
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40378 | Page 1

SPEECH ENABLED OPERATING SYSTEM

Mr ARUL E1 ,VISHNU PRASANTH B S2, SUGANTH S3 , MITHUNRAJ P4 , KATHIRAVAN M5

Department of Information Technology,

Coimbatore Institute of Technology,

Coimbatore, Tamil Nadu, India.

 { 1 arul.e@cit.edu.in
271762107058@cit.edu.in,

 371762107051@cit.edu.in,

 471762207204@cit.edu.in,
571762107021@cit.edu.in }

ABSTRACT

The concept of the work is to create a speech interface

while controlling computers using OS to manage

computer operations through speech. It is more than a

mere corridor is giving a smooth entry into a computer

but at the same time we have made what seems to be

complex operation very easy. It has been implemented

on the Linux platform and uses Speech Recognition

libraries with Google Speech API to convert typed

direct spoken word commands to the computer fully

optimized with pyttsx3 python for feedback voice

output to the user. The features that are supported by

this interface include typing, opening, closing,

creating, deleting, renaming files, searching the web,

starting other applications, etc. First it includes

converting the input speech into text, the second step is

parsing this text to match with the request to the coded

Python codes to perform the desired action. This

modularity has the Command Module for acquiring a

module capturing voice, through which inputs matched

will be action, the Action Module for action, and the

Feedback Module through voice response

confirmation. The Bash script operates with systemd-

to start the interface at system boot in order to run this

code under the Python virtual environment with the

name myenv. This type of interface is most suitable for

the disabled as it enhances convenience and flexibility

in making assimilation to smart OS environments.

1 INTRODUCTION

Due to recent advances in Artificial Intelligence and

interaction with the person and the computer voice

interfaces are in high demand because they are natural.

This project is centered on the development of an OS

interface that allows the user to type, open, close,

create, delete, and rename files, search the internet, and

launch applications by speaking into a microphone.

Since using NLP and speech recognition the system is

entirely voice operated so it is very useful for disabled

and might be more comfortable for the average user

than the conventional inputs[6]. There are two libraries

used in this project: Speech Recognition which enables

the conversion of speech into text and pyttsx3 that

informs by giving an audio feedback on the outcomes

of commands[1]. The working flow of the system is as

follows first, it detects voice, and then converts it into

text by using the Google API and then maps that text

file’s matched equivalent Python code to perform the

necessary operations. It makes the interface auto-run

http://www.ijsrem.com/
mailto:arul.e@cit.edu.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40378 | Page 2

when the OS comes up and Python code within a

myenv virtual environment frosting the matter of

usability[6]. Through the demonstration of this voice-

enabled OS interface with the kernel and user

applications interface the project showcases an

advanced way of improving the commonly used

operating system human-computer interfaces

especially through vocal technology[1].

1.1 CHALLENGES

1. Speech Recognition in Noisy Environments

As one of the main users of Voice Recognition

described before, noise is one of the major issues.Voice

recognition is another technologic problem which

mainly appears in verifying voice commands in

random noise of the real environment that may worsen

performance of the system[2].

2. Handling Diverse Accents and Speech Patterns

Regional accent, non fluency and clearly spoken words

differences among users affect low recognition

accuracy for speech in general.

3. Latency in Command Execution

Delays in processing and executing commands can

lead to frustration of the users and reduction of the

usability of the real time system especially if the

response time is a consideration.

4. System Startup and AutoStart Issues

List of startup problems which are in compliance with

the problems belonging to the genres of System

Startup and AutoStart.Certain problems appear when

implementing automatic start and stop of the speech-

enabled OS on system boot without directly involving

the user and adjusting the dependency loading and

Python virtual environments on OS startup.This report

examines the approach to command and control of the

complexity and flexibility as aspects of war[8].

5. Managing Command Complexity and Flexibility

Designing a system in which a user can add, remove,

or modify the commands without causing substantial

alteration of the system is quite complex. The issue is

making it flexible of command sets at the same level

with the readability and further clarification of the

involved processing structure.

2. RELATED WORKS

1. Advanced Speech Recognition Libraries

Libraries such as SpeechRecognition or Google APIs,

which provide higher accuracy independent of noise

level. Further, noise elimination algorithms can also be

applied to make audio input free from noise.

2. Adaptation to Different Accents Using Machine

Learning Models

Deep learning models that have been trained on

multiple data sets to address multiple accents as well as

speech patterns enhancing its success rates for various

users.

3. Optimized Command Parsing for Lower Latency

Subprocess and asynchronous execution methods have

been employed in order to respond quicker and the

commands do not take time to execute as they also run

at the same time.

