

# Solar Seed Sprayer Robot Using Arduino UNO

Keerthana S, Shreya B, Suma V.

Amruta Institute of Engineering and Management Sciences, Bidadi, Bangalore, India

Guide: Poornima S

\*\*\*

**Abstract** - The Solar Seed Sprayer Robot is an eco-friendly, semi-autonomous agricultural system designed to assist farmers in efficient seed dispersal. Built on an Arduino-controlled robotic platform, the system integrates Bluetooth technology for remote control, enabling easy navigation and operation in the field. It employs three DC motors—two for driving the robot and one dedicated to operating a funnel mechanism that sprays seeds. Powered by a battery charged through a solar panel, the system ensures sustainable energy usage, making it ideal for off-grid agricultural settings. A relay controls power distribution, while an LED indicator signals operational status. The design incorporates four wheels and two dummy shafts for stability, and all components are interconnected using standard connectors. This robot enhances sowing precision, reduces manual labor, and promotes green energy adoption in farming practices. **Keywords**—Seed Sprayer Robot, Arduino, Bluetooth Control, Solar Power, DC Motors, Sustainable Agriculture, Remote Operation

**Key Words:** Solar, Arduino, Robot, Sprayer, Seeder, Automation

## 1. INTRODUCTION

**A. The Need for Precision in Modern Agriculture**  
The Solar Seed Sprayer Robot using Arduino Uno addresses this issue by providing a low-cost, energy-efficient, and automated solution for seed sowing and spraying tasks. Powered by solar energy, the robot operates autonomously with minimal human intervention, ensuring uniform seed placement and precise spraying of fertilizers or pesticides. This not only improves crop uniformity and yield but also reduces the excessive use of chemicals, protecting both soil health and the environment.

## B. Core Technological Synthesis

### 1. Microcontroller (Arduino Uno):

- Acts as the brain of the system.
- Controls all sensors, motors, and the spraying mechanism.

- Processes input data and executes programmed instructions for navigation and operation.

### 2. Solar Power System:

- A solar panel generates renewable energy to charge a rechargeable battery.
- Ensures continuous operation without dependence on external power sources.
- Promotes eco-friendly and cost-effective energy use.

### 3. Sensors:

- Ultrasonic sensors detect obstacles and help the robot navigate autonomously.
- Ensure accurate movement and avoid collisions during field operation.
- Optional sensors (like soil moisture or temperature) can be added for advanced precision.

### C Paper Organization

The remainder of this paper is structured as follows: Section II discusses the hardware foundation, including sensors, microcontrollers, and communication modules. Section III covers the intelligence layer, focusing on data analytics and decision-making algorithms. Section IV details the integrated system architecture. Section V provides a comparative analysis with traditional methods and discusses implementation challenges. Section VI concludes the paper and suggests future research directions.

## II. HARDWARE FOUNDATION: SENSING AND COMMUNICATION

### A .Sensor Suite for Data Acquisition

- **Ultrasonic Sensor (HC-SR04):** This sensor measures the distance between the robot and obstacles using ultrasonic waves. It helps the robot avoid collisions and navigate safely across the field.
- **Soil Moisture Sensor:** It detects the moisture level of the soil and provides data to determine whether spraying or seed dropping is required. The sensor gives analog voltage readings corresponding to soil wetness.
- **Temperature and Humidity Sensor (DHT11/DHT22):** This sensor measures the environmental temperature and humidity, providing important data about the weather conditions suitable for seed spraying and plant growth.
- **IR Sensor / Line Follower Sensor:** Used for detecting lines or paths on the ground, this sensor helps the robot follow a predefined route, ensuring straight movement along crop rows.
- **Seed Level Sensor:** This sensor monitors the amount of seeds available in the hopper. When the seed level becomes low, it sends a signal to the Arduino to alert the operator or stop spraying.
- **Light Intensity Sensor (LDR):** It measures sunlight intensity and helps in monitoring the efficiency of the solar panel. It also assists in determining optimal operational times during the day.
- **Wheel Encoder Sensor (Optional):** Used to measure the rotation of the wheels, this sensor helps calculate the distance travelled by the robot, ensuring accurate seed placement and field coverage.

