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ABSTRACT  

Reinforcement learning (RL) is a branch of 

machine learning that studies how intelligent agents 

should operate in a given environment in order to 

maximise cumulative reward. Along with 

supervised and unsupervised learning, 

reinforcement learning is one of three basic 

machine learning paradigms. and unsupervised 

learning. In this project, we show how to make a 

Reinforcement Learning agent learn in any 

environment that it is put in and demonstrate why 

Q-learning is not advisable to use in a high 

dimension environment or an environment with 

continuous observation space with relatively big 

intervals. In this process, we will come across 

OpenAI/Gym and stablebaselines3 in implementing 

the above concept 

To ease usage, we have also developed a Graphical 

Interface using the PyQt Library, a ported version 

from the c++ Qt library to python. 

1. INTRODUCTION 
 

Reinforcement Learning (RL) is a machine learning 

technique in which an agent learns the best action to 

take for a given task by interacting with a dynamic 

environment that either rewards or punishes the 

agent's actions. Reinforcement learning is a semi-

supervised learning method in which the model's 

cost/loss value is delivered indirectly through the 

environment's incentives. Reinforcement learning is 

more suited to learning dynamic environmental 

interactions than static patterns between two sets of 

input and output values. Many reinforcement 

learning approaches and architectures have been 

developed throughout the years, with varied degrees 

of success. The recent success of deep learning 

algorithms, on the other hand, has reignited interest 

in reinforcement learning, which is currently being 

utilised to solve extremely difficult problems that 

were previously thought to be unsolvable [1]. 

Artificial agents such as AlphaGo [3] [9] beating 

world champion Lee Sedol [3] [9] or IBM Watson 

[5] [14] winning the game of Jeopardy [5] [14] have 

drew international attention to the emergence of 

artificial intelligence, which may soon surpass 

human intelligence [11]. [4]. Reinforcement 

learning is crucial To create intelligent systems that 

can learn from their experiences throughout time, a 

new paradigm is needed. Robotics, healthcare, 

recommender systems, data centres, smart grids, 

financial markets, and transportation are all using 

reinforcement algorithms currently [13].There are 

two sections that work together; the dynamic 

environment and the RL agent that plays the 

environment to learn the optimal policy. Policy here 

is the function that maps the states and actions to 

maximise the cumulative reward.  

 

 

2. LITERATURE SURVEY 
 

Guillaume Lample, et al. presented the first 

architecture to tackle 3D environments in first-

person shooter games, that involve partially 

observable states. The architecture substantially 

outperformed the built-in AI agents of the game as 

well as humans in deathmatch scenarios.  

In 2013, Volodymyr Mnih et al. published the first 

deep learning model that effectively learned control 

policies from high-dimensional sensory input using 

reinforcement learning. The model is a 

convolutional neural network trained using a Q-

learning variation, using raw pixels as input and a 

value function forecasting future rewards as output. 

Swagat Kumar provided the comparisons between 

Q-learning and DQN in a 2D environment of 

continuous observation space called a cart pole 

system. This paper showed the shortcoming of Q-

learning in continuous observation space 

environments and how the DQN overcame this 

problem. 

http://www.ijsrem.com/
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://arxiv.org/search/cs?searchtype=author&query=Lample%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Kumar%2C+S
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Łukasz Kaiser et al. has published a paper 

showing how a model-based reinforcement learning 

agent can solve the Atari games with fewer 

interactions than a model-free method. They 

described Simulated Policy Learning, a complete 

model-based deep RL algorithm based on video 

prediction models. 

Jason Rennie, in his work, presented a novel way 

of creating web spiders using reinforcement 

learning and argues that it is the best way to do it. 

D. M. Roijers et al. look at methods for multiple-

objective sequential decision-making situations. 

Despite the fact that there is a growing volume of 

literature on the issue, little of it specifies when 

unique methods are required to address multi-

objective problems. As a result, we identify three 

instances in which reducing a multi-objective 

problem to a single-objective problem is either 

impossible, infeasible, or undesirable. 

When rewards are delayed and sparse, 

Reinforcement Learning (RL) algorithms might 

suffer from poor sample efficiency. Andrew Levy 

et al. presented a method for agents to learn 

temporally extended actions at several levels of 

abstraction in a sample efficient and automated 

manner. Our method combines universal value 

functions and hindsight learning, allowing agents to 

simultaneously learn policies over many time scales. 

