

SOLUTIONS FOR LOAD-FLOW AND SHORT CIRCUIT PROBLEMS USING E-TAP

¹Dr.N.Ashokkumar, ²Kannusami.G, ³Dr.S.Prabakaran

¹Assistant Professor, Department of Electrical and Electronics Engineering, SCSVMV UNIVERSITY, Kanchipuram, India

²P.G Student, Department of Electrical and Electronics Engineering, SCSVMV UNIVERSITY, Kanchipuram, India

³Associate Professor, Department of Electrical and Electronics Engineering, SCSVMV UNIVERSITY, Kanchipuram, India

ABSTRACT

This research article presents a solution set for a real-time power system (1). This work can be taken as continuation of solution sets for the power system contingencies, what is discussed in our earlier paper (1). These solutions are obtained by simply changing the transmission size, adding OLTC'S and adding capacitor bank suitably to obtain the results. The tool used for building and obtaining the results is E-TAP.

Keywords: Contingencies in power system, Capacitor bank, E-TAP, OLTC'S, Transmission size

INTRODUCTION

In earlier research article (1), an Algerian power system network of 220/63/33KV was selected and a short circuit failure was simulated in U1 and U2 feeders. U1 and U2 feeders are the feeders of Ghaza Ouet – 220/63/30 KV which is referred as Tlemcen, Beni-Poste feeders. These results are published in the research article (1). This current research article proposes certain solution sets for the contingencies that as triggered due to the short circuit fault. The main contingency what is observed in the earlier work is drop in the voltage. Voltage profile as been badly affected because of the short circuit fault also power factor in the power system has also been collapsed.

On considering the various remedies to stabilize the voltage profile and to increase the power factor, changing the transmission line comes as a better choice. Moreover, by changing the OLTC'S taps voltage can be regulated to the desired levels, in addition capacitor banks have been placed suitably to increase the power factor of the system.

SYSTEM DESCRIPTION

In the Fig: 1 the main network without any fault condition is shown. It can be observed that both U1 and U2 feeders are active and the power system is in the normal mode of operation.

Fig: 2- Main network with faultless condition – Results

L

Load flow analysis is done on the above Fig: 2 in the corresponding results are shown as values in the Fig:2 itself. This is the case of load flow analysis when U1 and U2 are active.

CONTINGENCY TEST CASES

As in the earlier research article (1), contingency is created by shorting the feeder U1. Once U1 feeder is shorted the network will be as shown below,

Fig: 3-Contingency case (Shorting the U1 Feeder)

L

RESULTS OF CONTINGENCY CASE (SHORTING THE U1-FEEDER)

Fig: 4-Contingency Case -Result

From the above figure it is very clear that the main feeder U1 is shorted (2) and load flow analysis is done. From the load flow analysis, we can observe the power flow between the various buses, the power factor at the bus points and the reactive power support in the network. It gives the complete analysis of a thorough load flow study. The pink coloured buses can be taken as candidate buses in this research study.

L

RESULTS AND DISCUSSIONS

On conducting the load flow during contingency conditions a thorough data analysis has been observed and it

