
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12135 | Page 1

SOLVING A TWO DIMENSIONAL ENVIRONMENT WITH

REINFORCEMENT LEARNING

Sanjay Dokula1, Sahithi Marella2, Ritesh Rokkam3, G.Surya Bharti4.

1,2,3Student, Department of Computer Science Engineering, Gitam University , Visakhapatnam.
4Assistant Professor, Department of Computer Science Engineering, Gitam University , Visakhapatnam.

ABSTRACT

Reinforcement learning (RL) is a branch of

machine learning that studies how intelligent agents

should operate in a given environment in order to

maximise cumulative reward. Along with

supervised and unsupervised learning,

reinforcement learning is one of three basic

machine learning paradigms. and unsupervised

learning. In this project, we show how to make a

Reinforcement Learning agent learn in any

environment that it is put in and demonstrate why

Q-learning is not advisable to use in a high

dimension environment or an environment with

continuous observation space with relatively big

intervals. In this process, we will come across

OpenAI/Gym and stablebaselines3 in implementing

the above concept

To ease usage, we have also developed a Graphical

Interface using the PyQt Library, a ported version

from the c++ Qt library to python.

1. INTRODUCTION

Reinforcement Learning (RL) is a machine learning

technique in which an agent learns the best action to

take for a given task by interacting with a dynamic

environment that either rewards or punishes the

agent's actions. Reinforcement learning is a semi-

supervised learning method in which the model's

cost/loss value is delivered indirectly through the

environment's incentives. Reinforcement learning is

more suited to learning dynamic environmental

interactions than static patterns between two sets of

input and output values. Many reinforcement

learning approaches and architectures have been

developed throughout the years, with varied degrees

of success. The recent success of deep learning

algorithms, on the other hand, has reignited interest

in reinforcement learning, which is currently being

utilised to solve extremely difficult problems that

were previously thought to be unsolvable [1].

Artificial agents such as AlphaGo [3] [9] beating

world champion Lee Sedol [3] [9] or IBM Watson

[5] [14] winning the game of Jeopardy [5] [14] have

drew international attention to the emergence of

artificial intelligence, which may soon surpass

human intelligence [11]. [4]. Reinforcement

learning is crucial To create intelligent systems that

can learn from their experiences throughout time, a

new paradigm is needed. Robotics, healthcare,

recommender systems, data centres, smart grids,

financial markets, and transportation are all using

reinforcement algorithms currently [13].There are

two sections that work together; the dynamic

environment and the RL agent that plays the

environment to learn the optimal policy. Policy here

is the function that maps the states and actions to

maximise the cumulative reward.

2. LITERATURE SURVEY

Guillaume Lample, et al. presented the first

architecture to tackle 3D environments in first-

person shooter games, that involve partially

observable states. The architecture substantially

outperformed the built-in AI agents of the game as

well as humans in deathmatch scenarios.

In 2013, Volodymyr Mnih et al. published the first

deep learning model that effectively learned control

policies from high-dimensional sensory input using

reinforcement learning. The model is a

convolutional neural network trained using a Q-

learning variation, using raw pixels as input and a

value function forecasting future rewards as output.

Swagat Kumar provided the comparisons between

Q-learning and DQN in a 2D environment of

continuous observation space called a cart pole

system. This paper showed the shortcoming of Q-

learning in continuous observation space

environments and how the DQN overcame this

problem.

http://www.ijsrem.com/
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://arxiv.org/search/cs?searchtype=author&query=Lample%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Kumar%2C+S

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12135 | Page 2

Łukasz Kaiser et al. has published a paper

showing how a model-based reinforcement learning

agent can solve the Atari games with fewer

interactions than a model-free method. They

described Simulated Policy Learning, a complete

model-based deep RL algorithm based on video

prediction models.

Jason Rennie, in his work, presented a novel way

of creating web spiders using reinforcement

learning and argues that it is the best way to do it.

D. M. Roijers et al. look at methods for multiple-

objective sequential decision-making situations.

Despite the fact that there is a growing volume of

literature on the issue, little of it specifies when

unique methods are required to address multi-

objective problems. As a result, we identify three

instances in which reducing a multi-objective

problem to a single-objective problem is either

impossible, infeasible, or undesirable.

When rewards are delayed and sparse,

Reinforcement Learning (RL) algorithms might

suffer from poor sample efficiency. Andrew Levy

et al. presented a method for agents to learn

temporally extended actions at several levels of

abstraction in a sample efficient and automated

manner. Our method combines universal value

functions and hindsight learning, allowing agents to

simultaneously learn policies over many time scales.

In a range of discrete and continuous tasks, we

show that our strategy dramatically accelerates

learning.