In a range of discrete and continuous tasks, we 

show that our strategy dramatically accelerates 

learning. 

Lucian Buşoniu et al. in this study presents a 

thorough examination of multiagent reinforcement 

learning (MARL). The formal description of the 

multiagent learning goal is a key topic in the area. 

Different perspectives on this subject have resulted 

in the formulation of numerous goals, two of which 

stand out: the stability of the agents' learning 

dynamics and adaptation to the changing behaviour 

of other agents. 

 

 
 
3. METHODOLOGY  
 

3.1 Reinforcement Learning: 

 

The term “reinforcement learning” refers to a 

framework for learning optimal decision making 

from rewards or punishment [Kaelbling et al., 1996]. 

It differs from supervised learning in that the 

learner is never told the correct action for a 

particular state, but is simply told how good or bad 

the selected action was, expressed in the form of a 

scalar “reward.” A task is defined by a set of states, 

s ∈ S, a set of actions, a ∈ A, a state-action 

transition function, T : S ×A → S, and a reward 

function, R : S ×A → < 1, devalues rewards 

received in the future. Accordingly, when following 

policy π, we can define the value of each state to be: 

V π (s) = X∞ t=0 γ t rt, (1) where rt is the reward 

received t time steps after starting in state s and 

following policy π. The optimal policy, written π ? , 

is the one that maximizes the value, V π (s), for all 

states s. 
 

3.1.1 Q-learning  

The creation of an off-policy TD control method 

known as Q-learning (Watkins, 1989) was one of 

the early triumphs in reinforcement learning. 

𝑄(𝑠𝑖 , 𝐴𝑖) = 𝑄(𝑠𝑖, 𝐴𝑖)

+ 𝑎 [𝑅𝑡+1 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑖+1, 𝑎)

− 𝑄(𝑆𝑖 , 𝐴𝑖)] 

 

In this scenario, regardless of the policy used, the 

learned action-value function, Q, directly 

approximates q, the ideal action-value function. 

This greatly simplifies the algorithm's analysis and 

allows for early convergence proofs. In that it 

affects which state–action pairings are visited and 

altered, the policy still has an impact. All that is 

required for proper convergence is that all pairings 

be updated continuously. 

Algorithm: 

Initialise Q(s,a) for all s ∈ S 

Loop for each episode: 

 Initialise S 

 Loop for each step of episode: 

  Choose A from S using policy 

derived from Q 

  Take action A, observe R, S’ 

𝑄(𝑠𝑖 , 𝐴𝑖) = 𝑄(𝑠𝑖, 𝐴𝑖)

+ 𝑎 [𝑅𝑡+1 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑖+1, 𝑎)

− 𝑄(𝑆𝑖 , 𝐴𝑖)] 

  S = S’ 

 Until S is terminal 

 

3.1.2  Sarsa 

The state–action–reward–state–action (SARSA) 

method is a machine learning reinforcement 

learning approach for learning a Markov decision 

process policy. Rummery and Niranjan offered the 

http://www.ijsrem.com/
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moniker "Modified Connectionist Q-Learning". 

Rich Sutton submitted the alternate name SARSA,  

 

This name simply reflects the fact that the main 

function for updating the Q-value is dependent on 

the agent's current state "S1," the action "A1," the 

reward "R" the agent receives for taking that action, 

the state "S2" that the agent enters after that action, 

and finally the next action "A2" the agent chooses 

in its new state. 

 

Q(St, At) Q(St, At) + ↵ h Rt+1 + Q(St+1, At+1) 

Q(St, At) i . 

 

An on-policy learning algorithm is one in which a 

SARSA agent interacts with the environment and 

adjusts the policy based on the actions made. An 

mistake, modified by the learning rate alpha, 

updates the Q value for a state-action. The Q values 

represent the potential reward for taking action an 

in state s in the next time step, as well as the 

discounted future benefit from the next state-

activity observation. 

 

Based on the maximum reward of possible actions, 

Watkin's Q-learning updates an estimate of the best 

state-action value function displaystyle Q*Q*. 

