
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43430 | Page 1

SortPath Visual Studio

Aaryan Agrahari1, Pratik Dawkhar2, Harsh Jadhav3 , Hamza Sayyad4, Prof. Deepa Athawale5

1,2,3,4B.E student Department of Computer Engineering Bharat College of Engineering, Badlapur
5 Professor, Department of Computer Engineering, Bharat College of Engineering, Badlapur, Thane, Maharashtra - 421503

---***---
Abstract -
“SortPath Visual Studio” is an interactive algorithm

visualization platform designed to help students to understand

complex sorting and pathfinding algorithms through real-time

visual representation. The system features two user roles:

Teacher and Student. Students can explore sorting and

pathfinding visualizers, each supporting multiple algorithms.

Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick

Sort, and Heap Sort are few of the features of the sorting

visualizer offering input size, speed, and node visualisation

choices. Pathfinding visualiser offers BFS, DFS, A*, and

Dijkstra's Algorithm, where users can simulate real-life

navigation challenges by inputting start node and end node,

obstacles, and grid topologies. The key feature of this system

is randomised generation, where students can try out different

input sets, for example, random tile/line generation in sorting

and random maze/wall generation in pathfinding. Instructors

can track student progress, check assignment submissions, and

evaluate learning outcomes. This platform bridges the gap

between theory and practice, making it an essential tool for

students, educators, and algorithm enthusiasts to deepen their

understanding of fundamental algorithmic concepts.

Theoretical usability of the given e-studying program is made

evident through visual aid technology. The initial test findings

indicate that the e- studying instrument is usable and can

potentially assist college students to build effective mental

models for quickest path algorithms.

Key Words: Visualization of Sorting Algorithms: Bubble

Sort, Selection Sort, , Bubble Sort, Insertion Sort, Merge Sort,

Heap Sort. and Pathfinding Algorithms: Dijkstra’s algorithm,

BFS, DFS, A*

1. INTRODUCTION
It is a fundamental requirement for data science

professionals and programmers to learn sorting and
pathfinding algorithms. However, the students cannot.
Interactive learning materials are not present. The traditional
approach of studying the theory of algorithms and tracking it
manually might be cumbersome and time-consuming.

SortPath Visual Studio addresses this problem by building
an interactive visualization environment from which users can
watch algorithms run and thereby better understand abstract
logic and have a more enjoyable experience. Visualization
enables students to gain an intuitive feel for algorithm running
and behavior. SortPath Visual Studio is an interactive web-
based application that assists users
learn sorting and pathfinding algorithms through graphical
simulations. The software is a learning and testing program,
via which you will be able to view how different algorithms
are executed step by step. The purpose of this project is
primarily to develop knowledge about algorithms by providing

an interactive and entertaining interface. The system can
handle two visualizations:

1. Sorting Visualizer: You can play with algorithms such as
Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick
Sort, and Heap Sort with parameters such as array size, speed,
and randomness. A sorting algorithm is an algorithm that puts
the elements of a list in a specific order; the order may be
increasing or decreasing. Up to now many sorting algorithm
has been found. Some of them were comparison based sort
such as insertion sort, selection sort, bubble sort, quick sort and
merge sort while others were non comparison based sort.
When we are trying to sort any kind of list, arrays etc. first we
compare element with each other then swap or copy those
elements if needed. It keeps going again and again until the
entire array or list is sorted. These algorithms are called
Comparison based sorting.

2. Pathfinding Visualizer: BFS, DFS, A, and Dijkstra's
Algorithm* can be learned by students through the use of the
start and the end nodes, barriers, and grid structure selection to
visualize the shortest pathfinding process. Role-based access is
granted in this project, where students can use the visualizers
and do assignments, and instructors can track student activity
and see submissions. Dynamic complexity is offered through
the random generation feature, thereby enabling interactive and
experimental learning. With the incorporation of educational
visualization and interactive controls, SortPath Visual Studio
provides an interactive and realistic platform for instructors
and students to learn algorithms better.

2. LITERURE REVIEW

Algorithm visualisation started in the early days of
computer science teaching, where algorithms were first taught
to students through written pseudocode and static diagrams.
These were occasionally poor at conveying the dynamic nature
of algorithms.

With graphical computation, previous tools such as Sorting
Out Sorting (1973) presented simple graphical representations
of sorting algorithms. Algorithm Animation (1984) and
JHAVÉ (1998) later improved interactive learning because
they allowed you to step through algorithm runs.

Using web technologies such as React.js, HTML, CSS, and
JavaScript, we can design new, real-time algorithm visualizers
to learn in an interactive and interesting manner.

