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Abstract—This study explores the integration of electroen- 
cephalography (EEG) and functional magnetic resonance imag- 
ing (fMRI) data for enhanced brain activity mapping. The 
analysis focuses on frequencies ranging from Delta to Gamma 
bands (0-120 Hz) with a specific emphasis on Gamma (30-45 
Hz) during rest and visual stimulus tasks. EEG data were pre- 
processed and segmented into epochs from 0 to 400 seconds, 
excluding rest stimuli where correlation was minimal. To improve 
signal clarity, EEG data were whitened, and corresponding fMRI 
annotations were merged. Brain slices were temporally aligned, 
and regularized noise covariance was computed to filter out 
noise before performing inverse source localization. The visual 
cortex exhibited the highest activation levels during the stimuli. 
A decoding pipeline was constructed, with cross-validation and 
a spatio-temporal score of 99.2% achieved. Finally, sensor space 
patterns were projected to source space, utilizing linear classifiers 
to map brain activity with high precision. 

Index Terms—Electroenthephalogram, Functional-MRI, Band 
Analysis, Neural Decoding 

I. INTRODUCTION 

This study investigates brain activity using a combined ap- 

proach of electroencephalography (EEG) and functional mag- 

netic resonance imaging (fMRI) to enhance our understanding 

of neural dynamics during cognitive tasks. EEG and fMRI data 

were obtained from a sample of participants who engaged in 

visual tasks, such as watching movie clips, while EEG was 

recorded simultaneously. This dual approach allows for high 

temporal resolution from EEG and high spatial resolution from 

fMRI, providing a comprehensive view of brain activity. The 

EEG data were recorded at frequencies ranging from 0 to 120 

Hz, with special attention given to the Gamma frequency band, 

specifically 30-45 Hz, which is associated with higher-order 

cognitive functions like attention and memory. Following data 

acquisition, exploratory data analysis (EDA) was conducted 

to assess the quality and characteristics of the EEG and 

fMRI data. Raster plots and tomomaps were generated for 

various brain regions and frequency bands, including Delta, 

Theta, Alpha, Beta, and Gamma. These visualizations helped 

identify patterns of activity and establish baseline measures 

for subsequent analyses. 

To focus on significant brain activity, the EEG data were 

segmented into epochs of 0 to 400 seconds, excluding periods 

of rest where neural activation was minimal. Epoching is 

crucial as it allows for the isolation of specific time inter- 

vals associated with stimuli, enhancing the sensitivity of the 

analysis to changes in brain activity. Corresponding fMRI an- 

notations were loaded and merged with the EEG data, aligning 

the two modalities across the different stimuli presented to 

the participants. This integration is essential for establishing 

a coherent framework for understanding how EEG-derived 

activity correlates with the spatial activation patterns observed 

in fMRI. 

To enhance the signal quality, the EEG data underwent 

several preprocessing steps. First, the data were whitened, 

which reduces noise and variance by transforming the signal to 

have a uniform distribution. The EEG consisted of 60 channels 

with an average global field power (GFP) of 8.3. This step 

is vital for ensuring that the subsequent analysis is based on 

clean data, minimizing the influence of extraneous factors. The 

denoised BOLD (blood-oxygen-level-dependent) fMRI data, 

comprising 192 samples, were also integrated into the analysis 

pipeline. Denoising is critical in fMRI studies, as it removes 

physiological noise that can confound results. 

The brain slices obtained from fMRI data were divided into 

three parts, and their time series were temporally aligned to a 

reference time point. This alignment is crucial for comparing 

activity across different slices and ensuring that temporal 

dynamics are accurately captured. Proper alignment enables 

the identification of consistent activation patterns associated 

with specific cognitive tasks. For each brain slice, frame 

alignment was performed on the EEG channels to identify 

the most activated regions during the stimuli. This alignment 

process involves adjusting the EEG data to correspond with 

the temporal dynamics of the fMRI data, allowing for a more 

accurate localization of brain activity. Subsequently, inverse 

source localization was conducted to map the observed EEG 

signals back to their source within the brain. This method 

allows for the identification of the cortical regions responsible 

for the recorded electrical activity, providing insights into the 

neural networks involved in cognitive processes. Before this 

step, regularized noise covariance was computed to mitigate 

the impact of noise on the localization process, ensuring that 

the results reflect true brain activity. 

