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Abstract - High-performance GPU cores are essential for handling 

complex computations and parallel processing tasks, significantly 

outperforming traditional CPUs. The architectural complexity and 

diverse operating conditions of GPUs necessitate rigorous design and 

verification processes, with Static Timing Analysis (STA) being 

crucial for ensuring performance and reliability standards. This project 

enhances STA for high-performance GPUs by developing automation 

scripts using Perl, Python, and Flask, streamlining the process, 

reducing manual effort, and minimizing errors. Techniques such as VT 

swapping, buffer insertion, clock pushing, and advanced crosstalk 

mitigation are employed, demonstrating significant improvements in 

timing performance. The findings provide valuable insights for 

engineers and designers, contributing to the advancement of STA 

practices in the semiconductor industry. 
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1. INTRODUCTION  
 

Static Timing Analysis (STA) emerges as a linchpin 

in the meticulous orchestration of high-performance GPU 

cores, serving as a critical phase in the design and verification 

process. At the forefront of technological innovation, these 

GPU designs power an array of devices, from smartphones to 

data centers, embodying the pinnacle of computational prowess 

and reliability. 

 In navigating the labyrinth of modern GPU architectures, 
characterized by escalating complexity and an insatiable 
demand for computational performance, rigorous timing 
analysis assumes paramount importance. STA plays a pivotal 
role in this endeavor, evaluating the temporal behavior of 
designs across diverse operational spectra, thereby ensuring 
compliance with stringent timing requirements. 

 The scope of STA extends beyond mere adherence to 
timing constraints; it encompasses a comprehensive analysis of 
timing paths, clock domains, and data transfers, all aimed at 
optimizing performance and fortifying reliability. 
Considerations such as process variations, voltage fluctuations, 
and temperature effects are factored in to account for real-world 
manufacturing and operational variabilities. 

 Advanced tools and techniques are leveraged to achieve 
timing closure, empowering designers to identify critical paths, 
optimize clock networks, and minimize timing pessimism 
through innovative methodologies. The importance of STA 
transcends mere timing analysis; it serves as a cornerstone in 
the quest for power optimization and area efficiency, thereby 
contributing to overall system efficacy. 

 In essence, STA unfolds as a multifaceted process, 
harmonizing the imperatives of reliability, performance, and 
efficiency. Through rigorous analysis and optimization, GPU 
designs propel technological innovation, shaping the landscape 
of mobile devices, gaming consoles, automotive displays, and 
data center accelerators alike. 

 The overarching goal of this project revolves around 
enhancing the efficiency, accuracy, and scalability of STA for 
high-performance GPU cores through automation and 
advanced methodologies. Specific objectives encompass 
advanced automation, integration with STA tools, parallel 
execution and scalability, error handling and validation, 
optimization and performance analysis, and a culture of 
continuous improvement. These objectives align seamlessly 
with broader strategic imperatives, driving innovation and 
excellence in GPU design and verification processes. 

2. LITERATURE REVIEW  
 

Signal integrity, timing analysis, and optimization of 

DDR interconnect designs are critical for the development of 

high-performance computing systems. Various researchers 

have explored these domains, providing insights into 

improving the performance and reliability of DDR systems [1], 

[2]. There are methods to enhance the signal integrity of DDR 

interconnect designs, focusing on mitigating common issues 

such as noise, signal degradation, and crosstalk [4], [3]. This 

study includes both theoretical analysis and practical 

optimization techniques to ensure reliable high-speed data 

transmission in DDR systems. A comprehensive modeling and 

computational analysis approach for DDR systems in multichip 

microsystems. The study aims to improve performance and 

reliability by addressing challenges related to signal integrity, 

timing, and thermal effects, providing insights into design 

trade-offs and optimization opportunities [5], [6]. 

 Research presents a novel technique to accelerate the 
functional verification process of DDR subsystems within 
System-on-Chip designs [7], [8] By introducing advanced 
verification methodologies and automation, the proposed 
method significantly reduces the time and effort required to 
ensure the correctness and robustness of DDR subsystems. This 
focuses on designing a DDR controller optimized for minimal 
delay and access time [9], [10]. The paper details the techniques 
used to achieve these optimizations, including advanced timing 
control mechanisms and efficient data management strategies 
[11], [12], ultimately leading to improved overall system 
performance. In a related domain, GPU-based framework 
designed to enable fast and scalable timing analysis for large-
scale integrated circuits [13]. The framework leverages the 
parallel processing capabilities of GPUs to handle the complex 
computations involved in timing analysis, resulting in 
significant speed improvements compared to traditional 
methods [15], [16]. Analytical approaches often focus on 
relative fidelity for micro-architecture exploration, such as 
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using machine learning-based scaling models. Zhao proposes a 
method for accurately estimating the power consumption of 
STT-MRAM caches, considering timing and process variations 
[17] , [18]. This estimation technique provides more precise 
power consumption data, crucial for designing energy-efficient 
memory systems [19], [20], [4]. The research explores the use 
of heterogeneous parallelism between CPUs and GPUs to 
accelerate static timing analysis. By distributing the 
computational load across both processor types, the proposed 
method achieves significant reductions in analysis time while 
maintaining accuracy and reliability [21].  

