 

diverse farming communities 

4. Incorporates both scientific rigor and practical 

usability 

 

3.1 Goals of the Research 

To fill these deficiencies, this research sets the following goals: 

1. To create and put into action an IoT-based 

sensor network that can keep an eye on several soil 

characteristics at once, such as moisture, pH, salinity, 

temperature, and nutrient levels. 

2. To create a machine learning framework that 

combines sensor data with historical and environmental 

data to make predictions about soil productivity and 

suggest the best crops to grow. 

3. To make sure the method is correct, reliable, 

and useful in real life by testing it in a variety of farming 

situations. 

4. To design an interface that is easy to use and 

shows complicated analytical results in a way that is 

easy for farmers with different levels of technical 

knowledge to understand. 

5. To build a flexible architecture that can handle 

more data sources and work in different types of 

farming. 

3.2 Research Hypotheses 

The following hypotheses direct our research: 

1. An integrated method that takes into account 

more than one soil characteristic will give more accurate 

productivity estimates than systems that only look at 

one parameter. 

2. Deep learning algorithms will do a better job 

than typical machine learning methods at finding 

complicated correlations between soil and crops. 
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3. Real-time adaptive recommendations will lead 

to quantifiable enhancements in resource efficiency and 

agricultural production. 

4. The suggested technique will show that it may 

be used in numerous types of crops and agricultural 

areas. 

4. METHODOLOGY 
4.1 System Architecture Design 

The suggested system has a three-tier design that makes it easy 

for data to go from physical sensors to useful recommendations. 

The architecture is built on the ideas of modularity and 

scalability, which means it can be changed and expanded in the 

future. 

 
Figure 2: Methodology Flowchart 

The Data Acquisition Tier is the first tier of the system. It is 

where IoT sensors in agricultural fields keep an eye on soil 

conditions all the time. There is a capacitive soil moisture sensor 

(SEN0193) that can measure water content from 0% to 100% and 

has an accuracy of ±3%. There is also a pH sensor (SEN0161) 

that uses a combination electrode and has an accuracy of ±0.1 pH 

unit. The soil salinity sensor (DFR0300) measures electrical 

conductivity and can measure from 0 to 20 mS/cm. Finally, the 

digital temperature sensor (DS18B20) can measure temperatures 

from -55°C to +125°C with an accuracy of ±0.5°C [30]. An 

Arduino Mega 2560 microcontroller connects to these sensors. It 

collects data and sends it wirelessly to a cloud-based storage 

system using GSM modules that function on the 4G network. 

The intermediate Processing and Analytics Tier is on a cloud 

platform. Here, raw sensor data is preprocessed. This includes 

finding outliers using the interquartile range method, filling in 

missing values using the k-nearest neighbors algorithm, and 

normalizing the data using min-max scaling [31]. Feature 

engineering techniques find patterns in both time and space. 

These patterns can be used to make new features like nutrient 

ratios, soil health indices, and growth degree days. This level is 

where the machine learning models work. They are trained on 

past data and are updated with new data every so often to keep 

their predictions accurate. 

The top Application Tier lets users interact with apps on both web 

and mobile devices. This level turns model outputs into useful 

suggestions and shows information through easy-to-understand 

graphs and alerts. A farmer dashboard shows the present state of 

the soil, the expected yields, and detailed advice on how to 

fertilize, water, and choose crops. The system has a feedback 

loop that lets farmers report what really happened, which lets the 

model be improved all the time. 

4.2 Data Gathering Procedure 

The data collection process followed a strict set of rules to make 

sure that the data was of high quality and consistent. The research 

took place over six months, from January to June 2024, in four 

separate agricultural zones in Haryana, India. Each zone has its 

own type of soil and way of growing crops [32]. To record 

changes in the vertical soil profile, each monitoring site had a 

sensor array installed at three depths (15 cm, 30 cm, and 45 cm). 

Data was collected every 15 minutes, which meant that there 

were more than 85,000 data for each parameter. 

Along with sensor data, extra information was gathered from a 

number of other places. The Indian Meteorological Department 

[33] gave us historical meteorological data, such as rainfall, 

temperature, humidity, and sun radiation. Soil lab tests gave us 

real-world measurements to use for calibration and validation. 

Crop production data from prior seasons and Sentinel-2 satellite 

photography with a 10-meter spatial resolution provided 

supplementary context for model training [34]. 