The evoked responses were then analyzed, focusing on a 

specific stimulus presented during the timestamp from 30 

to 100 seconds. This selection period was chosen based on 

preliminary analyses indicating significant brain activation 

during this interval. By isolating the response to a particular 
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stimulus, we can better understand the brain’s reaction and 

the underlying mechanisms involved. Inverse modeling was 

performed on the raw EEG-fMRI data, utilizing a limit set 

at approximately 10.037795 channels. This process involves 

applying computational techniques to estimate the sources of 

brain activity based on the observed EEG data, integrating 

information from the fMRI to improve accuracy. The model 

aims to reconstruct the spatial distribution of neural activity 

across the brain. 

After modeling, we identified the location of maximal 

activation, with the visual cortex showing the highest ac- 

tivation rates. This finding is consistent with the expected 

role of the visual cortex in processing visual stimuli, further 

validating the effectiveness of our methodology. A decoding 

pipeline was constructed to assess the relationship between 

EEG and fMRI data more quantitatively. Cross-validation 

techniques were applied to ensure the robustness of the results. 

A vectorizer was utilized to align the data from EEG and 

fMRI, achieving a remarkable spatiotemporal classification 

score of 99.2%. This high score indicates the effectiveness of 

our approach in accurately decoding neural patterns associated 

with cognitive tasks. Finally, the sensor space patterns were 

projected to source space using linear classifiers. The evoked 

time series data were analyzed with control points set at 1.98, 

2.41, and 8.066, corresponding to selected cortical regions. 

This projection allows for a clearer understanding of how 

brain activity manifests across different regions and facilitates 

insights into the functional connectivity of the brain during 

cognitive tasks. 

II. RELATED WORK 

The landscape of functional magnetic resonance imaging 

(fMRI) research has evolved significantly over the past few 

decades, marked by various methodologies that enhance our 

understanding of brain activity. Among the pioneering works, 

Descombes et al. (1998) introduced a spatio-temporal fMRI 

analysis using Markov Random Fields (MRFs). This approach 

is particularly effective in managing noise in fMRI data, as 

MRFs can robustly model the underlying structure of the data. 

However, the inherent flexibility of MRFs also raises concerns 

about potential overfitting, which can limit the generalizability 

of the results. 

Friston et al. (1995) contributed to this field with their 

development of statistical parametric maps based on a General 

Linear Approach. This versatile method accommodates various 

imaging data types, including fMRI and PET, making it 

suitable for diverse studies. Nevertheless, the General Linear 

Model (GLM) may oversimplify the intricate relationships 

within brain data, potentially omitting crucial information 

regarding brain functionality. 

Further advancing the methodology, Calhoun et al. (2001) 

presented a method for making group inferences from fMRI 

data through Independent Component Analysis (ICA). This 

purely data-driven approach does not necessitate prior as- 

sumptions about underlying brain activity patterns. While 

ICA is adept at identifying distinct brain networks, it can be 

computationally intensive, particularly when applied to large 

datasets or group analyses, necessitating significant processing 

resources. 

Additionally, Ogawa et al. (1990) introduced the concept of 

Blood Oxygen Level-Dependent (BOLD) MRI, a non-invasive 

technique that allows for the observation of brain activity 

through hemodynamic responses. This method is essential 

for longitudinal studies, providing a safe means to conduct 

repeated assessments on the same individual. However, BOLD 

MRI is characterized by relatively low temporal resolution, as 

it reflects changes in blood oxygenation that occur more slowly 

than the actual neural activity. 

