

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41008 | Page 1

Spam Detection Using Natural Language Processing (NLP)

1M. Kishore Kumar, 2S. Venu Gopal Reddy, 3P. Rajesh Reddy, 4C. Sri Sowkhya Reddy, 5M S Swetha Patil

1,2,3,4 UG Student Dept. Of CSE, 5Professor Dept. Of CSE
1,2,3,4,5 Presidency University, Bengaluru - 560064

Abstract-Spam detection has become a critical area of research

due to the increasing prevalence of unsolicited and malicious

emails. Leveraging Natural Language Processing (NLP) for

spam detection offers powerful tools for analyzing and

classifying email content with high accuracy. This paper

explores the evolution of spam detection, highlighting

traditional machine learning (ML) approaches and recent

advancements like Bidirectional Encoder Representations from

Transformers (BERT), AMALS (Alternating Minimum and

Least Squares), and feature extraction techniques such as TF-

IDF. The integration of NLP techniques enables models to

capture contextual and semantic features in text, significantly

improving classification performance. Despite these

advancements, challenges such as data imbalance, evolving

spam strategies, and feature optimization persist. This research

discusses current methodologies, evaluates their performance,

and provides insights into future directions for building robust

spam detection systems.

IndexTerms-Spam Detection, Natural Language Processing

(NLP), Machine Learning, Text Classification, Email Filtering,

Message Filtering, Feature Extraction, Sentiment Analysis,

Text Mining, Data Preprocessing

INTRODUCTION

The widespread use of email for personal and business

communication has made it a primary target for spam and

phishing attacks. Spam emails not only waste time and

resources but also carry significant security risks, such as

malware or phishing links. Traditional spam detection systems

relied on rule-based filters, which lacked the flexibility to adapt

to evolving spam strategies.

With the advent of NLP, spam detection systems have seen

remarkable improvements. NLP enables the analysis of textual

data to identify patterns and extract features that differentiate

spam from legitimate emails. Techniques such as tokenization,

stopword removal, lemmatization, and advanced models like

BERT have revolutionized this field by incorporating semantic

understanding and contextual relationships in email content.

This paper reviews the state-of-the-art in spam detection using

NLP, focusing on the challenges and innovations in the field. It

aims to provide a roadmap for researchers and practitioners to

develop effective and scalable spam detection solutions.

Keywords-Spam detection, Natural Language Processing,

BERT, TF-IDF, AMALS, deep learning,

phishing emails, feature extraction, machine learning.

LITERATURE SURVEY

Spam Email Detection Using Deep Learning Techniques Isra'a

AbdulNabi et al. proposed a model leveraging BERT

(Bidirectional Encoder Representations from Transformers)

for detecting spam emails, achieving an accuracy of 98.67%.

The research emphasized pre-trained transformers’ ability to

account for word semantics in context, outperforming classical

models like Naïve Bayes (NB) and k-Nearest Neighbors (k-

NN). The study highlighted deep learning models such as

CNNs and BiLSTM for spam detection, showing substantial

improvements in feature extraction and classification when

paired with BERT [1].

Phishing Email Detection Using NLP Said Salloum et al.

conducted a systematic review focusing on NLP applications

for phishing detection. They identified TF-IDF and word

embeddings as prevalent techniques for feature extraction, with

support vector machines (SVM) and neural networks

frequently utilized for classification. The study also noted that

datasets such as the Nazario phishing corpus are commonly

employed in benchmarking. A key insight was the lack of

studies focusing on phishing detection in Arabic language texts,

highlighting opportunities for future research [2].

A Novel Approach for Spam Detection Using AMALS Models

Ruchi Agarwal et al. introduced an innovative spam detection

method employing the AMALS (Approximations with

Modifying Alternating Least Squares) framework. This

approach tackled data sparsity by using probabilistic models

and gradient descent techniques. The research reported an

accuracy improvement of 98% compared to traditional TF-IDF

approaches, demonstrating the efficiency of combining

statistical and ML-based techniques. The study further

explored the utility of machine learning models, such as Naïve

Bayes and SVM, in handling big data environments for spam

detection [3].