4. Systemd Services and Shell Scripts for Autostart

Management

Similar works apply systemd services and shell scripts

in the autostart regulation process. They also back up

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40378 | Page 3

easy enabling/disabling as well as the starting and

stopping of the virtual environment.

5. Customizable Command Sets for User Flexibility

Local extensions can be achieved through

customization modules which are also referred to as

configuration files where users can add commands

freely. Some use JSON or YAML files in which users

can set commands and responses; increasing versatility

without compromising the codebase.

6. Environment Management with Virtual

Environments or Containers

In general, to guarantee compatibility and avoid

dependency issues, people use venv or Docker, which

contain all the necessary libraries. This prevents rise of

new problems related to setting up the system and also

forms a guarantee that the system can perform

effectively across other systems.

3. PROPOSED SYSTEM

The new developed HCI Speech –Enabled Operating

System Interface is an improvement of Linux based

operating system interface relying on NLP &

Automatic Speech Processing[7]. This system permits

the users to execute different operations on the

terminal orally so that it is more efficient and

comfortable for users. These include typing, opening

or closing files, creating, deleting or renaming files, as

well as simple searches on the internet and the running

of applications. Also, it allows users to speak to the

applications and turn the text as an input , so it fits for

working with documents or programming. Through

NLP, the system will be able to interpret conversational

phrases which also makes the system more friendly

and easy to use[3].

The system uses the pyttsx3 library for haptic feedback

to congratуlate the user for completing an instruction

or for notifying the user of an error. It is easily

configurable or reconstructible because users without

coding or programming skills can adjust, expand or

create new commands, sub-commands, tasks or

functions[4]. Thus, the system is not only suitable for

disabled people or people with low typing speed, but

can be controlled exclusively using a voice, which

excludes contact with the equipment. Use of Bash

scripting scripting and ‘systemd’ makes it run the

interface at system boot as an automatic startup. The

digital speech input using Python code running in the

virtual environment called as myenv, convert the

speech into text using Google Speech API and look for

the corresponding MATCH and if found then it

executes the matching python code operations.

This revolutionary system changes user experience on

operating systems by providing easy access,

productivity, and new generation operating systems. It

improves the interactivity of the system by allowing

people to use their voice to interact for most of the

touching tasks that can be done with a keyboard and

mouse, thus making it easier for people with disabled

hand movement and showing the potential of voice

interface for the future of human-computer

interfaces[5].

3.1 SYSTEM IMPLEMENTATION

The entire system is controlled by speech-recognition

speeches operating voice system. Various technologies

are used in this Application. Python acts as a major

programming language. It uses SpeechRecognition for

voice to text, pyttsx3 for text to speech, and pyautogui

for artificial typing[4]. It has been designed solely for

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40378 | Page 4

Linux. With such an application installed, a voice can

actually perform typing, file management, web access,

and application launches. For what is said to be typed

in text, determinedly with the help of Google Speech

API against Python commands, it is done along with

audio reinforcement of the action. Bash scripting with

systemd allows starting of the service to start the script

at boot and the code within the script runs in a virtual

environment created as myenv in ISO format as shown

below. Hence, this enables clients subscribing to this

service to communicate among themselves in a more

efficient, easy, and cheap manner.

3.2 ALGORITHM

Step 1: Initialize System

Import necessary libraries: Speech Recognition,

pyttsx3, os, subprocess, and pyautogui.

Prepare the pyttsx3 engine for feedback in terms of

speech.

Step 2: Start the System

If the operating mode includes automatic

activation of virtualization, use Bash script to start the

environment.

Invite the user to wait for the system to be ready to

accept voice input.

Step 3: Capture Voice Input

Instantiate the Recognizer object from the Speech

Recognition library.

Activate the microphone to capture voice commands.

Use Google Speech API to transcribe the audio input to

text.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40378 | Page 5

Inform the user in case the command is not recognized

or if there is an error.

Step 4: Process the Command

Search the recognized command for keywords and

phrases.

Trigger corresponding actions based on the recognized

command:

Command: Open Application

If the command is “open browser,” execute

os.system("firefox").

If the command is “open terminal,” execute

os.system("gnome-terminal").

Command: Search Online

Use subprocess.run to extract the search query and

open the result in the default browser.

Command: Type Text

Open a text editor, preferably gedit

(os.system("gedit")), and use pyautogui to type the

dictated text.

Step 5: Provide Feedback

Use pyttsx3 to give feedback for all the actions

performed.

For example, after opening the terminal, say “Opening

terminal”; when typing, say “Typing text”; if a

command is not recognized, say “Command not

recognized.”

Step 6: Loop Continuously

Stay idle for the next command until the system is shut

down manually.