Lucian Buşoniu et al. in this study presents a

thorough examination of multiagent reinforcement

learning (MARL). The formal description of the

multiagent learning goal is a key topic in the area.

Different perspectives on this subject have resulted

in the formulation of numerous goals, two of which

stand out: the stability of the agents' learning

dynamics and adaptation to the changing behaviour

of other agents.

3. METHODOLOGY

3.1 Reinforcement Learning:

The term “reinforcement learning” refers to a

framework for learning optimal decision making

from rewards or punishment [Kaelbling et al., 1996].

It differs from supervised learning in that the

learner is never told the correct action for a

particular state, but is simply told how good or bad

the selected action was, expressed in the form of a

scalar “reward.” A task is defined by a set of states,

s ∈ S, a set of actions, a ∈ A, a state-action

transition function, T : S ×A → S, and a reward

function, R : S ×A → < 1, devalues rewards

received in the future. Accordingly, when following

policy π, we can define the value of each state to be:

V π (s) = X∞ t=0 γ t rt, (1) where rt is the reward

received t time steps after starting in state s and

following policy π. The optimal policy, written π ? ,

is the one that maximizes the value, V π (s), for all

states s.

3.1.1 Q-learning

The creation of an off-policy TD control method

known as Q-learning (Watkins, 1989) was one of

the early triumphs in reinforcement learning.

𝑄(𝑠𝑖 , 𝐴𝑖) = 𝑄(𝑠𝑖, 𝐴𝑖)

+ 𝑎 [𝑅𝑡+1 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑖+1, 𝑎)

− 𝑄(𝑆𝑖 , 𝐴𝑖)]

In this scenario, regardless of the policy used, the

learned action-value function, Q, directly

approximates q, the ideal action-value function.

This greatly simplifies the algorithm's analysis and

allows for early convergence proofs. In that it

affects which state–action pairings are visited and

altered, the policy still has an impact. All that is

required for proper convergence is that all pairings

be updated continuously.

Algorithm:

Initialise Q(s,a) for all s ∈ S

Loop for each episode:

 Initialise S

 Loop for each step of episode:

 Choose A from S using policy

derived from Q

 Take action A, observe R, S’

𝑄(𝑠𝑖 , 𝐴𝑖) = 𝑄(𝑠𝑖, 𝐴𝑖)

+ 𝑎 [𝑅𝑡+1 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑖+1, 𝑎)

− 𝑄(𝑆𝑖 , 𝐴𝑖)]

 S = S’

 Until S is terminal

3.1.2 Sarsa

The state–action–reward–state–action (SARSA)

method is a machine learning reinforcement

learning approach for learning a Markov decision

process policy. Rummery and Niranjan offered the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12135 | Page 3

moniker "Modified Connectionist Q-Learning".

Rich Sutton submitted the alternate name SARSA,

This name simply reflects the fact that the main

function for updating the Q-value is dependent on

the agent's current state "S1," the action "A1," the

reward "R" the agent receives for taking that action,

the state "S2" that the agent enters after that action,

and finally the next action "A2" the agent chooses

in its new state.

Q(St, At) Q(St, At) + ↵ h Rt+1 + Q(St+1, At+1)

Q(St, At) i .

An on-policy learning algorithm is one in which a

SARSA agent interacts with the environment and

adjusts the policy based on the actions made. An

mistake, modified by the learning rate alpha,

updates the Q value for a state-action. The Q values

represent the potential reward for taking action an

in state s in the next time step, as well as the

discounted future benefit from the next state-

activity observation.

Based on the maximum reward of possible actions,

Watkin's Q-learning updates an estimate of the best

state-action value function displaystyle Q*Q*.

Watkin's Q-learning learns the Q values associated

with taking the optimal policy while following an

exploration/exploitation strategy, whereas SARSA

learns the Q values associated with taking the

policy it follows.

Loop for each episode:

Initialize S

Choose A from S using policy derived from

Q (e.g., "-greedy)

Loop for each step of episode:

Take action A, observe R, S0 Choose A from S

using policy derived from Q (e.g., "-greedy) Q(S,

A)= Q(S, A) + alpha [R + gammaQ(S0 , A0) -Q(S,

A)]
S =S0 ; A= A0 ;

until S is terminal.

3.2 Environment
A gym will essentially be a class with four

functions. The class's initialization function is the

first function, which takes no more parameters and

initialises the class. It also establishes the starting

point for our RL dilemma. The step function takes

an action variable and returns a list of four items:

the next state, the current state's reward, a boolean

indicating whether the current episode of our model

is complete, and some additional information about

our problem. The other functions are reset, which

returns the environment's state and other variables

to their initial values, and render, which displays

pertinent information about our environment's

activity thus far.