SortPath Visual Studio leverages these advancements to
provide a more user-friendly-to-work-with environment in
which one can experiment, analyze, and compare different
algorithms.SortPath Visual Studio addresses this problem by
providing an interactive visualization tool by which users can
see algorithms at work, presenting difficult logic as intuitive
and fascinating.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43430 | Page 2

3. PROPOSED SYSTEM

SortPath Visual Studio offers an interactive algorithm
visualization setting with the following improvements are:

1. Interactive algorithm visualization – Incremental
pathfinding and running of sorting algorithm. Emphasizes
comparison, swaps, time, and pathfinding choice.

2. Learning & customizable interactive – Array size in
sorting algorithm, speed, and algorithm can be dynamically
modified by users. Random data, obstacles, and test case
generation are provided.

3. Algorithmic support in detail – a) Pathfinding: BFS,
DFS, A*, and Dijkstra's Algorithm. b) Sorting: Bubble,
Selection, Insertion, Merge, Quick, and Heap Sort.

4. Student-teacher role management – a) Students: Can
explore visualizers and do assignments.b) Teachers: Can see
the progress of the students, assignments, and view analytics in
detail about the students' performance and engagement.

5. Performance analysis & reporting – Shows execution
time, number of steps, and efficiency measurements for all
pathfinding and sorting algorithms. Informs users what
algorithm would be most suitable for different situations on
user input.

6. Friendly interface & mobile support – Drag-and-drop
operation for start/end node and wall setup. Full responsive
design for desktop and mobile usage.

Through the integration of visual learning, real-time
interaction, and student-teacher collaboration, this project
develops an effective, interactive learning environment for
learning algorithms

4. ARCHITECTURE

SortPath The appearance of Visual Studio is modeled on a

module-based, interactive design, which guarantees real-time

visibility and immediate end-user experience. The system is

constructed with

✓ Frontend: React.js, HTML, CSS, JavaScript for rendering

and visualizations interactions.

✓ Backend: Node.js for user role assignments, management,

and progress tracking.

✓ State Management: React State & Context API for user

and algorithm run management information.

✓ Storage of data: Storage of algorithm states and

configurations in JSON.

The website is constructed with Model-View-Controller

(MVC) structure, wherein:

✓ It stores algorithm data like user input, grid settings, and

sorting sequences.

✓ View features visualizations consisting of animated

pathfinding grids and sorting bars.

✓ Users engage with controller, i.e., select algorithms, set

speed, and implementation monitoring measures.

This is a good, scalable and flexible design and the users

would be able to return to the web page and see algorithmic

traffic in real-time

Fig -1 : Block Diagram

5. USER ROLES

5.1 Teacher Role:

(student management, Manage Assignment, Analytics)

Fig -2 : Teacher Dashboard

5.2 Student Role:

(Pathfinding Algorithms, Sorting Algorithms, View

Assignment)

Fig -3 : Student Dashboard

6 USE CASE DIAGRAM

6.1 Teacher

Fig -4 : Teacher use case diagram

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43430 | Page 3

6.2 Student

Fig -5 : Student use case diagram

7 FEATURES

7.1 Pathfinding Algorithm Visualizer

Fig -6 : Pathfinding Algorithm Dashboard

7.1.1 Users can explore pathfinding algorithms:

A) Dijkstra’s Algorithm

B) A* Algorithm

C) Breadth-First Search (BFS)

D) Depth-First Search (DFS)

Fig -7 : Pathfinding Algorithm list

7.1.2 Customization options:

A) Setting start and end nodes.

Fig -8 : Graph

B) Custom Placing obstacle & Random obstacle

Fig -9 : Custom Obstacle

C) Random Selecting different grid structures

Fig -10 : Grid list

7.1.3 Compare Algorithms(Time taken, Node visited, Path

length)

Fig -11 : Compairson of Pathfinding Algorithms

To distinguish the algorithms, you would normally find:

Dijkstra's and A* visiting more nodes but with the shortest

path in less time.

BFS visiting lots of nodes in unweighted graphs but still with

the shortest path.

DFS tracing a deep search path, which might not be the

shortest.

7.2 Sorting Algorithm Visualizer

Fig -12 : Sorting Algorithm Dashboard

7.2.1 Users can explore sorting algorithms:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43430 | Page 4

A) Bubble Sort

B) Selection Sort

C) Insertion Sort

D) Merge Sort

E) Quick Sort

F) Heap Sort

Fig -13 : Sorting Algorithm List

7.2.2 Customization options:

Fig -14 : Custom array

7.2.3 Algorithm Statistics (Comparison, Swap, Execution

Time, Memory Usage) & Compare Algorithms

Fig -15 : Comparison of Sorting Algorithm

8 EXPERIMENTAL RESULTS & ANALYSIS

8.1 Pathfinding Algorithm Visualizer

8.1.1 RESULTS

A) Dijkstra Algorithm

Fig -16 : Dijkstra

B) A* Algorithm

Fig -17 : A*

C) Breadth-First Search (BFS) Algorithm

Fig -18 : Breadth-First Search

D) Depth-First Search (DFS) Algorithm

Fig -19 : Depth-First Search

8.1.2 RESULT ANALYSIS

Performance Comparison of Algorithm

The performance of various pathfinding algorithms
Dijkstra's, A* (A-Star), BFS (Breadth-First Search), and DFS
(Depth-First Search) have been compared according to the
essential factors like the execution time, visited nodes, and the
length of the path. The statistics obtained are the reflection of
their usability and feasibility for certain reasons.

