
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM |www.ijsrem.com | Page 1

SQL Injection Prevention System using a efficient Machine Learning Approach

Mrs.M.Saratha1, Mr.T.Thangarasan2

1Assistant Professor, Department of MCA, M.Kumarasamy College of Engineering (Autonomous)

2Assistant Professor, Department of CSE, K.S.R College of Engineering (Autonomous)

---***---

Abstract - Web application firewalls are an important

safeguard for any online software system. SQL Injection

attacks are the most serious security issue for insecure

online applications in the Internet age. With the growing

threat of SQL Injections, Web Application Firewalls (WAF)

must be updated and tested on a regular basis to keep

attackers at bay. As technology advances, the number of

attackers seeking to attack applications expands, resulting in

a plethora of new ways for them to gain access to the

system. As a result, existing systems are struggling to keep

up with new hackers and new technologies in order to

entirely rescue the system. The white box testing and static

analysis approach in the existing WAF requires access to

source code. Model-based testing necessitates a larger

number of rules. For detecting SQL injection attacks, black

box testing is ineffective. Machine learning is an artificial

intelligence application that allows computers to learn and

improve on their own without having to be explicitly

designed. Collaboration between machine learning and web

application firewalls improves the efficiency of the current

system. Unsupervised Learning Technique is the method

employed in this paper. The k-means approach, which is

commonly used for clustering issues, is employed for

unsupervised learning. The system's flow can be described

as follows. When a Web application's end user makes a

request, the request's values are retrieved and transmitted to

the SQL injection detector, which provides two layers of

protection. For low-level attacks, patterns are generated

utilising CFGs in the first layer of security. Unsupervised

Learning Algorithm is used to train the second layer of

protection for high-level assaults.

Key Words: SQL Injections, SQL Injection Detector, Two

layer Security, Unsupervised Learning Technique

1.INTRODUCTION

A WAF or web application firewall helps protect web

applications by filtering and monitoring HTTP traffic

between a web application and the Internet. It typically

protects web applications from attacks such as cross-

site forgery, cross-site-scripting (XSS), file inclusion,

and SQL injection, among others. A WAF is a

protocol layer 7 defense (in the OSI model), and is not

designed to defend against all types of attacks. This

method of attack mitigation is usually part of a suite of

tools which together create a holistic defense against a

range of attack vectors.

By deploying a WAF in front of a web application, a

shield is placed between the web application and the

Internet. While a proxy server protects a client

machine’s identity by using an intermediary, a WAF is

a type of reverse-proxy, protecting the server from

exposure by having clients pass through the WAF

before reaching the server.

A WAF operates through a set of rules often called

policies. These policies aim to protect against

vulnerabilities in the application by filtering out

malicious traffic. The value of a WAF comes in part

from the speed and ease with which policy

modification can be implemented, allowing for faster

response to varying attack vectors; during a DDoS

attack, rate limiting can be quickly implemented by

modifying WAF policies.

A WAF can be implemented one of three different

ways, each with its own benefits and shortcomings:

http://www.ijsrem.com/
https://www.cloudflare.com/learning/security/what-is-a-firewall/
https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-protocol-http/
https://www.cloudflare.com/learning/security/threats/cross-site-request-forgery/
https://www.cloudflare.com/learning/security/threats/cross-site-request-forgery/
https://www.cloudflare.com/learning/security/threats/cross-site-scripting/
https://www.cloudflare.com/learning/security/threats/sql-injection/
https://www.cloudflare.com/learning/ddos/what-is-layer-7/
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/
https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM |www.ijsrem.com | Page 2

 A network-based WAF is generally

hardware-based. Since they are installed

locally they minimize latency, but

network-based WAFs are the most

expensive option and also require the

storage and maintenance of physical

equipment.

 A host-based WAF may be fully

integrated into an application’s software.

This solution is less expensive than a

network-based WAF and offers more

customizability. The downside of a host-

based WAF is the consumption of local

server resources, implementation

complexity, and maintenance costs. These

components typically require engineering

time, and may be costly.

 Cloud-based WAFs offer an affordable

option that is very easy to implement; they

usually offer a turnkey installation that is

as simple as a change in DNS to redirect

traffic. Cloud-based WAFs also have a

minimal upfront cost, as users pay

monthly or annually for security as a

service. Cloud-based WAFs can also offer

a solution that is consistently updated to

protect against the newest threats without

any additional work or cost on the user’s

end. The drawback of a cloud-based WAF

is that users hand over the responsibility to

a third party, therefore some features of

the WAF may be a black box to them.

2. PROPOSED SYSTEM

There is no automatic detection system for

identifying and preventing SQLi attacks in the current

system. It does the detection using a set of rules. The

system examines the query against each and every rule

before detecting an attack. If a certain sort of rule isn't

kept in the set and an attack is launched, the system

will allow the query to be run because that rule isn't

kept in the set. It's also tough to keep track of and test

the regulations. In addition, for large applications, we

will need to develop more complicated rules. The

machine learning-based method for blocking SQL

injections aids in the server-side exploitation of any

database. A component for the server side of this

system is being developed. The system will check

before performing the client's request.

This system has two levels of security: the first is the

patterns generated by context free grammar rules, and

the second is the comparison of values with the

patterns generated by the given rules for sql attacks.

The machine learning algorithm (k-means) in the

second level of security groups the pattern based on

the given data set, categorises fresh data into one of

those clusters, and detects the injection. Figure 1

depicts the System Architecture, which explains how

the system is put together. The client uses the web

browser to submit the appropriate requests to the web

server.

The web browser sends the client's input to the web

server, which has a security component called the SQL

Injection Detector. It looks for SQLi Attacks in the

values given by the user. If the values are correct, the

request is passed to the Request Processor, who

evaluates it and runs the query. The database is then

accessed, and the client's request is processed and

executed.