Watkin's Q-learning learns the Q values associated 

with taking the optimal policy while following an 

exploration/exploitation strategy, whereas SARSA 

learns the Q values associated with taking the 

policy it follows. 

Loop for each episode:  

Initialize S  

Choose A from S using policy derived from 

Q (e.g., "-greedy)  

Loop for each step of episode:  

Take action A, observe R, S0 Choose A from S 

using policy derived from Q (e.g., "-greedy) Q(S, 

A)= Q(S, A) + alpha [ R + gammaQ(S0 , A0 ) -Q(S, 

A)]  
S =S0 ; A= A0 ;  

until S is terminal. 

 

3.2 Environment 
A gym will essentially be a class with four 

functions. The class's initialization function is the 

first function, which takes no more parameters and 

initialises the class. It also establishes the starting 

point for our RL dilemma. The step function takes 

an action variable and returns a list of four items: 

the next state, the current state's reward, a boolean 

indicating whether the current episode of our model 

is complete, and some additional information about 

our problem. The other functions are reset, which 

returns the environment's state and other variables 

to their initial values, and render, which displays 

pertinent information about our environment's 

activity thus far. 

 

3.3 Experimental Setup  

 

We chose a desktop PC with a competent GPU and 

a respectable frame rate to provide us with an 

appropriate computing platform. Table 1 lists the 

characteristics of this machine. The acceleration of 

the NVIDIA Pascal Architecture is used. This GPU 

can speed neural network models because to its 768 

CUDA cores and 4 GB of GDDR5X RAM memory.  

Table 1: Desktop Characteristics 

 

CPU  Intel i5 @ 3.7 GHz 

GPU  Nvidia 1050Ti 

RAM 16 GB 

 

4. IMPLEMENTATION 

 

First researched on search algorithms and found out 

that they do not perform like a human.So looked at 

cnn approach for human like behaviour. To train, it 

requires a large amount of data. We need an 

approach that needs to work without any previous 

data and interact with a dynamic environment. 

RL techniques are the best suited for this kind of 

problem. After testing algorithms like Q-learning, 

DQN, and some policy gradient methods found out 

that Q-learning is not suitable for high dimension 

observation space environment, DQN does not 

converge always and needs add ons, PPO a 

proximal policy optimization although takes a bit 

time but always converges to the optimal policy. 

The reward system was revised multiple times to 

adjust the agents behaviour for the environment. 

First it was same the game score which did not give 

any viable result, then tried out period rewards for 

getting a score, this had a bit progress in terms of 

moving toward the goal but still not acceptable. 

Finally tested another reward system based on 

Euclidean distance. 

Reward system:  

sqrt((snake_head.x – apple.x)/(snake_head.y – 

apple.y)) whole squared 

 

http://www.ijsrem.com/
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5. RESULTS 

After testing algorithms like Q-learning, DQN, and 

some policy gradient methods found out that Q-

learning is not suitable for high dimension 

observation space environment, DQN does not 

converge always and needs add ons, PPO a 

proximal policy optimization although takes a bit 

time but always converges to the optimal policy. 

The reward system was revised multiple times to 

adjust the agents behaviour for the environment. 

First it was same the game score which did not give 

any viable result, then tried out period rewards for 

getting a score, this had a bit progress in terms of 

moving toward the goal but still not acceptable. 

Finally tested another reward system based on 

Euclidean distance between agent and the goal and 

got a very solid result. 

 
 Fig. 3: Episode reward mean rollout graph 

 
 

 
 

 

 

 
 

 

 
Fig. 4 : Episode length mean 

 

 

 

 

 

 

 

 

 

Fig. 5 : Renderings from the environment

 
 
 

 

 

6. CONCLUSION 
 

Reinforcement Learning is the newest and most 

promising for of machine learning method to train 

the behaviour of control systems like network 

routing, game AI, human brain replicating, etc. This 

project can further be pushed to 3D environments. 

There are a lot of domains where RL can do a much 

better and efficient job than existing approaches, for 

example we can simulate a football game to see the 

many ways the agent tries as it is very fast in 

computations and we can evaluate a few interesting 

startegies to use. Another can be in fluid mechanics, 

we can make a simulation to create a car chasis that 

the agent can modify. This can lead to very 

interesting and innovative also naïve strategies and 

models to increase the aerodynamics or drags or 

whatever the critera need. 
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