Step 7: Manage System Startup

Use Bash scripting to run the virtual environment and

then the Python script.

Set up a systemd service to ensure the program starts

automatically with the operating system.

The service should allow starting or stopping as

desired.

Step 8: Extend Functionality

Extend the system’s functionality as needed. This may

include adding new voice commands or additional

features based on user needs or requirements.

Consider adding features like controlling other

applications, managing system files, or integrating

with external devices.

This modular approach ensures that the system is both

flexible and expandable, offering a range of voice-

based commands to improve the user experience with

the operating system.

3.2.1 Voice-Driven System Control

The convenience of the system is that it enables users

to drive their operating system exclusively by voice.

• You can for instance open terminal, browser, or any

text editor by invoking a simple voice command.

For example, such operations as launching

applications, working with the web, copying or

renaming files, or simply typing in editors can be

accomplished without user interaction.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40378 | Page 6

• Open a website or type a URL by way of voice

commands without having to use the keyboard or

mouse so much.

It makes work easier and fast especially in instances

where one would have used many sub-menus or typed

many orders. For example when the user speaks a

command like “Open terminal” then the application

that opens the terminal launches immediately[4].

3.2.2 Natural Language Comprehension

• It is flexible because users can command the system in

their natural language

With the help of NLP, voices can be interpreted in

normal speaking language, as opposed to popular

voice-activated systems that accept only specific

phrases[9]. This means users do not have to remember

certain phrases or how they have to be written in order

to be used with the bot. For instance, instead of asking

the user to search for Python tutorials, the user can say,

search for me Python tutorials.

• It will analyze the executive’s specific command of a

task and understand if a user used different words to

pass the request to perform the task.

• Reduces the extent to which one has to master

certain phrases in order to use them in a

conversation making the system easy to use.

This capability makes the system easy to use, natural

and is able to span the human – computer interface,

successfully.

3.2.3 Accessibility Enhancements

• Allows full user interaction with the computer through

speaking to it, with many controls carried out by voice.

• Lays down voice as the main approach of interfacing,

thereby minimizing the reliance of conventional input

devices.

It’s leveled to accommodate everybody within its

framework thus can be extremely useful for people

with physical disabilities or people who experience

issues with typing. It supports the total voice control of

the computer and makes voice the primary mode of

interacting with the computer. All this makes a point

that computing becomes open to more people so that

they use it for independence and convenience.

3.2.4 Automated Task Execution

• Enables a user to perform several operations on it in a

single voice command hence increasing efficiency

Forced tasks make it possible for the system to perform

all the complicated operations in one go.

• Programmatically interacts with the operations system

and the applications that are involved, making high

accurate automation

They are able to start applications, navigate folders and

documents, and even enter typed text from dictated

constrained commands to an application.

• For instance, the command “Type ‘Hello, World!’ in

the editor” would type in the text in the editor, making

it easier and quicker than typing it manually.

To accomplish its mission and achieve high-accuracy

execution, this automation is driven by tools such as

os, subprocess, and pyautogui.

3.2.5 Integrated Feedback Mechanism

The system provides the user with audio feedback on

the commands to indicate the system’s interactions

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40378 | Page 7

using the pyttsx3 library. This feature reiterates-back

when a command was successfully performed (e.g.,

“Opening browser”) or informs the client about

failures (e.g., “Command not recognized”).

• Audio Feedback for Commands: Offers vocal

affirmation that a specific command was carried out

and with what result (for instance, ‘Opening browser.’)

• Error Notification: Notifies the users when commands

corrupt or are invalid thus increasing textual

communication clarity.

3.2.6 Customization and Extensibility

The two major benefits that can be derived from it are

customization as well as extensibility.

• Personalized Command Options: New additions,

modifications, and deletions of commands may be

made depending on the users’ requirements.

• Versatility Across Applications: Flexible for use with

individuals, business and organizations, or

professionals.

• Future-Proof Design: Enables constant synchrony by

providing for its update and alteration.

The system is versatile and can be aligned to any

functional specification needed by the users.

New commands can be included, existing ones

modified or others deleted which means that the

system is good for personal use, for organizational

purposes, or for professional use. This makes it

possible for the system to continue to be useful when

deployed to various systems.

3.2.7 Auto-Start Functionality

To do away with manual activation of the voice, it is

set to start automatically at the time of system booting.

This is done by utilizing Bash scripting and systemd

service.

• System Boot Activation: Settles the voice system to

begin at the system logon in order to be always

prepared.

• Bash Scripting Utilization: Uses a variety of Bash

scripts to initiate this process.