3. SYSTEM ARCHITECTURE

This system consists of three modules, namely, URL

Intercept Engine, Context-Free Grammar for SQLi

Attacks and Classify pattern through Machine

Learning.

http://www.ijsrem.com/
https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://www.cloudflare.com/learning/ddos/glossary/domain-name-system-dns/
https://developers.cloudflare.com/waf/managed-rulesets
https://developers.cloudflare.com/waf/managed-rulesets

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM |www.ijsrem.com | Page 3

A. URL Intercept Engine

The most vulnerable aspect of a web application is the

text fields, which are where the majority of sql

injection attacks occur. End users or hackers that want

to mess with a company's database type in some

harmful sql queries in the text field, which can be

appended to the sql query previously defined on the

server side, causing the database to be affected. As a

result, the first module pulls data from text fields and

sends them to a pattern checking algorithm.

B. Context Free Grammar for SQLi Attacks:

The initial degree of protection against sql injection

attacks is provided by the second module. This module

builds the sql injection attack pattern using context-

free grammar rules for sql injection attacks. The

retrieved value from the first module is compared to

the rule that creates the various assault patterns. If the

extracted value matches the attack pattern generated by

the Context free grammar rules, the value is transferred

to the second level security, which determines whether

or not the value entered is harmful. The value entered

is sent to the second level security even if it does not

meet the pattern generated by the Context free

grammar rules.

C. Classification of pattern through Machine

Learning

This module provides the system with the second level

of security. This module contains an unsupervised

machine learning algorithm that groups different sorts

of attacks into separate clusters and tests the value

provided to it by determining whether the value is fit

for the cluster and whether it contains harmful queries.

If not, the request is allowed to run the query and

access the database by the system. If it matches the

cluster associated with any attack pattern, the system

refuses to execute the request and keeps the system in

the same state.

4. EXPERIMENTAL RESULTS

The forms submitted by the end user, as well as any

injected values into the url by end users or hackers,

provide input to our model. Finally, all of the values

submitted in the form or injected in the url are inserted

into a query, which is then run to contact the database

and retrieve or enter new data. The training datasets

for our Machine Learning Algorithm are a set of SQL

statements used to categorise the pattern employed in

piggyback and union attacks, as well as some of the

attack patterns used to classify boolean attacks.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM |www.ijsrem.com | Page 4

5. CONCLUSION

 The suggested solution employs a machine

learning approach to detect and prevent SQL injection

attacks in web applications via user requests. URL

Intercept Engine, Context-Free Grammar for SQLi

Attacks, and Classify Pattern using Machine Learning

are the three modules of the system.

The URL Intercept Engine extracts the values

submitted by the user on the client side, which are

subsequently transmitted to the first level of

protection. The Context-Free Grammar rules are used

to detect the pattern in the first level of security. The

patterns are fed into the Machine Learning Algorithm,

which uses the pattern to classify the value into

clusters. The client's request will be revoked if the

value is judged to be harmful by the implemented

security. If the request isn't malicious, it will be

processed regularly.

REFERENCES

1. A. Doupe, M. Cova, and G. Vigna, “Why johnny can ́

aˆA ̆ Zt pentest: An analysis of black-box web

vulnerability scanners,” in Proc. Int. Conf. Detection

Intrusions Malware, Vulnerability Assessment, 2010,

pp. 111–131.

2. A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst,

“Automatic creation of SQL injection and cross-site

scripting attacks,” in Proc. 31st Int. Conf.Softw. Eng.,

2009, pp. 199–209.

3. A. Liu, Y. Yuan, D.Wijesekera, and A. Stavrou,

“Sqlprob: A proxy-based architecture towards

preventing sql injection attacks,” in Proc. 2009 ACM

Symp. Appl. Comput., 2009, pp. 2054–2061.

4. Dennis Appelt, Cu D. Nguyen, Annibale Panichella

and Lionel C. Briand, “A Machine-Learning -Driven

Evolutionary Approach for Testing Web Application

Firewalls”, IEEE Transactions on Reliability, vol. 67,

pp. 733 - 757, 2018.

5. D. Appelt, N. Alshahwan, and L. Briand, “Assessing

the impact of fire-walls and database proxies on SQL

injection testing,” in Proc. 1st Int.Workshop Future

Internet Testing, 2013, pp. 32–47.

6. D. Appelt, C. D. Nguyen, L. C. Briand, and N.

Alshahwan, “Automated testing for sql injection

vulnerabilities: An input mutation approach,” inProc.

2014 Int. Symp. Softw. Testing Anal., 2014, pp. 259–
269.

7. E. Al-Shaer, A. El-Atawy, and T. Samak, “Automated

pseudo-live testing of firewall configuration

enforcement,” IEEE J. Sel. Areas Commun.,vol. 27, no.

3, pp. 302–314, Apr. 2009.

8. Inyong Lee, Soonk Jeong, Sangsoo Yeo and Jongsub

Moon, ‘A novel method for SQL injection attack

detection based on removing SQL query attribute

values’, Elsevier, vol. 55, pp. 58 - 68, 2012.

9. J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State

of the art: Automated black-box web application

vulnerability testing,” in Proc. IEEE Symp. Security

Privacy, 2010, pp. 332–345.

10. J. Hwang, T. Xie, F. Chen, and A. X. Liu, “Systematic

structural testing of firewall policies,” in Proc. IEEE

Symp. Rel. Distrib. Syst., 2008, pp. 105–114.

http://www.ijsrem.com/

	2. PROPOSED SYSTEM
	3. SYSTEM ARCHITECTURE
	4. EXPERIMENTAL RESULTS
	5. CONCLUSION