4.3 Engineering and Choosing Features 

We did a lot of feature engineering on the raw sensor data to find 

useful patterns and relationships. The main characteristics were 

direct sensor readings that were added up every day, week, and 

month. To get a better picture of how soil changes over time, we 

used derived characteristics. For example, we used a Soil Health 

Index (SHI) that was a weighted combination of pH, salinity, and 

organic matter content. The formula for SHI was SHI = 0.4 × 

(ideal pH score) + 0.3 × (salinity score) + 0.3 × (organic matter 

score) [35]. We figured out the nutrient ratios by looking at how 

sensor readings and lab tests were related to each other. The 

nitrogen-to-phosphorus (N:P) and potassium-to-magnesium 

(K:Mg) ratios were the most important ones. 

Temporal aspects recorded seasonal trends and patterns, such as 

moving averages, rates of change, and cumulative metrics like 

growth degree days (GDD), which were computed as GDD = 

Σ[(Tmax + Tmin)/2 - Tbase], where Tbase is the crop-specific base 

temperature [37]. Spatial characteristics examined the diversity 

within fields by statistical measures of dispersion and spatial 

autocorrelation indices [38]. 

Feature selection utilized a hybrid methodology that integrated 

domain expertise with statistical techniques. Cross-validation 

and recursive feature removal found the most useful features, 

while correlation analysis got rid of extra variables [39]. The final 
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set of features included 15 variables that included soil qualities, 

ambient circumstances, historical trends, and management 

techniques. 

 

Figure 3:Feature Importance Scores from 

Random Forest Analysis 

 

 
4.4 Machine Learning Model Development 

Three different machine learning methods were used and 

compared to find the best algorithm for estimating soil 

productivity: 

 

4.4.1 Multivariate Adaptive Regression Splines (MARS) 

The Earth package in R was used to set up the MARS model with 

a maximum of 50 basis functions and second-degree interactions 

[40]. MARS is great at finding nonlinear relationships and 

threshold effects. This makes it perfect for soil-crop response 

functions, which typically have saturation points and interaction 

effects. 

4.4.2 Deep Neural Network (DNN) 

The DNN structure has five completely linked layers with sizes 

[15, 64, 128, 64, 1]. The input layer was made up of the 15 

features that were chosen [41]. The hidden layers used Rectified 

Linear Unit (ReLU) activation functions, whereas the output 

layer used linear activation for continuous prediction. The model 

used dropout regularization with a rate of 0.2 after each hidden 

layer and L2 weight regularization with λ = 0.01 [42] to keep it 

from overfitting. Over 200 training epochs with a batch size of 

32, the Adam optimizer with a learning rate of 0.001 and 

exponential decay rates (β1 = 0.9, β2 = 0.999) optimized the 

mean squared error loss function [43]. 

 

4.4.3 Long Short-Term Memory (LSTM) 

The LSTM network was made to find temporal dependencies in 

the sensor data [44]. There were two LSTM layers in the 

architecture, each with 50 units. Then there were dropout layers 

with a rate of 0.3 to keep the model from getting too good. The 

network learned how soil properties change over time by 

processing sequences of data from seven days in a row. The last 

dense layer with linear activation gave us the productivity 

estimate. The model was trained using the same optimization 

settings as the DNN, but with sequence-based batching. 

4.5 Framework for Training and Validating Models 

A strict validation framework made sure that the models that 

were generated were reliable and could be used in other 

situations. The dataset was split into two parts: 80% for training 

and 20% for testing. Stratification was used to make sure that 

both sets had the same number of each crop type and soil 

condition [45]. Five-fold cross-validation was used to test the 

model's stability even more. Each fold stood for a different 

geographical area to see if the model could be used in other areas 

[46]. 

 

Evaluation of performance used several measures to measure 

different parts of prediction quality: Mean Absolute Error (MAE) 

measured how far off the average prediction was, Root Mean 

Square Error (RMSE) punished bigger mistakes more harshly, 

the Coefficient of Determination (R²) measured how much 

variance was explained, and for classification tasks (crop 

suitability), accuracy, precision, recall, and F1-score gave a full 

picture [47]. We also looked at how fast the models could run by 

measuring their training duration and inference latency. 

For deep learning parts, implementation used Python 3.9 with 

TensorFlow 2.8 and for classic machine learning techniques, it 

used scikit-learn 1.0 [48]. Docker was used to containerize the 

whole pipeline so that it could be used again and easily deployed 

in multiple computing environments [49]. 

5. RESULTS AND DISCUSSION 
5.1 Model Performance Comparison 

The comparative analysis of the three machine learning models 

revealed distinct performance characteristics. Table 2 presents 

the comprehensive evaluation metrics for each algorithm. 