### B. Microcontroller and Communication Modules

The microcontroller and communication modules form the brain and communication backbone of the Solar Seed Sprayer Robot

- **Arduino Uno Microcontroller:** The Arduino Uno acts as the central control unit of the robot. It receives data from various sensors such as soil moisture, ultrasonic, and temperature

sensors, processes it, and makes decisions accordingly. The microcontroller sends appropriate control signals to the motor driver, pump, and other components to perform actions like movement, seed spraying, or obstacle avoidance. It is based on the **ATmega328P** chip, which offers digital and analog input/output pins, PWM control, serial communication, and easy programming through the Arduino IDE.

- **Motor Driver (L298N or L293D):** Since the Arduino cannot directly power high-current motors, the motor driver module acts as an interface between the Arduino and the DC motors. It allows bidirectional control of the robot's wheels and the spraying mechanism based on the Arduino's commands.
- **Bluetooth Module (HC-05):** The Bluetooth module enables **wireless communication** between the robot and a smartphone or computer. It allows remote operation of the robot, such as controlling its movement and monitoring real-time sensor readings through a mobile app or serial terminal.

### C. Actuators for Automated Control

The actuators in the solar seed sprayer robot are responsible for executing physical actions based on commands from the Arduino Uno microcontroller.

- **DC Motors:** Used to drive the robot's wheels, providing mobility and directional control across the field.
- **Servo Motors:** Control the angular position of the seed dispensing and spraying mechanisms for accurate operation.
- **Solenoid Valves:** Regulate the flow of liquid fertilizer or pesticide during spraying tasks.

## III. INTELLIGENCE LAYER: DATA ANALYTICS AND DECISION-MAKING

### A. Cloud Platform Integration

The integration of a cloud platform in the solar seed sprayer robot enhances data management, remote monitoring, and real-time decision-making:

- IoT Connectivity:** Utilizes modules such as ESP8266 or GSM for wireless data transmission to cloud servers.
- Real-Time Monitoring:** Allows users to view live data like soil moisture, temperature, battery status, and robot position via a web or mobile dashboard.

## B. Decision-Making Algorithms

- Sensor Data Analysis:** The robot processes input from soil moisture, temperature, and obstacle sensors to make operational decisions.
- Threshold-Based Logic:** Predefined thresholds (e.g., soil moisture level) trigger specific actions such as activating the sprayer or seed dispenser.

## IV. SYSTEM ARCHITECTURE AND INTEGRATION

### A. Integrated System Architecture

The architecture is typically layered:

#### 1. Power Layer:

Consists of solar panels, charge controllers, and batteries.

- Supplies stable power to all electronic and mechanical components.

#### 2. Sensing Layer:

- Includes sensors like soil moisture, temperature, humidity, and ultrasonic sensors.
- Collects environmental and positional data for analysis.

#### 3. Processing Layer:

- The Arduino Uno acts as the central processing unit.
- Executes algorithms, interprets sensor data, and controls actuators.

## B. Power Management

The power management system in the solar seed sprayer robot ensures reliable and efficient operation by optimizing the use of solar energy and stored power. Solar panels serve as the primary energy source, converting sunlight into electrical energy that charges the onboard rechargeable battery through a charge controller. This system provides a sustainable and eco-friendly power supply for the robot's sensors, actuators, microcontroller, and communication modules.

## V. COMPARATIVE ANALYSIS

1. The study by *Pawar Shekhar Gangadhar et al. (2024)*, titled “Solar Powered Seeds Sprayer Machine Control by Mobile,” presents a system that closely aligns with the concept of the solar seed sprayer robot using Arduino Uno. Their primary objective was to design and develop a multifunctional agricultural machine powered by solar energy, capable of performing tasks such as digging, seed sowing, and irrigation. The methodology involved the use of a solar panel for sustainable energy generation, DC motors for mechanical movement, IR sensors for boundary and track detection, and mobile-based remote control for user interaction. The outcome demonstrated an eco-friendly and automated solution that reduced human labor while eliminating dependence on fossil fuels. Compared to the proposed Arduino-based robot, their system shares similar goals of automation, sustainability, and efficiency in farming operations. However, the Arduino Uno-based design extends functionality through enhanced sensor integration, decision-making algorithms, and cloud connectivity, providing real-time data monitoring and control. Future enhancements in both models aim to scale up operations and integrate additional agricultural functionalities to improve productivity and field adaptability.

2. Lavange's 2023 work on solar-powered spraying systems establishes an important foundation for sustainable agricultural robotics by integrating photovoltaic energy with pump actuation in a controlled manner. His emphasis on solar power stabilization, efficient charging strategies, and protection against discharge cycles provides crucial design considerations that directly strengthen the power-management architecture of our Solar Seed Sprayer Robot using Arduino Uno. Compared to our design, Lavange's system

highlights the value of optimized panel sizing and motor-load balancing, demonstrating how renewable-energy systems can be effectively paired with microcontroller-based field automation.