Is tabulated as follows

Table: 1-Load Flow Report

					LO	AD FLO	W REP	ORT						
Bus		Volta	ige	Gener	ation	Lo	nd			Load Flow				XFMR
ID	kV	% Mag.	Ang.	MW	Mvar	MW	Mvar	-	ID	MW	Mvar	Amp	%PF	%Tap
Busl 2	20.000	99.379	-0.7	0.000	0.000	0.000	0.000	Bus2		-76.527	-23.143	211.1	95.7	8
								Bus3		76.527	23.143	211.1	95.7	
* Bus2 2	20.000	100.000	0.0	76.783	11.972	0.000	0.000	Busl		76.783	11.972	203.9	98.8	
Bus3 2	20.000	99.379	-0.7	0.000	0.000	0.000	0.000	Bus1		-76.527	-23.143	211.1	95.7	
								Bus7		41.327	13.032	114.4	95.4	
								Bus14		35.200	10.110	96.7	96.1	
Bus4 2	20.000	98.672	-1.5	0.000	0.000	0.000	0.000	Bus5		-105.762	-30.204	292.5	96.2	
								Bus15		97.260	28.937	269.9	95.8	
								Bus18		8.502	1.267	22.9	98.9	
Bus5 2	20.000	98.672	-1.5	0.000	0.000	0.000	0.000	Bus6		-105.762	-30.204	292.5	96.2	
								Bus4		105.762	30.204	292.5	96.2	
* Bus6 2	20.000	100.000	0.0	106.465	25.097	0.000	0.000	Bus5		106.465	25.097	287.1	97.3	
Bus7 2	20.000	99.379	-0.7	0.000	0.000	0.000	0.000	Bus3		-41.327	-13.032	114.4	95.4	
								Bus8		41.327	13.032	114.4	95.4	-1.250
								&Bus9						
Bus8	63.000	99.252	-3.I	0.000	0.000	0.000	0.000	Bus20		41.057	11.077	392.6	96.5	
								Bus9		-41.057	-11.077	392.6	96.5	
								&Bus7						
Bus9	11.000	100.581	-0.8	0.000	0.000	0.000	0.000	Bus10		0.207	0.059	11.2	96.2	1.250
								Bus7		-0.207	-0.059	11.2	96.2	
							3	&Bus8						
Bus10	0.400	98.566	-1.7	0.000	0.000	0.206	0.055	Bus9		-0.206	-0.055	312.9	96.6	
Busl1	63.000	98.279	-2.8	0.000	0.000	0.000	0.000	Bus22		34.947	8.665	335.7	97.1	
								Bus13		-34.947	-8.665	335.7	97.1	
							3	&Bus14						
Bus12	0.400	98.560	-1.7	0.000	0.000	0.206	0.055	Bus13		-0.206	-0.055	312.9	96.6	
Bus13	11.000	99.333	-0.8	0.000	0.000	0.000	0.000	Bus12		0.207	0.059	11.4	96.2	
								Bus14		-0.207	-0.059	11.4	96.2	
								&Bus11						
Busl4 2	20.000	99.379	-0.7	0.000	0.000	0.000	0.000	Bus3		-35.200	-10.110	96.7	96.1	
								Bus11		35.200	10.110	96.7	96.1	

Volume: 07 Issue: 04 | April - 2023

Impact Factor: 8.176

ISSN: 2582-3930

Bus		Volt	age	Gener	ation	Lo	ad			Load Flow				XFMR
ID	kV	% Mag.	Ang.	MW	Mvar	MW	Mvar		ID	MW	Mvar	Amp	%PF	%Tap
							4	&Bus13						
us15	220.000	98.672	-1.5	0.000	0.000	0.000	0.000	Bus16		97.260	28.937	269.9	95.8	
								Bus4		-97.260	-28.937	269.9	95.8	
us16	220.000	98.602	-1.5	0.000	0.000	97.223	29.167	Bus15		-97.223	-29.167	270.2	95.8	
us17	220.000	98.638	-1.5	0.000	0.000	8.500	3.322	Bus18		-8.500	-3.322	24.3	93.1	
us18	220.000	98.672	-1.5	0.000	0.000	0.000	0.000	Bus17		8.502	1.267	22.9	98.9	
								Bus4		-8.502	-1.267	22.9	98.9	
us19	63.000	99.252	-3.1	0.000	0.000	0.000	0.000	Bus20		-41.057	-11.077	392.6	96.5	
								Bus24		27.753	8.333	267.6	95.8	
								Bus28		13.304	2.744	125.4	97.9	
us20	63.000	99.252	-3.1	0.000	0.000	0.000	0.000	Bus8		-41.057	-11.077	392.6	96.5	
								Bus19		41.057	11.077	392.6	96.5	
us21	63.000	98.279	-2.8	0.000	0.000	0.000	0.000	Bus22		-34.947	-8.665	335.7	97.1	
								Bus25		21.783	5.336	209.1	97.1	
								Bus27		13.164	3.329	126.6	96.9	
us22	63.000	98.279	-2.8	0.000	0.000	0.000	0.000	Bus11		-34.947	-8.665	335.7	97.1	
								Bus21		34.947	8.665	335.7	97.1	
us24	63.000	99.252	-3.1	0.000	0.000	0.000	0.000	Bus34		27.753	8.333	267.6	95.8	-1.250
								Bus19		-27.753	-8.333	267.6	95.8	
us25	63.000	98.279	-2.8	0.000	0.000	0.000	0.000	Bus35		21.783	5.336	209.1	97.1	-1.250
								Bus21		-21.783	-5.336	209.1	97.1	
us26	63.000	98.279	-2.8	0.000	0.000	0.000	0.000	Bus33		0.000	0.000	0.0	0.0	
us27	63.000	98.279	-2.8	0.000	0.000	0.000	0.000	Bus33		13.164	3.329	126.6	96.9	
								Bus21		-13.164	-3.329	126.6	96.9	
us28	63.000	99.252	-3.1	0.000	0.000	0.000	0.000	Bus32		13.304	2.744	125.4	97.9	
								Bus19		-13.304	-2.744	125.4	97.9	
us32	63.000	97.720	-4.9	0.000	0.000	13.193	3.402	Bus28		-13.193	-3.402	127.8	96.8	
us33	63.000	98.279	-2.8	0.000	0.000	13.164	3.329	Bus26		0.000	0.000	0.0	0.0	
								Bus27		-13.164	-3.329	126.6	96.9	
us34	30.000	99.405	-5.1	0.000	0.000	27.715	7.295	Bus24		-27.715	-7.295	554.8	96.7	
us35	30.000	98.790	-4.4	0.000	0.000	21.759	4.702	Bus25		-21.759	-4.702	433.7	97.7	