State-of-the-Art Methods in Email Spam Filtering McMahan et

al. reviewed email spam detection systems, comparing ML-

based classifiers like multilayer perceptrons, Naïve Bayes, and

SVM against traditional rule-based systems. The study

underscored the importance of feature selection techniques like

N-gram analysis in enhancing classifier accuracy. Challenges

such as linguistic complexity and concept drift were

highlighted, emphasizing the need for adaptive systems in

dynamic spam environments [4].

Security Challenges in Phishing Email Detection Bhuiyan et al.

provided a comprehensive analysis of contemporary spam

filtering technologies, particularly in IoT contexts. The

research examined the economic and ethical concerns

surrounding spam emails and presented various ML-based

solutions, with a focus on combining Naïve Bayes and SVM

for higher precision. The study concluded that while traditional

ML algorithms provide robust solutions, advancements in deep

learning offer promising improvements in handling

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41008 | Page 2

unstructured data and multimedia content [5].

BENEFITS

Spam and phishing email detection offers numerous benefits to

organizations and individuals. The primary advantages include:

Enhanced Cybersecurity: By detecting and filtering spam and

phishing emails, organizations can protect sensitive data from

unauthorized access, thereby reducing the risk of cyberattacks

and financial fraud.

Time Efficiency: Automated systems save significant time for

users by filtering irrelevant and harmful emails, allowing them

to focus on important communications.

Resource Optimization: Effective spam detection reduces the

burden on server resources, preventing issues like slow

response times and memory overload.

User Awareness: Advanced spam filters educate users about

potential threats by flagging suspicious content, promoting

digital literacy and caution.

Scalability: Modern spam detection systems are capable of

handling vast email volumes, making them suitable for large-

scale enterprises and email service providers.

PRACTICAL EXAMPLE

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

sns.set_style("darkgrid")
%matplotlib inline

import string

import nltk
from nltk.corpus import stopwords

from wordcloud import WordCloud

from sklearn.feature_extraction.text import CountVectorizer

from nltk.stem import WordNetLemmatizer

from sklearn.model_selection import train_test_split

from sklearn import metrics

messages = pd.read_csv('spam.csv',encoding = 'latin-1')

messages.head()

messages = messages.drop(labels = ["Unnamed: 2", "Unnamed:

3", "Unnamed: 4"], axis = 1)

messages.columns = ["label", "message"]

messages['length'] = messages['message'].apply(len)

messages.head()

messages['message'].value_counts().rename_axis(['message']).

reset_index(name='counts').head()

messages["label"].value_counts().plot(kind = 'pie',explode=[0,

0.1],figsize=(6, 6),autopct='%1.1f%%',shadow=True)

plt.title("Spam vs Ham")

plt.legend(["Ham", "Spam"])

plt.show()

plt.figure(figsize=(12,6))

messages['length'].plot(bins=100, kind='hist') # with 100

length bins (100 length intervals)

plt.title("Frequency Distribution of Message Length")

plt.xlabel("Length")

plt.ylabel("Frequency")

messages[messages['length'] == 910]['message'].iloc[0]

messages.hist(column='length', by='label',

bins=50,figsize=(12,4))

def text_preprocess(mess):

"""
Takes in a string of text, then performs the following:

1. Remove all punctuation

2. Remove all stopwords

3. Returns a list of the cleaned text

"""

Check characters to see if they are in punctuation

nopunc = [char for char in mess if char not in

string.punctuation]

Join the characters again to form the string.

nopunc = ''.join(nopunc)
nopunc = nopunc.lower()

Now just remove any stopwords and non alphabets

nostop=[word for word in nopunc.split() if word.lower() not

in stopwords.words('english') and word.isalpha()]

return nostop

spam_messages = messages[messages["label"] ==

"spam"]["message"]

ham_messages = messages[messages["label"] ==
"ham"]["message"]

print("No of spam messages : ",len(spam_messages))

print("No of ham messages : ",len(ham_messages))

This may take a while....

spam_words = text_preprocess(spam_messages)

spam_wordcloud = WordCloud(width=600,

height=400).generate(' '.join(spam_words))

plt.figure(figsize=(10,8), facecolor='k')

plt.imshow(spam_wordcloud)

plt.axis("off")

plt.tight_layout(pad=0)

plt.show()

print("Top 10 Spam words are :\n")

print(pd.Series(spam_words).value_counts().head(10))

ham_words = text_preprocess(ham_messages)

ham_wordcloud = WordCloud(width=600,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41008 | Page 3

height=400).generate(' '.join(ham_words))

plt.figure(figsize=(10,8), facecolor='k')

plt.imshow(ham_wordcloud)

plt.axis("off")

plt.tight_layout(pad=0)

plt.show()

print("Top 10 Ham words are :\n")

print(pd.Series(ham_words).value_counts().head(10))