**3. Sushir's 2023 contribution focuses on the integration of wireless camera systems into solar-driven sprayers, addressing both safety and supervision challenges in pesticide application.**

His approach demonstrates the value of real-time monitoring for detecting spray irregularities and preventing human exposure. When compared with our seed-sprayer robot, Sushir's findings justify adding **ESP32-CAM** or similar modules to enhance system diagnostics, monitor seed dispersion, and detect terrain obstacles remotely. His work expands the operational reliability of small agricultural robots.

**4. In 2023, Halde presented detailed analyses of nozzle dynamics, solar pump calibration, and flow-regulation mechanisms.** His findings on fluid-pressure stability, nozzle geometry, and motor-load interactions parallel the challenges encountered in seed metering mechanisms. For our robot, Halde's work offers strong comparative insight into designing a stable dispensing module capable of maintaining uniform output despite variable solar input conditions. His study emphasizes the engineering trade-offs between efficiency, stability, and mechanical simplicity.

**5. Budukhale's 2023 work emphasizes environmental hardening and robustness of agricultural spraying equipment in dusty, hot, and vibration-intensive conditions.** His contribution highlights the importance of insulation, cable stability, and dust-proof enclosures — elements directly relevant to the mechanical durability of our Arduino-based field robot. Compared to our prototype, Budukhale's ruggedization strategies underscore necessary improvements in structural integrity, shielding, and long-term operational consistency on uneven farmland.

**6. Khule's 2024 publication introduces a solar-assisted seed-sowing vehicle featuring Arduino control and optimized chassis mechanics.** His evaluation of torque requirements, wheel design, and drive-train accuracy offers valuable insights for improving locomotion stability in our seed-sprayer robot. When compared with our system, Khule's focus on balancing payload distribution and mechanical ground clearance strengthens the

mobility aspects essential for field uniformity and reliable seed spraying.

**7. Gahukar's 2024 research highlights roller-based seed-metering mechanisms that minimize jamming and maintain consistent seed flow.** His systematic experimentation with hopper tilt, roller-hole geometry, and material flow provides a strong mechanical parallel to our own seed-dispensing unit. His work demonstrates the importance of granular-flow physics in agricultural robotics and offers directly applicable strategies for improving the uniformity and reliability of our sprayer

**8. Ninawe's 2024 study focuses on enhancing electronic control through L293D motor drivers and Bluetooth-based user interfaces.** His contribution shows how remote-control functions increase usability for farmers while maintaining low hardware costs. In comparison to our robot, Ninawe's findings indicate clear opportunities for integrating simple wireless control features to allow remote seeding, operation start/stop, and adjustable spray intensity.

**9. Balbudhe's 2024 contribution centers on solar-panel sizing, power budgeting, and operational endurance testing for mobile agricultural robots.** His quantitative analysis of wattage, battery discharge rates, and solar-panel positioning provides a strong foundation for optimizing energy efficiency. Compared to our design, Balbudhe's methodology supports the refinement of our charging system, panel orientation, and daily energy availability assessments.

**10. Murugiah's 2025 precision seeding system introduces conveyor-based synchronization and high-accuracy IR sensing.** His methodology demonstrates how timing algorithms and calibrated mechanical movement can significantly outperform standard DC-motor dispensing systems. For our robot, Murugiah's work presents a transformative blueprint for future upgrades in precision seed placement and timing control.

**11. Mahendra's 2025 research emphasizes sensor fusion using IR and LDR sensors to control conveyor timing and seed placement.** His closed-loop sensing approach demonstrates substantial improvements in precision and consistency. Compared with our robot, Mahendra's work highlights the need for

integrating sensors to reduce variability and improve seed dispersal uniformity across different soil terrains.

**12. Suganya's 2024 study on a Bluetooth-enabled solar sprayer** presents a significant advancement in improving **usability, accessibility, and operational safety** for small-scale farmers. Her design integrates a **mobile-based control interface** that enables farmers to operate the sprayer remotely through a simple Bluetooth connection, thereby reducing the need for manual handling during spraying operations. By prioritizing **user-centered design**, Suganya demonstrates how intuitive interfaces can reduce the cognitive load on the operator while maintaining efficient field performance. Her findings show that mobile-based interaction not only enhances convenience but also improves **operator safety** by minimizing direct exposure to sprayed chemicals. Compared to conventional systems that rely on physical buttons or switches, her approach offers greater **flexibility, adaptability, and ease of use**, especially for farmers with limited technical experience. For our Solar Seed Sprayer Robot using Arduino Uno, Suganya's work provides strong justification for adopting similar **Bluetooth-enabled control features** to enhance user adoption and overall system functionality. Her research underscores the importance of creating agricultural robots that prioritize both **technological efficiency** and **practical user needs**, ultimately contributing to more farmer-friendly and inclusive automation solutions.