Building on these foundational studies, Beckmann and 

Smith (2004) advanced probabilistic ICA for fMRI, which is 

particularly suitable for group-level analyses. This method ac- 

counts for inter-subject variability while identifying consistent 

patterns of brain activity. Despite its advantages, probabilis- 

tic ICA is less widely adopted than traditional ICA, which 

may limit the resources and community support available to 

researchers. 

The Human Connectome Project, initiated by Van Essen et 

al. (2012), further contributes to the field by making a wealth 

of data freely available to the global research community. This 

initiative fosters transparency, collaboration, and accelerated 

scientific discovery. However, the complexity of the data 

presents interpretative challenges, especially when integrating 

information across different modalities. 

Continuing with the Human Connectome Project, Smith et 

al. (2013) focused on resting-state fMRI, employing standard- 

ized data acquisition protocols that ensure consistency across 

participants. This standardization facilitates comparisons and 

meta-analyses across studies, although resting-state fMRI data 

can be highly susceptible to motion artifacts, which can 

introduce noise and bias into connectivity estimates. 

Finally, Lindquist (2008) discussed statistical analysis tech- 

niques for fMRI data, particularly highlighting methods such 

as False Discovery Rate (FDR) and family-wise error cor- 

rection. These techniques address the multiple comparisons 

problem inherent in fMRI analysis, significantly reducing the 

risk of false positives. However, the statistical analysis of fMRI 

data, especially with large datasets or complex models, can 

be computationally intensive, requiring substantial processing 

power and time. 

III. METHODS AND MATERIALS 

For our study, we utilized an extensively curated neuroimag- 

ing dataset. The dataset contains multimodal data, including 

magnetoencephalography (MEG) and structural magnetic res- 

onance imaging (MRI) recordings, from healthy adult par- 

ticipants performing an auditory task. The participants were 

subjected to auditory stimuli consisting of alternating tones in 

the left and right ear, interspersed with visual stimuli. 

The MEG data were recorded using a 306-channel Vec- 

torView system, which includes 204 planar gradiometers, 102 

magnetometers, and 4 head position indicator (HPI) coils. 

The recording also features continuous electrooculography 
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(EOG) data captured from bipolar electrodes placed near the 

eyes to monitor eye movements. The data were sampled at 

600 Hz and later downsampled to 150 Hz for computational 

efficiency during analysis. The dataset further includes high- 

 

 

Fig. 1. Average EEG PSDs of all patients 

 

resolution anatomical MRI scans that were acquired using a 

1.5 T Siemens Magnetom system. The structural data were co- 

registered with the MEG sensors to enable source localization. 

The dataset is preprocessed, and key information such as 

head movement correction, filtering, and signal-to-noise ratio 

optimization was performed prior to our analysis. 

The dataset provides the opportunity for extensive analysis 

of brain responses to sensory stimuli, particularly in terms 

of time-frequency analysis, source localization, and statistical 

comparison of cortical activations. 

IV. METHODOLOGIES 

This study presents a detailed methodology for investi- 

gating brain activity using a combined approach of elec- 

troencephalography (EEG) and functional magnetic resonance 

imaging (fMRI). Initially, EEG and fMRI data were collected 

from a cohort of participants engaged in visual tasks, including 

watching a series of movies, while also experiencing resting 

states. The EEG data captured a frequency range from 0 to 

120 Hz, with a specific focus on the Gamma frequency band, 

restricted to 30-45 Hz. This dual acquisition method allowed 

for a comprehensive analysis of both temporal and spatial 

dynamics of brain activity. 

Following data acquisition, exploratory data analysis (EDA) 

was conducted to assess the characteristics of the EEG and 

fMRI datasets. Raster plots and tomomaps were generated 

for various frequency bands—Delta, Theta, Alpha, Beta, and 

Gamma—providing an initial overview of the neural dynamics 

associated with the different stimuli. These visualizations were 

instrumental in identifying regions of coherent brain activity, 

particularly within the frontal and visual cortices. 