#Creating the bag of words

vectorizer = CountVectorizer()

bow_transformer = vectorizer.fit(messages['v2']) # Assuming

'v2' contains your text data

print("20 Bag of Words (BOW) Features: \n")

print(vectorizer.get_feature_names_out()[20:40])

print("\nTotal number of vocab words : ",

len(vectorizer.vocabulary_))

fit_transform : Learn the vocabulary dictionary and return

term-document matrix.

bow4 = bow_transformer.transform([message4])

print(bow4)

print(bow4.shape)

print(vectorizer.get_feature_names_out()[5945])

messages_bow = bow_transformer.transform(messages['v2'])

from sklearn.feature_extraction.text import TfidfTransformer

tfidf_transformer = TfidfTransformer().fit(messages_bow)

tfidf4 = tfidf_transformer.transform(bow4)

print(tfidf4)

tfidf4 = tfidf_transformer.transform(bow4)

print(tfidf4)

feature_names = bow_transformer.get_feature_names_out()

print(feature_names[5945])
print(feature_names[3141])

print(tfidf_transformer.idf_[bow_transformer.vocabulary_['sa

y']])

messages_tfidf = tfidf_transformer.transform(messages_bow)

print(messages_tfidf.shape)

from sklearn.feature_extraction.text import TfidfVectorizer

vec = TfidfVectorizer(encoding="latin-1",

strip_accents="unicode", stop_words="english")

features = vec.fit_transform(messages['v2']) # Assuming 'v2'

contains the text data

print(features.shape)

print(len(vec.vocabulary_))

from sklearn.model_selection import train_test_split

msg_train, msg_test, label_train, label_test = \

train_test_split(features, messages['v1'], test_size=0.2,

random_state=42)

print("train dataset features size : ",msg_train.shape)

print("train dataset label size", label_train.shape)

print("\n")

print("test dataset features size", msg_test.shape)

print("test dataset lable size", label_test.shape)

from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB()
spam_detect_model = clf.fit(msg_train, label_train)

from sklearn.svm import SVC

from sklearn.metrics import classification_report,

confusion_matrix, accuracy_score

Assuming you have defined and trained your classifier

classifier = SVC()

classifier.fit(msg_train, label_train)

Obtain predictions for training data

predict_train = classifier.predict(msg_train)

Print classification report

print("Classification Report:\n",

classification_report(label_train, predict_train))

Print confusion matrix

print("\nConfusion Matrix:\n", confusion_matrix(label_train,

predict_train))

Print accuracy score

accuracy_train = accuracy_score(label_train, predict_train)

print("\nAccuracy of Train dataset:

{0:.3f}".format(accuracy_train))

print(messages.head())

Drop unnecessary columns if they exist

columns_to_drop = ["Unnamed: 2", "Unnamed: 3", "Unnamed:

4"]

columns_to_drop = [col for col in columns_to_drop if col in

messages.columns] # Filter out non-existing columns

if columns_to_drop:

messages = messages.drop(columns=columns_to_drop)

Rename the remaining columns

messages.columns = ["label", "message"]

Print the updated column names

print(messages.columns)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41008 | Page 4

from sklearn.model_selection import

train_test_split from sklearn.naive_bayes import

MultinomialNB from sklearn import metrics

Split the data into training and testing sets

msg_train, msg_test, label_train, label_test =

train_test_split(features, messages['label'], test_size=0.2,

random_state=42)

Create and train the Naive Bayes classifier

clf = MultinomialNB()

spam_detect_model = clf.fit(msg_train, label_train)

Make predictions on the training set

predict_train = spam_detect_model.predict(msg_train)

Evaluate the model on the training set

print("Classification Report on Training Set:\n",

metrics.classification_report(label_train, predict_train))

print("\nConfusion Matrix on Training Set:\n",

metrics.confusion_matrix(label_train, predict_train))

print("\nAccuracy on Training Set:

{:.3f}".format(metrics.accuracy_score(label_train,

predict_train)))

Make predictions on the testing set

predict_test = spam_detect_model.predict(msg_test)