Т

Table: 2-Bus loading Summary Report

						Bu	is Loadin	g Summa	ry Repor	<u>'t</u>								
						Directly Connected Load									Total Bus Load			
		Bus			Constar	it kVA	Consta	int Z	Con	stant I	Ge	meric				Percent		
	ID	ł	kV	Rated Amp	MW	Mvar	MW	Mvar	MW	Mvar	MW	Mvar	MVA	% PF	Amp	Loading		
Bus1		22	20.000										79.950	95.7	211.1			
Bus2		22	20.000										77.711	98.8	203.9			
Bus3		22	20.000	3150.0									79.950	95.7	211.1	6.7		
us4		22	20.000	3150.0									109.990	96.2	292.5	9.3		
lus5		22	20.000										109.990	96.2	292.5			
lus6		22	20.000										109.383	97.3	287.1			
Bus7		22	20.000										43.333	95.4	114.4			
3us8		6	63.000										42.525	96.5	392.6			
3us9		1	1.000										0.215	96.2	11.2			
3us10			0.400				0.206	0.055					0.243	85.0	355.7			
Bus11		6	63.000										36.005	97.1	335.7			
Bus12			0.400				0.206	0.055					0.243	85.0	355.6			
tus13		1	1.000										0.215	96.2	11.4			
us14		22	20.000										36.623	96.1	96.7			
us15		22	20.000										101.474	95.8	269.9			
us16		22	20.000				97.223	29.167					127.599	76.2	339.6			
us17		22	20.000		8.500	5.268		-1.946					10.000	85.0	26.6			
us18		22	20.000										8.595	98.9	22.9			
us19		6	53.000										42.525	96.5	392.6			
3us20		6	53.000										42.525	96.5	392.6			
3us21		6	53.000										36.005	97.1	335.7			
3us22		6	53.000										36.005	97.1	335.7			
3us24		6	53.000										28.977	95.8	267.6			
Bus25		6	53.000										22.427	97.1	209.1			
3us26		6	53.000															
3us27		6	53.000										13.578	96.9	126.6			
3us28		6	53.000										13.584	97.9	125.4			
3us32		6	53.000		10.650	6.600	2.543	-3.199					15.521	85.0	145.6			
Bus33		6	53.000		13.164	8.158		-4.829					15.487	85.0	144.4			
Bus34		3	30.000		22.224	13.773	5.490	-6.479					32.605	85.0	631.2			
Bus35		3	30.000		17.492	10.840	4.268	-6.139					25.599	85.0	498.7			

Table: 3-Branch loading summary report

CKT / B	ranch	Busway	/ Cable & Rea	ctor		Tra	unsformer		
		Ampacity	Loading		Capability	Loading	input)	Loading (output)
ID	Туре	(Amp)	Amp	%	(MVA)	MVA	%	MVA	%
T2	Transformer				0.500	0.215	43.1	0.214	42.7
Т3	Transformer				0.500	0.215	43.1	0.214	42.7
Тб	Transformer				40.000	28.977	72.4	28.659	71.6
Τ7	Transformer				40.000	22.427	56.1	22.262	55.7
ті	3W XFMR p				120.000	43.333	36.1		
	3W XFMR s				120.000	42.525	35.4		
	3W XFMR t				120.000	0.215	0.2		
Т4	3W XFMR p				120.000	36.623	30.5		
	3W XFMR s				120.000	36.005	30.0		
	3W XFMR t				120.000	0.215	0.2		