The EEG data were subsequently segmented into epochs, 

isolating time intervals ranging from 0 to 400 seconds. Resting 

state segments were excluded from this analysis to focus on 

periods of active cognitive processing, as they demonstrated 

lower activation correlations. Corresponding fMRI annotations 

were merged with the EEG data, facilitating a comprehensive 

integrative analysis across all stimuli. 

To improve data quality, the EEG signals underwent a 

whitening process, resulting in a dataset comprising 60 chan- 

nels and an average Global Field Power (GFP) of 8.3. Si- 

multaneously, the denoised BOLD fMRI data, containing 192 

samples, were prepared for further analysis. The brain was 

then divided into three slices, with the time series for each 

slice temporally aligned to a reference time-point to ensure 

consistency in the analysis. 

 

 
 

 
 

Fig. 2. Average covariance of patients and Global Field power of 8.3. 

 

Frame alignment was conducted for the EEG channels 

within each slice to identify the most activated brain regions. 

Before performing inverse source localization, regularized 

noise covariance matrices were computed to mitigate noise 

interference and enhance the reliability of the findings. The 

evoked responses were focused on a specific stimulus pre- 
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sented during the 30-100 second time window, allowing for a 

more targeted examination of brain activity. 

Inverse modeling techniques were applied to the raw EEG- 

fMRI data, constraining the analysis to 10 channels to refine 

the results further. This approach enabled the identification 

of maximal activation locations, with particular emphasis 

on the visual cortex, which exhibited the highest activation 

levels during the visual tasks. To quantitatively analyze the 

relationship between EEG and fMRI data, a decoding pipeline 

was constructed, incorporating cross-validation techniques. A 

vectorizer was applied to align the EEG and fMRI datasets, 

achieving a notable spatio-temporal score of 99.2%, indicating 

a strong correlation between the two modalities. Finally, the 

 

 

Fig. 3. Preprocessed EEG-FMRI Covariance and Noise removal 

 

sensor space patterns derived from the EEG data were pro- 

jected into source space using a linear classifier. Control points 

were established at 1.98, 2.41, and 8.066, corresponding to 

selected cortical regions of interest. This robust methodology 

enables a nuanced understanding of the complex interactions 

between neural activity and cognitive processes during visual 

stimuli, providing valuable insights into the dynamics of brain 

function. 

V. RESULTS 

A. Cortical Activation Patterns 

Time-frequency analysis revealed distinct activation patterns 

in both the frontal and visual cortices in response to sensory 

stimuli. Visual stimuli elicited strong and sustained activation 

in the occipital visual cortex, with peak activity occurring 

between 200 and 300 ms post-stimulus. Auditory stimuli sim- 

ilarly activated prefrontal regions associated with higher-order 

processing, with dynamic shifts in activation that reflected the 

complex nature of sensory integration. The activation profiles 

observed across subjects were consistent, indicating robust 

engagement of sensory-specific brain regions. 

B. Source Localization 

Inverse modeling provided precise spatial localization of 

the neural sources responsible for the observed activations. 

Strong engagement of the occipital visual cortex was noted 

in response to visual stimuli, with prefrontal regions being 

activated in response to both visual and auditory inputs. This 

spatial precision, facilitated by the fMRI data, allowed us to 

map the regions of maximal activation with millimeter-level 

accuracy. The MEG data complemented this by offering high 

temporal resolution, allowing us to track the time course of 

brain activation in near real-time. Together, these methods 

provided a holistic view of the cortical regions involved in 

sensory processing. 

C. Multimodal Integration 

The integration of MEG and fMRI data proved to be highly 

effective in capturing both the fine-grained temporal dynamics 

and detailed spatial distribution of brain responses. MEG 

provided millisecond-level temporal precision, capturing rapid 

fluctuations in brain activity, while fMRI contributed superior 

spatial localization, delineating the precise neural circuits 

activated during the stimulus period. This multimodal synergy 

enabled the identification of complex and transient functional 

networks, revealing dynamic interactions between sensory and 

associative brain regions. By integrating these modalities, we 

gained a clearer picture of the brain’s functional architecture, 

offering insights into how different regions communicate and 

coordinate in response to sensory inputs. 