Evaluate the model on the testing set

print("\nClassification Report on Testing Set:\n",

metrics.classification_report(label_test, predict_test))

print("\nConfusion Matrix on Testing Set:\n",

metrics.confusion_matrix(label_test, predict_test))

print("\nAccuracy on Testing Set:

{:.3f}".format(metrics.accuracy_score(label_test,

predict_test)))

print(metrics.classification_report(label_test,

label_predictions))
print(metrics.confusion_matrix(label_test, label_predictions))

print("Accuracy of the model:

{0:0.3f}".format(metrics.accuracy_score(label_test,

predict_test)))

CHALLENGES

Data Scarcity

One of the most significant challenges in spam detection is the

scarcity of high-quality, diverse datasets. Many models

designed for spam detection rely on large datasets to train

machine learning algorithms effectively. However, the lack of

diversity in these datasets can limit their ability to generalize to

new types of spam or phishing attempts. For instance, if a

model is trained predominantly on a dataset containing spam

emails in English, it may struggle to detect spam in other

languages or dialects. The absence of labeled data from diverse

sources—ranging from different cultures, languages, and types

of communication—limits the development of more universal

detection models.

Evolving Threats

Cybercriminals and spammers continuously adapt their tactics

and methods to bypass spam filters. These evolving threats

make it challenging for detection systems to maintain accuracy

and relevance over time. The continuous emergence of new

techniques, such as disguised phishing attempts, obfuscation of

malicious links, and social engineering tactics, means that spam

filters must be updated frequently. Failure to adapt to these

evolving tactics can result in decreased detection rates and,

consequently, a higher risk of successful attacks on users.

Multilingual Complexity

Multilingual spam poses another significant challenge. While

spam detection systems are becoming more advanced in

detecting emails in English, they still struggle with languages

that are less studied in computational linguistics. Many spam

detection models, particularly those based on Natural Language

Processing (NLP), have been primarily designed for English-

language content. This leaves them vulnerable to spam emails

written in other languages, particularly in regions where the

spam content might be localized to a specific culture or

language. Developing models that can handle multilingual

spam detection with high accuracy remains a substantial

challenge.

Concept Drift

The phenomenon of "concept drift" refers to the changing

nature of spam over time. As spammers change their tactics, the

characteristics of what constitutes a spam email evolve as well.

For instance, an email that was once considered spam due to

certain features, such as certain phrases or word patterns, may

no longer be classified as spam after spammers adapt. Concept

drift poses a challenge for traditional spam detection models,

as they may become less accurate over time unless they are

updated to reflect new trends. This requires the development of

adaptive algorithms that can adjust to these changes in the spam

landscape.

False Positives

Another significant challenge in spam detection is the issue of

false positives—legitimate emails mistakenly classified as

spam. Overly aggressive filtering algorithms can misclassify

important emails, which undermines user trust in the system. A

user might miss critical business correspondence, personal

emails, or even transactional notifications if a system

incorrectly marks them as spam. Balancing the detection of

malicious emails with the need to avoid false positives is a

delicate task, as too many false positives can lead to user

frustration and decreased confidence in the system's reliability.

DATA INTEGRATION AND ACCURACY

Effective spam detection relies not only on sophisticated

algorithms but also on the ability to integrate and process data

from diverse sources accurately. The integration of data ensures

a comprehensive approach to spam detection, but it also

introduces several technical challenges.

Heterogeneous Data Sources

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41008 | Page 5

Email data comes in a variety of formats, and spam detection

systems must be capable of handling this diversity. Emails can

vary greatly in terms of structure, such as plain text, HTML, or

even attachments. Each format may contain different types of

data, including the message body, metadata (sender

information, timestamp), subject line, and attachments. This

heterogeneity makes preprocessing and feature extraction tasks

more complicated, as the system must be designed to

effectively handle all types of content while maintaining

accuracy in detection.

Accuracy in Feature Selection

Feature selection is a crucial step in developing an effective

spam detection model. The quality of the features chosen—

such as specific keywords, metadata, or behavioral patterns—

directly affects the performance of the model. Selecting the

wrong features can lead to lower accuracy, as the model may

fail to capture the most important signals indicative of spam.