3.3 Experimental Setup

We chose a desktop PC with a competent GPU and

a respectable frame rate to provide us with an

appropriate computing platform. Table 1 lists the

characteristics of this machine. The acceleration of

the NVIDIA Pascal Architecture is used. This GPU

can speed neural network models because to its 768

CUDA cores and 4 GB of GDDR5X RAM memory.

Table 1: Desktop Characteristics

CPU Intel i5 @ 3.7 GHz

GPU Nvidia 1050Ti

RAM 16 GB

4. IMPLEMENTATION

First researched on search algorithms and found out

that they do not perform like a human.So looked at

cnn approach for human like behaviour. To train, it

requires a large amount of data. We need an

approach that needs to work without any previous

data and interact with a dynamic environment.

RL techniques are the best suited for this kind of

problem. After testing algorithms like Q-learning,

DQN, and some policy gradient methods found out

that Q-learning is not suitable for high dimension

observation space environment, DQN does not

converge always and needs add ons, PPO a

proximal policy optimization although takes a bit

time but always converges to the optimal policy.

The reward system was revised multiple times to

adjust the agents behaviour for the environment.

First it was same the game score which did not give

any viable result, then tried out period rewards for

getting a score, this had a bit progress in terms of

moving toward the goal but still not acceptable.

Finally tested another reward system based on

Euclidean distance.

Reward system:

sqrt((snake_head.x – apple.x)/(snake_head.y –

apple.y)) whole squared

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12135 | Page 4

5. RESULTS

After testing algorithms like Q-learning, DQN, and

some policy gradient methods found out that Q-

learning is not suitable for high dimension

observation space environment, DQN does not

converge always and needs add ons, PPO a

proximal policy optimization although takes a bit

time but always converges to the optimal policy.

The reward system was revised multiple times to

adjust the agents behaviour for the environment.

First it was same the game score which did not give

any viable result, then tried out period rewards for

getting a score, this had a bit progress in terms of

moving toward the goal but still not acceptable.

Finally tested another reward system based on

Euclidean distance between agent and the goal and

got a very solid result.

 Fig. 3: Episode reward mean rollout graph

Fig. 4 : Episode length mean

Fig. 5 : Renderings from the environment

6. CONCLUSION

Reinforcement Learning is the newest and most

promising for of machine learning method to train

the behaviour of control systems like network

routing, game AI, human brain replicating, etc. This

project can further be pushed to 3D environments.

There are a lot of domains where RL can do a much

better and efficient job than existing approaches, for

example we can simulate a football game to see the

many ways the agent tries as it is very fast in

computations and we can evaluate a few interesting

startegies to use. Another can be in fluid mechanics,

we can make a simulation to create a car chasis that

the agent can modify. This can lead to very

interesting and innovative also naïve strategies and

models to increase the aerodynamics or drags or

whatever the critera need.

7. REFERENCES

[1] K. Arulkumaran, M. P. Deisenroth, M.

Brundage, and A. A. Bharath. Deep reinforcement

learning: A brief survey. IEEE Signal Processing

Magazine, 34(6):26–38, 2017.

[2] E. Bisong. Google colaboratory. In Building

Machine Learning and Deep Learning Models on

Google Cloud Platform, pages 59–64. Springer,

2019.

[3] S. Borowiec. Alphago seals 4-1 victory over go

grandmaster lee sedol. The Guardian, 15, 2016.

[4] J. Fang, H. Su, and Y. Xiao. Will artificial

intelligence surpass human intelligence? Available

at SSRN 3173876, 2018.

 [5] D. A. Ferrucci. Introduction to this is watson.

IBM Journal of Research and Development,

56(3.4):1–1, 2012.

[6] Google Colaboratory. Online gpu cloud by

google. https:// colab.research.google.com/.

[7] A. Gulli and S. Pal. Deep learning with Keras.

Packt Publishing Ltd, 2017.

[8] H. V. Hasselt. Double q-learning. In Advances

in neural information processing systems, pages

2613–2621, 2010.

 [9] S. D. Holcomb, W. K. Porter, S. V. Ault, G.

Mao, and J. Wang. Overview on deepmind and its

alphago zero ai. In Proceedings of the 2018

international conference on big data and education,

pages 67–71, 2018.

[10] Kaggle. Online gpu cloud with datasets.

https://www.kaggle. com/.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12135 | Page 5

[11] P. Kraikivski. Seeding the singularity for ai.

arXiv preprint arXiv:1908.01766, 2019.

[12] S. Kumar. Reinforcement learning code for

cartpole system. https: //github.com/swagatk/RL-

Projects-SK.git, 2020.

[13] Y. Li. Reinforcement learning applications.

arXiv preprint arXiv:1908.06973, 2019.

http://www.ijsrem.com/