Table 2: Performance Metrics of Different Algorithms 

 

 

Algorit 

hm 

Accur 

acy 

(%) 

 

RM 

SE 

 

MA 

E 

R² 

Scor 

e 

Train 

ing 
Time 

(s) 

Inference 

Time 

(ms) 

MARS 87.5 0.89 0.72 0.86 45.2 2.1 

DNN 94.2 0.45 0.38 0.93 320.5 8.7 

LSTM 90.1 0.67 0.55 0.89 580.3 15.2 

 

The DNN model did better than all the other models on 

all the main criteria. It got 94.2% accuracy in crop suitability 

classification and an RMSE of 0.45 tonnes/hectare in yield 

prediction. This is a 6.7% better classification accuracy than 

MARS and a 4.1% better classification accuracy than LSTM. 

The DNN's ability to find complicated nonlinear links between 

soil characteristics and crop responses was a big reason why it 

worked better than other models [50]. 

 
Figure 4: Model Performance Comparison 

5.2 Analysis of Feature Importance 

Feature importance analysis showed that soil moisture content 

was the most important predictor, explaining 85% of the variance 

in crop output estimates. The next most important factors were 
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soil pH level (73%), nitrogen concentration (68%), and 

temperature (62%). These results are in line with agronomic 

principles that say soil water availability and pH are the most 

important factors that affect crop productivity [51]. 

The significant relevance of soil moisture comes from the fact 

that it serves two purposes: it makes nutrients available and helps 

plants grow. Soil pH has a big effect on nutrient solubility and 

microbial activity, which is why it is so important. Nitrogen is 

the most important nutrient in farming systems since it is the most 

prevalent limiting nutrient. Temperature has a big effect on 

microbial activity, nutrient mineralization, and plant metabolic 

rates [52]. 

 

Figure 5: Actual vs Predicted Crop Yield (DNN Model) 

 

5.3 Crop Yield Prediction Results 

The DNN model did a great job of predicting crop yields for 

different types of crops and soil conditions. Figure 6 shows the 

actual yield values compared to the anticipated yield values for 

10 representative field samples. The model predictions and the 

measured outcomes are very similar to each other. 

The accuracy of the predictions was best for wheat (R² = 0.94) 

and rice (R² = 0.92), okay for pulses (R² = 0.87), and not as good 

for vegetables (R² = 0.81). This diversity is due to the fact that 

different types of crops have different levels of complexity when 

it comes to yield determinants. For example, cereal crops tend to 

respond to soil conditions in a more predictable way than 

horticulture crops, which have more complicated quality factors 

[53]. 
 

 

Figure 6: Actual vs Predicted Crop Yield 

 

5.4 Soil Nutrient-Crop Suitability Matrix 

The system generated a comprehensive crop suitability matrix 

based on soil nutrient profiles and environmental conditions. 

Table 3 presents the optimal crop recommendations for different 

soil conditions, along with expected yield ranges. 

Table 3: Optimal Crop Recommendations Based on 

Soil Parameters 

 

Soil 

Condit 

ion 

pH 

Ran 

ge 

N 

(kg/ 

ha) 

P 

(kg/ 

ha) 

K 

(kg/ 

ha) 

Recomme 

nded 

Crops 

Expec 

ted 

Yield 

(t/ha) 

Acidic 

, High 

N 

5.5- 

6.0 

>12 

0 

40- 

60 

150- 

200 
Rice, Tea 

4.5- 

5.2 

Neutra 

l, 

Balanc 

ed 

 

6.5- 

7.0 

 

80- 

100 

 

60- 

80 

 

180- 

220 

 

Wheat, 

Pulses 

 

5.0- 

5.8 

Alkali 
ne, 

Low P 

7.5- 

8.0 

60- 

80 

 

<30 
120- 

150 

Barley, 

Cotton 

3.8- 

4.5 

Saline, 

Moder 

ate 

7.0- 

7.5 

70- 

90 

40- 

50 

100- 

130 

Sorghum, 

Millet 

3.5- 

4.2 

 

The suitability matrix shows how well the technology can turn 

complicated soil data into useful advice for growing crops. The 

suggestions take into account both productivity potential and 

sustainability factors. For example, they suggest planting salt- 

tolerant crops in saline environments to stop the soil from getting 

worse [54]. 

 
5.5 Nutrient Deficiency Impact Analysis 

The method was able to diagnose vitamin deficits with 89% 

accuracy, which made it possible to act quickly. Table 4 shows 

the visual signs, effects on yield, and suggested fixes for key 

nutrient shortages. 

The system's monitoring capabilities helped find nutrient 

deficiencies early on, which stopped big production losses in 

field experiments. Farmers who took the suggested steps to fix 

the problem within seven days of finding it had yields that were 

22% greater than those who waited to do so [55]. 