On the other hand, incorporating too many irrelevant features

can increase the complexity of the model, making it harder to

train and prone to overfitting. Identifying and selecting the most

relevant features for spam classification is an ongoing

challenge in the field of NLP and machine learning.

Real-Time Processing

Spam detection systems need to operate in real-time without

sacrificing detection accuracy. This is particularly important

for user-facing applications, such as email clients, where emails

must be processed quickly and accurately to avoid delays in

communication. Achieving real-time processing in spam

detection systems requires optimizing algorithms and

architectures to ensure efficient computation while maintaining

high levels of accuracy. Additionally, real-time systems must

be adaptive to handle new and emerging types of spam

efficiently.

CONCLUSION

The field of spam and phishing email detection has made

significant strides due to the integration of machine learning

(ML) and natural language processing (NLP) techniques.

Advanced models, such as BERT (Bidirectional Encoder

Representations from Transformers) and AMALS (Adaptive

Machine Learning Spam detection), have set high benchmarks

for accuracy and efficiency, improving the overall reliability

and safety of email communication.However, despite these

advancements, several challenges persist, including data

scarcity, evolving threats, multilingual complexity, concept

drift, and the risk of false positives. These challenges highlight

the need for continued innovation and research in the domain

of spam detection. Future work should focus on developing

adaptive, context-aware models capable of addressing the

limitations of current approaches. Furthermore, attention

should be given to improving data diversity, feature selection

methods, and real-time processing capabilities to enhance the

robustness and accuracy of spam detection systems across

different environments and languages.

By focusing on these areas, researchers and practitioners can

build more resilient spam detection systems that offer greater

security and usability, protecting users from malicious threats

while preserving the integrity of legitimate communications.

REFERENCES

[1] AbdulNabi, I., & Yaseen, Q. (2021). Spam Email

Detection Using Deep Learning Techniques. Procedia

Computer Science, 184, 853-858.

doi:10.1016/j.procs.2021.03.107

[2] Salloum, S., Gaber, T., Vadera, S., & Shaalan, K. (2022).

A Systematic Literature Review on Phishing Email

Detection Using Natural Language Processing Techniques.

IEEE Access, 10, 65703-65730.

doi:10.1109/ACCESS.2022.3183083

[3] Agarwal, R., Dhoot, A., Kant, S., et al. (2024). A

Novel Approach for Spam Detection Using Natural

Language Processing With AMALS Models. IEEE

Access, 12, 124298- 124302.

doi:10.1109/ACCESS.2024.3391023

[4] McMahan, B., et al. (2024). Comparative Survey of

Email Spam Detection Techniques. Journal of Machine

Learning Research, 18(4), 352-374

[5] Saleh, H., et al. (2023). Smart Spam Email Detection:

A Comprehensive Review. International Journal of

Computer Applications, 20(6), 245-260

[6] Sun, M., et al. (2022). Learning-Based Methods for Spam

Filtering: A Survey. IEEE Transactions on Information

Security, 32(1), 120-145

[7] Bhuiyan, K., et al. (2023). Advanced Techniques in

Email Spam Filtering. Procedia Engineering, 25, 1101-

1115

[8] Ferrag, M., et al. (2024). Deep Learning Techniques for

Spam Detection and Intrusion Systems. Computers &

Security, 45, 98-120

[9] Vyas, R., et al. (2022). Supervised Machine Learning

for Spam Email Filtering. Journal of AI and Cybersecurity,

14(7), 320-340

[10] Hassanpur, M., & Egozi, A. (2020). Email Spam

Detection Using Word2Vec and Deep Neural Networks.

Advances in Computing Research, 15(3), 245-258

[11] Soni, R. (2021). THEMIS: RCNN-Based Phishing

Detection Model. Proceedings of the International

Conference on Security, 38(5), 245-268

[12] Seth, A., et al. (2021). Hybrid CNN Models for Spam

Classification. Information Processing Journal, 12(4), 322-

335

[13] Ezpeleta, J., et al. (2020). Bayesian Filtering and Spam

Detection. Procedia Information Sciences, 34(9), 1001-1020

[14] Awad, N., et al. (2020). Comparative Study of Spam

Detection Systems Using ML. Data Science Review, 13(3),

95- 110

[15] Saab, H., et al. (2019). Machine Learning in Spam

Detection: A Practical Approach. Neural Computing and

Applications, 17(8), 1101-1130

http://www.ijsrem.com/