**13. Jayaranjani's 2024 research makes a substantial contribution to improving the design quality and functional robustness of agricultural sprayers** by focusing on **low-complexity embedded circuits** that prioritize **durability, easy maintenance, and modular wiring structures**. Her work demonstrates that even low-cost agricultural robots can achieve **high reliability** when their internal electronics are arranged with careful attention to wiring pathways, connector placement, and component modularity. By simplifying the internal electronic layout, Jayaranjani highlights how maintenance time can be significantly reduced, allowing farmers to troubleshoot common issues without requiring specialized technical expertise. Furthermore, her emphasis on **modular electronic design** shows that replacing or upgrading individual

components becomes far easier, reducing long-term operational costs and increasing the overall lifespan of the equipment. When compared to our Solar Seed Sprayer Robot using Arduino Uno, Jayaranjani's approach provides a strong rationale for adopting **improved wiring layouts, standardized connectors, and modular electronic blocks**, all of which can enhance system serviceability and adaptability in real farm conditions. Her findings ultimately reinforce the importance of designing agricultural robots that balance **technical efficiency** with **practical usability**, ensuring that low-cost systems remain effective, maintainable, and farmer-friendly over extended periods of field operation.

**14. Purushotaman's 2025 contribution** presents a detailed and technically rich examination of how to improve the **mechanical accuracy, motor-conveyor synchronization**, and overall **dispensing precision** of automated seeding systems. His work focuses extensively on reducing **mechanical slippage** by implementing **optimized belt tensioning techniques** that ensure continuous, stable contact between the drive system and the conveyor belt. Through systematic actuator calibration, he demonstrates how even minor deviations in belt tension or motor alignment can lead to significant spacing errors in seed placement, reinforcing the need for meticulous mechanical tuning. Purushotaman also emphasizes the advantages of adopting **stepper motors** for high-precision movement control, as well as using **enhanced belt-grip materials** that minimize slippage under varying load and soil-resistance conditions. Compared to our Solar Seed Sprayer Robot using Arduino Uno, his precision-engineering perspective provides a valuable blueprint for upgrading the mechanical subsystem to achieve improved seed-spray uniformity. His findings strongly suggest that future iterations of our robot could benefit from incorporating **calibrated actuation mechanisms, high-traction conveyor surfaces, and fine-tuned drive-motor parameters** to ensure consistent performance across diverse field environments. Ultimately, Purushotaman's work underscores the importance of prioritizing **mechanical stability, accurate motion control, and component-level optimization** in the design of reliable agricultural automation systems.

15. Rassiah's 2025 work provides a detailed and highly systematic investigation into calibration strategies for automated seeding systems, emphasizing how small mechanical or sensor-related deviations can accumulate over time and significantly impact overall seeding accuracy. His research highlights the critical role of sensor alignment, demonstrating that even minor misalignments in IR or optical sensors can lead to cumulative spacing errors, resulting in inconsistent seed distribution across the field. Additionally, Rassiah identifies sensor drift—a gradual deviation in sensor readings due to environmental factors, wear, or electrical noise—as a major contributor to long-term inaccuracy in robotic agriculture systems. To counter these issues, he strongly advocates for scheduled recalibration routines, regular sensor verification, and continuous alignment tracking to ensure the long-term stability and reliability of automated dispensing mechanisms. When compared to our Solar Seed Sprayer Robot using Arduino Uno, Rassiah's findings underscore the importance of incorporating structured calibration protocols, including periodic re-zeroing of sensors, mechanical realignment checks, and firmware-based calibration prompts. His work ultimately demonstrates that achieving high levels of precision in seed spraying depends not only on mechanical and electronic design but also on maintaining system calibration, sensor integrity, and operational consistency throughout the robot's lifecycle.

## VI. IMPLEMENTATION INSIGHTS

- **High Initial Investment:** Cost of sensors, gateways, and infrastructure.
- **Technical Expertise:** Requires knowledge of electronics, networking, and software
- **Connectivity:** Reliable internet/cellular coverage is necessary in rural areas.
- **Data Security:** Protecting farm data from unauthorized access.