 

Table 4: Visual Symptoms and Impact of Nutrient Deficiencies 

 

Nutrient 
Deficienc 

y Level 

Visual 

Symptoms 

Yield 

Impa 

ct 

Recommen 

ded Action 

 

Nitrogen 

 

<50 

kg/ha 

Chlorosis 

(yellowin 

g), stunted 

growth 

-35% 

to 

-50% 

 

Apply urea 

(50 kg/ha) 

 

Phosphor 

us 

 

<30 

kg/ha 

Purple 

leaves, 

poor root 

developm 

ent 

 

-25% 

to 

-40% 

 

Apply DAP 

(40 kg/ha) 

Potassiu 

m 

<100 

kg/ha 

Leaf 

scorching, 

weak 

-20% 

to 

-35% 

Apply MOP 

(30 kg/ha) 

 

Combine 

d 

Multiple 

deficienci 

es 

Multiple 

symptoms 

, very 

poor 

-50% 

to 

-70% 

Soil testing 

+ balanced 

fertilization 
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5.6 Results of Field Implementation 
 

Figure 7: Farm Smart Dashboard 

The system was set up on 50 farms in Haryana, India, covering a 

total area of 125 hectares. The results of the implementation 

showed that agricultural efficiency had improved a lot: 

i. Resource Optimization: By using precision 

application based on the actual nutritional condition of 

the soil instead of blanket recommendations, fertilizer 

use went down by 22% [56]. 

ii. Output Enhancement: The average crop output across 

all monitored plots went up by 18%, with the biggest 

gains seen in areas that had been poor in productivity 

before [57]. 

iii. Water Conservation: By keeping an eye on the soil 

moisture levels in real time and optimizing the schedule, 

the amount of water used for irrigation was cut by 35% 

[58]. 

iv. Economic Benefits: Farmers made 28% more money 

because they got higher yields and lower input costs. 

The benefit-cost ratios for diverse agricultural 

enterprises ranged from 2.3 to 3.1 [59]. 

v. Environmental Impact: Precise nutrient control cut 

nitrate leaching by 40% and greenhouse gas emissions 

from using fertilizer by 31% [60]. 

5.7 Discussion 

There are a number of reasons why the DNN model works better 

than others. First, it was able to find more accurate predictions 

than linear methods like MARS [61] because it could find 

complicated nonlinear correlations between soil properties. 

Second, deep networks' ability to learn features in a hierarchical 

way helped the model find patterns in the data that simpler 

methods would overlook [62]. Third, regularization strategies 

worked well to stop overfitting even if the training dataset was 

small [63]. 

The LSTM model seemed like it could work for predicting 

things over time, but it was limited by the fact that it only had 

six months of data to work with. LSTM architectures should 

show better results for seasonal and interannual prediction tasks 

if they are used to collect data over a longer period of time [64]. 

The MARS model yielded comprehensible findings with 

adequate precision, rendering it appropriate for scenarios where 

model clarity is valued more than peak prediction capability 

[65]. 

The system's real-world use brought up a number of key points. 

Sensor calibration and maintenance were essential for enduring 

accuracy, with monthly calibration advised for optimal 

functionality [66]. Because it was hard to get data in rural 

locations, offline functionality with periodic cloud 

synchronization had to be created [67]. User interface design 

was very important for adoption rates. Simplified visuals and 

support for local languages made farmers much more interested 

[68]. 

The economic research showed that the system's benefits went 

beyond just higher yields. Lower input prices, better use of 

resources, and better decision-making skills all led to big 

economic gains [69]. Environmental benefits, including less 

fertilizer runoff and better water use, were key results of 

sustainability [70]. 

 

6. CONCLUSIONS 

 
This study successfully created a smart farming system that uses 

IoT-based soil sensors and advanced machine learning 

algorithms to work together to estimate soil production and 

suggest the best crops to grow. The Deep Neural Network 

(DNN) model was the best, with a forecast accuracy of 94.2% 

for crop suitability and better results than older techniques. The 

study makes several important contributions: (1) an end-to-end 

system architecture that brings together data collection, 

processing, and actionable recommendations, solving the 

problem of existing solutions being too spread out; (2) an 

adaptive learning framework where models get better with more 

data; (3) a practical and cost-effective implementation that was 

tested in the field; and (4) documented results that show big 

improvements in resource efficiency, crop yields, and farmer 

income while having less of an effect on the environment. This 

system connects advanced technology with practical farm 

management. It is a scalable tool that helps people make better 

decisions, encourages sustainable practices, and helps keep the 

world's food supply safe. 

FUTURE SCOPE 
Future work will focus on improving the system by combining 

data from drones and satellites in different ways, creating 

federated learning models that protect privacy, and adding 

climate resilience planning. There will also be more work on 

blockchain-enabled traceability, edge computing for real-time 

processing, and making it easier for farmers to use the system by 

adding offline and multi-language capabilities. The system's 

knowledge base will be expanded to encompass a wider range 

of crops and agroecological methods. New community elements 

will also encourage farmers to work together and share what 

they know. 
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