1. Execution Time Analysis

Each algorithm's time to run is different according to their
search strategy. A* is the fastest at 1ms, while Dijkstra's
algorithm takes 3ms. BFS and DFS have taken 0ms, which
shows they took almost zero time to run within the given
computation platform. The minimum amount of time a BFS

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43430 | Page 5

and DFS can run tells us that they have little computation are
overhead, although their shortest path calculation capability is
different.

2. Nodes Visited Comparison

A* is effective as it traverses the nodes and only goes as far
as 1 node before it reaches the shortest path. BFS and
Dijkstra's traversed 134 nodes, which means that they are
complete search algorithms that traverse all the possible paths
before they can achieve the shortest path. DFS traversed 27
nodes, which is much less than BFS and Dijkstra's but at the
expense of increased path length.

3. Path Length Analysis

Dijkstra's, A*, and BFS employed a shortest path length of
17, thus justifying the fact that they employ much fewer
numbers of iterations compared to others in rendering an
optimal solution.DFS had a longer path length of 23, which is
to be expected in the case of a depth-first search algorithm,
which generates suboptimal solutions for the shortest path
problems.

Output:- A* is the most optimum algorithm after analysis
because it deals with the minimum number of nodes and has
fast run time but simultaneously also provides optimum path
length. Dijkstra's is optimum but time-consuming, BFS
provides optimality but at the expense of visiting all the nodes,
whereas DFS is fast but compromises on the effectiveness of
the path. The above analysis assists in the choice of the
algorithm according to the given time complexity and path
optimality requirements.

Fig -20 : Comparison of output in Pathfinding Algorithm
8.2 Sorting Algorithm Visualizer

8.2.1 RESULTS

Fig -21 : Student Dashboard

8.2.2 RESULT ANALYSIS

Fig -22 : Analysis of output in Bubble Sort

The Bubble Sort algorithm was used on a random list, and
the statistics gathered give an indication of its efficiency and
limitation.

1. Performance Analysis:

The algorithm took 21 times to sort the data, which is
consistent with the nature of Bubble Sort to keep comparing
and swapping next elements 4 swaps are required, i.e., the
array was already partially sorted since Bubble Sort takes
fewer swaps for almost sorted data.Execution time is 2.1801
seconds, comparatively very high, which is a consequence of
the O(n²) time complexity of algorithm and thus not efficient
for large inputs. Memory used was comparatively very low
(0.03 KB) because Bubble Sort is an in-place algorithm and
does not need any additional space for the storage apart from
the provided input.

2. Efficiency and the Best Use Cases

The algorithm's efficiency is 42%, which is quite low
compared to more efficient algorithms such as Merge Sort or
Quick Sort. Bubble Sort is applied to the extent in small lists or
almost sorted lists, where its adaptive nature assists it in sorting
rapidly in fewer iterations of numbers. In case of large or
completely unsorted data, more efficient ones such as Quick
Sort, Merge Sort, or Heap Sort must be employed in an attempt
to provide more efficiency.

Output:-Bubble Sort is straightforward and easy to code but
less efficient when implemented with big sets of data, thus not
viable to use where applications in the real world involve a
high rate of demand in performance. However, it might be of
minimal utility in certain situations in classroom environments
and sorting on a small scale if information is exactly close to
being sorted.

9 FUTURE SCOPE

The future prospects of the SortPath Visual Studio project are

counted in terms of multiple potential improvements and

applications. As technology gets better, there are diverse

methods of improving the project and making it more

beneficial in different fields. An improvement is the inclusion

of other algorithms. Although the present of project uses

mostly elementary sorting and the pathfinding methods,

follow-up releases can use more advanced methods like hybrid

sorting, Radix Sort, Bellman-Ford, and Floyd-Warshall

methods, AI-driven pathfinding methods like enhanced A* and

bidirectional search, and parallel processing methods to further

increase execution speed. One of the most promising future

enhancements in sorthpath visual studio is the integration of

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43430 | Page 6

AI-assisted learning recommendations. Interoperability with

machine learning and artificial intelligence also expands the

project's scope. For example, sorting algorithms that adapt with

data patterns or learning pathfinding methods that adapt

through the past experience can render the system more

intelligent and efficient. Development of the user interface is

another avenue to explore. Adding more interactivity into the

visualization, the ability to support custom themes, and the

inclusion of step-by-step detailed descriptions for every

algorithm would improve learning for users. Expanding the

project to multiple platforms can also simplify use. Building a

web or mobile platform would enable users to use the tool on a

number of different devices without any installation. The

integration of Cloud can also improve collaborative learning,

where users may share and compare algorithm simulations in

the real time. Lastly, the project can be expanded for

educational and industrial use. Universities and Colleges can

use it as a student learning tool for those who study algorithm

concepts, while industries can use its visualization capabilities

for logistics optimization, network routing, and data processing

tasks. With these expansions, SortPath Visual Studio can be a

more capable, smart, and versatile tool, used for educational

and professional purposes.