• Systemd Integration: Depended on systemd services

for easy initialization with the Operating Systems

simultaneously.

• Always Ready for Commands: Ensures system

optimizes for responsiveness as soon as Windows

boots up hence enhancing usability

This feature makes the system to be ever responsive to

commands as soon as the computer is on, and it is

precise for this reason that most operating systems are

programmed this way.

3.2.8 Real-Time Typing via Voice

This is one of the finest options afforded by this

project; the functionality of inputting dictated texts into

applications in real-time. For instance, typing “This is

a test” will open a text editor program and then type

exactly what has been typed. This functionality is

especially useful when, with voice commands, you can

document, take notes, or even code something, which

makes this feature quite specific and useful within the

system.

• Instant Text Input: Makes it possible for those working

with dictated texts to input this information into

applications very quickly and without errors.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40378 | Page 8

• Document Creation: Allows taking a note, writing a

document, or coding by speaking into the virtual

assistant, where a device translates the spoken words

into text.

• Dynamic Program Control: Starts programs such as

text editors to do text input directly without manually

having to do so.

• Enhanced Productivity: Efficient in that voice

commands can be used along with typing tasks on the

same real-time basis

 3.2.9 The Process

This system identifies speech input using Google's

Speech API, converts it to text, and then parses the

recognized text for matching with predefined Python

functions[4]. Functions open applications, create files,

search online, or type text, among other commands. To

ensure starting automatically with the operating system

boot once, Bash scripting is installed along with

systemd integration. The complete code written in

Python operates in a specific environment called

myenv to ensure an easy run-through of all commands

and features. A mélange of all this technology is thus

incorporated towards meeting the seamless and

efficient user experience[7].

3.3 CONCLUSION

However, the ability of the speech interfacing OS to

give the user a feel of the OS by merely using the

mouth to give the computer commands make it easier

for the disabled to access the computers and also gains

convenience to those with mobility in their arms and

hands by reducing the amount of times they use their

hands. Using speech recognition mechanism and

natural language processing (NLP), the system can be

able to either execute programme commands like to

search documents, organise files and initiate various

forms of applications, or search for information in real

time feedback online using pyttsx3[6]. The system is

powered on Google speech recognition API in

combination with Bash scripting that can run the

system on system start up. Therefore the project seeks

to enhance the computing performance but at the same

time make it personal and friendly.

4 REFERENCES

[1] Operating System Command Execution Using

Voice Command: It is a system that allows OS

command’s execution through vocal input for

improving the ease and speed of its use:Paras Nath

Singh,Navaneetha M,Poonam Vijay Tijare.

[2] AI-Based Desktop Voice Assistant: A behavioral

desktop assistant using AI especially for performing

the commands indicated by the user and intelligent

work

scheduling:PankajKunekar,Ajinkya,Deshmukh,Sachin

Gajalwad,Aniket,Bichare,Kiran Gunjal, Shubham

Hingade.

[3]Voice-Based Virtual Assistant with Security: A

virtual assistant that uses safe login to perform voice

directed instructions: CintamariaSimon,Rajeswari.

[4]Voice Assistant using Artificial Intelligence: A

system that has been integrated with Artificial

Intelligence so as to allow individuals easily control

their devices using voice instructions;Preethi G,

Abishek K,Thiruppugal S,Vishwaa D A.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40378 | Page 9

[5]Artificially Intelligent Operating System with

SAPI5 Voice Recognition Engine: An OS interface

particularly with Speech application programming

interface 5 for exceptional voice recognition and task

performance: Sumathi S, Nivetha N, Princy Jovita J.

[6] Two-Way Speech to Sign Language Converter

Application Using Python, OpenCV, and NLP: An

interconvertible mode to translate spoken words in sign

language and vice versa for a person with a

disability:Shashikant Suman,Bhanu Prakash Lohani,

Vijay Singh,Amar Deep Gupta,Akhilesh Kumar

Khan,Anil Kumar.

[7]A Voice-Enabled Operating System for Disabled

Users: An operating system developed to assist

disabled persons to manage their systems using voice

control;Smith et al.

[8] Speech-Based Computer Control Using CMU

Sphinx: A speech recognition system for controlling

computer functions using CMU Sphinx; G. Nagappan,

N.Rohini

[9] Voice-Controlled Accessibility in Modern

Operating Systems: Improving OS navigability by and

for persons with disabilities using voice-based tools of

interaction: Rodriguez and Brown

[10] Speech-Enabled Operating System Control: A

Capgemini special offering in creating a smart voice

control for operating the operating systems, you no

longer have to type: Md. Abdul Kader;Biswajit

Singha;Md. Nazrul Islam.

http://www.ijsrem.com/