D. Artifact Control and Data Fidelity 

The inclusion of electrooculography (EOG) data was instru- 

mental in controlling for potential confounding artifacts, par- 

ticularly eye movement-related noise. This step significantly 

enhanced the reliability of the data by ensuring that the cortical 

activations we observed were not contaminated by non-neural 

signals. The meticulous preprocessing pipeline, including mo- 

tion correction, spatial normalization, and artifact rejection, 

ensured that the data retained high fidelity throughout the 

analysis. This rigorous preprocessing not only improved the 

accuracy of our classification model but also bolstered the 

confidence in the spatial and temporal patterns of activation 

observed. 

E. Functional Connectivity and Network Analysis 

Beyond identifying localized activations, our analysis re- 

vealed significant functional connectivity between sensory 

regions and higher-order cortical areas, such as the prefrontal 

cortex. Dynamic functional connectivity analysis, utilizing 

sliding window correlation techniques, showed transient in- 

teractions between sensory cortices and associative regions 

during the task. These connectivity patterns provide insight 

into the brain’s ability to dynamically reconfigure itself in 

response to different stimuli, offering a window into the real- 

time coordination between distinct brain areas. This finding is 

particularly relevant for understanding how sensory informa- 

tion is integrated into higher-order cognitive processes. 

F. Spatio-Temporal Network Classification 

The advanced machine learning techniques used in this 

study, including cross-validation and spatio-temporal classifi- 

cation models, allowed for an exceptionally high classification 

accuracy of 99.2%. The performance of these models reflects 
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the strength of the multimodal approach and highlights the 

discriminative power of the features extracted from both 

MEG and fMRI data. This level of accuracy underscores 

the potential of using multimodal neuroimaging for precise 

classification tasks, whether in research settings or clinical 

diagnostics. 

 

 
 

Fig. 4. Spatio-Temporal regions after the Network Classification 

 

In summary, our results highlight the power of combining 

MEG and fMRI to achieve an in-depth understanding of 

brain function. The integration of high-resolution spatial and 

temporal data allowed us to identify key regions involved in 

sensory processing and explore the complex neural networks 

underlying these responses. The ability to control for artifacts 

and maintain high data fidelity throughout the analysis further 

strengthened the robustness of our findings. This research 

not only advances our understanding of the brain’s response 

to sensory stimuli but also lays the groundwork for future 

investigations into sensory processing, brain connectivity, and 

potential clinical applications in diagnosing and treating sen- 

sory and cognitive disorders. 

VI. DISCUSSION 

The present study offers substantial contributions to our 

understanding of the neural mechanisms underlying sensory 

processing, particularly by examining responses to auditory 

and visual stimuli. By utilizing a combination of magnetoen- 

cephalography (MEG) and high-resolution anatomical mag- 

netic resonance imaging (MRI), we have achieved an unprece- 

dented level of precision in both the temporal dynamics and 

spatial localization of cortical activations. The resulting spatio- 

temporal classification score of 99.2 

Our findings point to the involvement of a more extensive 

neural network in sensory processing than previously thought, 

corroborating and expanding on established models. Specifi- 

cally, the engagement of both the frontal and occipital cortices 

during sensory processing supports the idea that these brain 

regions work together in a distributed manner, rather than 

functioning in isolation. The occipital cortex’s role in visual 

stimulus processing, as observed in this study, aligns well with 

classical models of visual perception, where primary sensory 

areas first receive input before rapidly transmitting information 

to higher-order regions for more complex processing. This 

clear activation of the visual cortex demonstrates the expected 

role of this area in handling visual information. 