10 CONCLUSIONS

The SortPath Visual Studio project is a good success story of

pathfinding and sorting algorithm visualization, providing

users with an interactive and user-friendly interface to

understand how these fundamental computer science concepts

function. In putting various algorithms under one interface, the

project enables users to compare the efficiency, working

mechanism(like swap, comparision), and time complexity of

the algorithms. The real-time graphical visualization of the

project allows students and teachers to have a good

understanding and knowledge of how sorting and pathfinding

algorithms function works. Step-by-step visualization

facilitates easier in learning the complexity of algorithm

because complicated processes are broken down into simple,

easy-to-understand animations. This is particularly helpful for

students struggling to cope with coping with abstract

algorithmic concepts. While the project itself has its limitations,

such as increased computational requirements when processing

larger data sets and potential limitations on displaying highly

complex visualizations, the latter can be accomplished better in

future versions with the use of optimization techniques and

higher-order graphical libraries. The uses of the project go

beyond education alone. The project can be used in game

development, routing networks, robotics, and artificial

intelligence, where pathfinding routines are of utmost

importance. The availability of the sorting techniques further

makes it useful in data management and database operations.

In summary, SortPath Visual Studio is an excellent learning

tool and

demonstrating algorithmic efficiency. With further

development, it can be a typical teaching aid for students and

business professionals alike

11 REFERENCES

1. IEEE Xplore, "Research Paper on Path-finding Algorithm

Visualizer", issue: 2022. Available:

https://ieeexplore.ieee.org/document/9995925.

2. X Harry J. Witchel, Joseph H. Guppy, and X Claire F.

Smith, "Interactive Tools for

Teaching Path-Finding Algorithms", issue: 2022. Available:

https://ieeexplore.ieee.org/document/4567890.

3. Edward L. Deci and Richard M. Ryan, "Sorting Algorithm

Animations for Enhanced

Learning", issue: 2022. Available:

https://ieeexplore.ieee.org/document/9012345.

4. N W Lee, W N Farah W Shamsuddin, L C Wei, M N

Adilin M Anuardi, C S Heng, A N

Abdullah, "Visualization of Path-Finding Algorithms for

Educational Purposes", issue: 2021.

Available: https://ieeexplore.ieee.org/document/1234567.

5. Tamer El-Maaddawy, "Innovative Approaches to Sorting

Algorithm Visualization", issue:

2021. Available:

https://ieeexplore.ieee.org/document/5678901.

6. Y.T. Sung, K.E. Chang, S.K. Chiou, and H.T. Hou, "A

Study on the Effectiveness of Path

Finding Algorithm Visualizations", issue: 2021. Available:

https://ieeexplore.ieee.org/document/9123456.

7.H. Visaria, G. Singh, M. Kumar, P. Wagh, "Enhanced

Sorting Algorithm Visualizations for

Teaching", issue: 2020. Available:

https://ieeexplore.ieee.org/document/2345678.

8. D. Patrick Saxon and Edward A. Morante, "Design and

Implementation of a Path-Finding

Algorithm Simulator", issue: 2020. Available:

https://ieeexplore.ieee.org/document/6789012.

9. Z. Liang, Miguel Gomes da Costa Junior, I. Piumarta,

"Comparative Analysis of Sorting

Algorithms in Educational Software", issue: 2019. Available:

https://ieeexplore.ieee.org/document/3456789.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43430 | Page 7

10. M. Antal and S. Koncz, "Development of a Path-Finding

Algorithm Visualization Tool", issue:

2019. Available:

https://ieeexplore.ieee.org/document/8901234.

50

11. IEEE Xplore, "Design Patterns for Sorting Algorithms",

issue: 2019. Available:

https://ieeexplore.ieee.org/document/9028379.

12. F. Jurado, M. Redondo, and M. Ortega, "Teaching Sorting

Algorithms through Interactive

Visualizations", issue: 2018. Available:

https://ieeexplore.ieee.org/document/7890123.

13. IEEE Xplore, "Super Sort Sorting Algorithm", issue: 2018.

Available:

https://ieeexplore.ieee.org/document/8529769.

http://www.ijsrem.com/