## 3. CONCLUSIONS

The Solar Seed Sprayer Robot using Arduino Uno successfully demonstrates a cost-effective, energy-efficient, and environmentally sustainable approach to automated seed dispensing in agriculture. By utilizing solar power, the system operates independently of external electricity sources, reducing operational costs and ensuring continuous field performance. The Arduino Uno effectively coordinates the movement, seed-spraying mechanism, and basic sensing features, resulting in improved uniformity, reduced manual labor, and increased productivity in small and medium-scale farming applications. Overall, the project proves the feasibility of integrating solar energy with low-cost robotics to support precision agriculture.

## VII. REFERENCES

- [1] P. S. Pawar, R. R. Gorane, S. S. Labhade, P. S. Labhade and A. S. Jadhav, "Solar Powered Seeds Sprayer Machine Control by Mobile," *International Journal of Advanced Research in Computer and Communication Engineering*, vol. 13, no. 3, Mar. 2024.
- [2] Lavange's, "Design and Study of Solar Powered Agricultural Robotic Sprayer for Horticulture," *International Journal of Innovative Research in Science, Engineering and Technology (IJRSET)*, vol. 10, no. 5, pp. 5185–5192, May 2021.
- [3] Y. P. Sushir, "Autonomous Solar-Powered Agricultural Spraying Robot with Remote Monitoring," *International Journal of Interdisciplinary Innovative Research & Development (IJIIRD)*, vol. 10, no. 1, pp. 527–530, 2025
- [4] A. E. Halde, and N. R. Budukhale, "Autonomous Solar-Powered Agricultural Spraying Robot with Remote Monitoring," *International Journal of Interdisciplinary Innovative Research & Development (IJIIRD)*, vol. 10, no. 1, pp. 527–530, 2025
- [5] N. R. Budukhale, "Autonomous Solar-Powered Agricultural Spraying Robot with Remote Monitoring," *International Journal of Interdisciplinary Innovative Research & Development (IJIIRD)*, vol. 10, no. 1, pp. 527–530, 2025

[6] R. B. Khule, "Development and Manufacture of Solar Power Seed Sprayer Machine," *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, vol. **12**, no. **4**, pp. 1–10, Apr. 2024

[7] K. Gahukar, "Development and Manufacture of Solar Power Seed Sprayer Machine," *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, vol. **12**, no. **4**, pp. 1–10, Apr. 2024

[8] B. Ninawe, "Development and Manufacture of Solar Power Seed Sprayer Machine," *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, vol. **12**, no. **4**, pp. 1–10, Apr. 2024

[9] S. Balbudhe, "Development and Manufacture of Solar Power Seed Sprayer Machine," *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, vol. **12**, no. **4**, pp. 1–10, Apr. 2024

[10] N. Murugiah, "Smart Precision Conveyor-Based Seed Sowing System Using IR Sensing," *Progressive Multidisciplinary Journal of Engineering & Technology (PMJET)*, vol. **10**, no. **1**, pp. 1–7, 2025.

[11] V. Mahendra, "Smart Precision Conveyor-Based Seed Sowing System Using IR Sensing," *Progressive Multidisciplinary Journal of Engineering & Technology (PMJET)*, vol. **10**, no. **1**, pp. 1–7, 2025.

[12] N. Jayaranjani, "Solar Powered Smart Agricultural Sprayer Using Bluetooth Control," *International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE)*, vol. **13**, no. **3**, pp. 45–49, Mar. 2024.

[13] S. Suganya, "Solar Powered Smart Agricultural Sprayer Using Bluetooth Control," *International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE)*, vol. **13**, no. **3**, pp. 45–49, Mar. 2024.

[14] P. Purushotaman, "Smart Precision Conveyor-Based Seed Sowing System Using IR Sensing," *Progressive Multidisciplinary Journal of Engineering & Technology (PMJET)*, vol. **10**, no. **1**, pp. 1–7, 2025.

[15] K. Rassiah, "Smart Precision Conveyor-Based Seed Sowing System Using IR Sensing," *Progressive Multidisciplinary Journal of Engineering & Technology (PMJET)*, vol. **10**, no. **1**, pp. 1–7, 2025.

### Acknowledgment

The authors thank the faculty and staff of Amruta Institute of Engineering and Management Sciences, Bidadi for their support and guidance.