The simultaneous involvement of the frontal cortex, how- 

ever, offers novel insights, particularly in its potential role in 

top-down modulation. The frontal cortex, traditionally asso- 

ciated with cognitive processes like attention and decision- 

making, may be influencing how sensory input is perceived 

or integrated. This suggests that sensory processing is not 

purely a bottom-up process but is subject to modulation by 

cognitive mechanisms, such as attention or prediction, from 

higher cortical regions. The interaction between the occipital 

and frontal cortices in response to sensory input adds nuance 

to the understanding of how external stimuli are interpreted, 

suggesting a more intricate and dynamic process than previ- 

ously appreciated. 

On the temporal front, our use of time-frequency analysis 

revealed key insights into when specific brain areas become 

activated in response to stimuli. The activation peaks observed 

in the visual cortex within 200-300 milliseconds after stimulus 

presentation align with known timing of visual perception 

and attentional shifts, reinforcing the robustness of our find- 

ings. This temporal precision is crucial for understanding 

the sequence in which sensory information is processed and 

interpreted by the brain. The application of inverse modeling 

further enhanced these insights by allowing us to accurately 

localize the sources of activation in both occipital and frontal 

cortices. Together, these methodologies provided a compre- 

hensive view of the spatio-temporal characteristics of sensory 

processing, revealing how different brain regions contribute to 

this complex function over time. 

The success of this study also hinged on the integration of 

MEG and MRI data, leveraging the strengths of both tech- 

niques. MEG’s high temporal resolution enabled us to capture 

the rapid dynamics of neural activation, while MRI’s superior 

spatial resolution allowed us to precisely map the cortical 

areas involved. By aligning these datasets, we were able to 

achieve a level of detail in both space and time that would 

not have been possible using a single imaging modality. This 

multimodal approach not only enhances our understanding of 

sensory processing but also sets a methodological precedent 

for future research into more complex cognitive functions or 

clinical applications. 

A key strength of this study was our rigorous approach to 

controlling for potential artifacts, particularly those related to 

eye movements. The inclusion of electrooculography (EOG) 

data enabled us to effectively minimize such artifacts, ensuring 

that the observed patterns of brain activation were truly re- 

flective of sensory processing rather than confounding factors. 

Future studies will benefit from further refining preprocessing 

techniques and exploring additional methods for artifact con- 

trol, particularly in populations that may present with greater 

variability in cortical activation patterns, such as those with 

neurodevelopmental disorders. 

The clinical and research implications of these findings 

are far-reaching. By demonstrating the power of multimodal 

imaging in mapping sensory processing, this study lays the 
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foundation for its application in clinical settings. This approach 

could be particularly beneficial in diagnosing and treating 

sensory processing disorders, where precise identification of 

functional disruptions could inform more targeted interven- 

tions. Additionally, our findings contribute to the broader 

field of neuroscience by enhancing our understanding of 

functional connectivity and sensory integration in the healthy 

brain. Future research could build on this work by applying 

these techniques to more complex cognitive tasks, such as 

multisensory integration, attentional processes, or memory, as 

well as extending the investigation to clinical populations, in- 

cluding those with neurodevelopmental or sensory processing 

disorders. . 

VII. CONCLUSION 

This study utilized neuroimaging data to investigate brain 

responses to auditory and visual stimuli, focusing on cortical 

activation in the frontal and visual cortices. By applying time- 

frequency analysis, source localization, and cross-validation 

techniques, we achieved a spatio-temporal classification ac- 

curacy of 99.2%. The precise alignment of MEG and fMRI 

data, along with the integration of electrooculography (EOG) 

to mitigate eye movement artifacts, enhanced the robustness 

of our findings. 

Our results confirm significant visual cortex activation dur- 

ing sensory processing, supporting established links between 

stimuli and cortical responses. This research highlights the 

potential of multimodel neuroimaging to advance our un- 

derstanding of brain function, with implications for studying 

sensory integration and clinical disorders. 
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