Table: 4-Branch loss summary report

	From-To	Bus Flow	To-From	Bus Flow	Losses		% Bus Voltage		Vd % Drop
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
inel	-76.527	-23.143	76.783	11.972	256.3	-11170.4	99.4	100.0	0.62
line2	-105.762	-30.204	106.465	25.097	702.8	-5106.9	98.7	100.0	1.33
Line3	97.260	28.937	-97.223	-29.167	37.4	-229.7	98.7	98.6	0.07
line4	-8.500	-3.322	8.502	1.267	1.6	-2055.4	98.6	98.7	0.03
line5	13.304	2.744	-13.193	-3.402	111.2	-657.3	99.3	97.7	1.53
r1	41.327	13.032	-41.057	-11.077	63.2	1896.5	99.4	99.3	0.13
	0.000	0.000	-0.207	-0.059			99.4	100.6	1.20
72	0.207	0.059	-0.206	-0.055	0.7	3.7	100.6	98.6	2.02
13	-0.206	-0.055	0.207	0.059	0.7	3.7	98.6	99.3	0.77
14	35.200	10.110	-34.947	-8.665	46.2	1386.7	99.4	98.3	1.10
	0.000	0.000	-0.207	-0.059			99.4	99.3	0.05
6	27.753	8.333	-27.715	-7.295	38.0	1038.3	99.3	99.4	0.15
7	21.783	5.336	-21.759	-4.702	23.2	634.3	98.3	98.8	0.51
					1281.5	-14256.5			

Table: 5-Alert Summary Report

Alert Summary Report										
	% Alert Settings									
	Critical	Marginal								
Loading										
Bus	100.0	95.0								
Cable / Busway	100.0	95.0								
Reactor	100.0	95.0								
Line	100.0	95.0								
Transformer	100.0	95.0								
Panel	100.0	95.0								
Protective Device	100.0	95.0								
Generator	100.0	95.0								
Inverter/Charger	100.0	95.0								
Rus Voltage										
OverVoltage	105.0	102.0								
UnderVoltage	95.0	98.0								
Generator Excitation										
OverExcited (O Max.)	100.0	95.0								
UnderExcited (O Min)	100.0									

It is observed from the alert summary report as shown in Table-5; clear indications about the setting points are indicated. These results are obtained using ETAP tool.

LOAD FLOW OF TEST CASE-N1

In continuation with the earlier results the following tables explains the complete data for branch loss summary, branch loading summary, bus loading summary, load flow analysis and alert summary report for the contingency case N-1 with feeder U1 shorted. It is imperative that the clear variation in the transmission size, adjusting the OLTC'S taps and capacitor bank have suitably streamlined the power system.

CONCLUSION

This research work has thoroughly analysed a power system network. This power system network is a real time system and has been analysed through E-TAP tool. A short circuit contingency in the incoming feeder U1 and its after effects in the power system has been analysed through load flow analysis. Effective solutions are also imposed by changing the transmission size from 700 KCMIL to 1000 KCMIL which has significantly reduced the voltage drop. Moreover, added OL- Taps to all transformers to regulate the voltage at it's LV bus (with a setting of +10%, 1.25 step size, 1-tap). Also, added capacitor bank at the load end to increase the power factor at the incomer side. The voltage has increased to marginal value of 95% to 97.5% which is shown in the pink colour. Similarly, power factor has increased in all incomers nearing to unity. These results and conclusion clearly indicates how a contingency can be managed and how E-TAP tool is useful in getting the results. Future researchers can travel in contingency analysis and solutions.

REFERENCES

- 1. Ashokkumar.N et.al "Load flow and short circuit analysis using E-TAP".,International journal of innovation scientific research and review,Vol.5,Issue 04,April 2023.
- 2. N. Ashokkumar et.al "Intelligent Solution for Transmission Line Management for Three Phase to Ground Fault Problems", *International Review of Automatic Control (I.RE.A.CO.)*, *Vol. 7, N. 5, September 2014*

Authors:

Dr.N.Ashokkumar

Dr.S.Prabakaran