3. METHODOLOGY 
 

STA is the technique to verify the timing of a digital 

design. The STA analysis is the static type and in this analysis 

of the design is carried out statically and does not depend upon 

the data values being applied at the input pins. 

The more important aspect of static timing analysis is that 

the entire design  typically specified in hardware descriptive 

languages like VHDL or VERILOG  is analyzed once and the 

required timing checks are performed for all possible timing 

paths and scenarios related to the design. Thus, STA is a 

complete and exhaustive method for verifying the timing of a 

design. Refer to figure 1. 

 
Fig -1: Design Methodology 

In STA the whole design is divided into a set of timing 

paths having start and endpoints and calculate the propagation 

delay for each path and check whether there is any violation in 

the path and report it. 

In ASIC design, the static timing analysis can be 

performed at many stages of the implementation. STA analysis 

is first done at RTL level and at this stage more important is to 

verify the functionality of the design not timing. 

Once the design is synthesized from RTL to Gate – level, 

then STA analysis is used for verifying the timing of the design. 

STA is also performing logic optimization to identify the 

worst/critical timing paths. STA can be rerun after logic 

optimization to see whether there are still failing paths that still 

remain that need to be optimized or to identify the worst paths 

in the design. 

At the start of physical design  PD  stages like floorplan 

and placement, the clock is considered as an ideal which means 

the delay from clock to all the sink pins of the flip flop is zero  

i.e. clock is reaching to all the flip flop at the same time . After 

placement, in the CTS stage a clock tree is built and STA can 

be performed to check the timing. During physical design, STA 

can be performed at each and every stage to identify the worst 

paths. 

4. METHODS TO FIX SETUP AND HOLD 

VIOLATIONS 

4.1 Methods To Fix SetupViolations 

Method 1: Reducing the amount of buffering in the path- It will 

reduce the cell delay but increase the wire delay. So, if we can 

reduce more cell delay than wire delay we will be able to reduce 

the overall stage delay. 

Method 2: Replace buffers with 2 inverters placed far apart- If 

the wire is of a longer length it is advisable to have 2 inverters 

spaced evenly between the paths than a buffer in the middle 

because it helps to reduce the overall stage delay.  Adding an 

inverter decreases the transition time two times then the 

existing buffer gate. Due to that the RC delay value is reduced. 

It is also noted that the cell delay of 1 buffer gate = cell delay 

of 2 inverter gates. So, the overall stage delay (cell + wire 

delay) for 1 buffer < the overall stage delay of 2 inverters. This 

method is depicted in figure  2. 

   

Fig -2: Replacing Buffers with two Inverters  

Method 3: HVT Swap-This is a commonly used technique 

which works on the principle that a lower Vt component would 

take lesser time to turn on. This would help reduce its transition 

time. 

Method 4: Increase driver size or driver strength-Normally 

larger cells have faster speeds as their driving strength is 

greater. 

    The basic layout for reducing the gate delay involves 

connecting MOS devices in parallel. The equivalent width of 

the MOS device is the sum of the widths of the gates used in 
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the combination. Most cell libraries have x1, x2, x4, x8 

inverters. The x1 is minimum size and is used for lower speeds. 

The x2 inverter has two inverters in parallel which results in an 

inverter with twice the current capabilities. The output 

capacitance is charged or discharged with twice the speed, thus 

helping in reducing the delay. The method of increasing driver 

strength is shown in Figure 3.. 

 

Fig -3: Increase in Driver Strength Response  

Method 5: Insert Buffers-Sometimes buffers can be inserted to 

increase the speed or drive the net. This can be used when the 

net is large enough for only one gate and putting a buffer would 

increase its driving capabilities, for larger nets the combination 

of two inverters is more suitable as discussed in method 2. The 

methods of inserting buffers are shown in Figure 4. 

 Fig -4: Insert Buffer Response  

Method 6: Adjust cell positioning in layout-Let us assume the 

scenario where there are two flops which are separated by a 

considerable distance of 100um. The net finds it tough to drive 

this, and a buffer must be inserted. The positioning of the buffer 

is also especially important. This can be depicted in Figure 5.. 

In the original circuit, the buffer is positioned at 900 um from 

the first flop and in the second case, midway between the flops 

at 500 um. If we position the buffer the way shown in the 

rearranged circuit, we can reduce the overall delay between the 

two flops when compared to case 1. 

 

Fig -5: Method of rearranging buffer positioning 

Method 7: Clock skew-Delaying the clock to the endpoint can 

relax the path's timings, but one must ensure that the 

downstream paths are not critical. 

4.2 Methods To Fix HoldViolations 

Method 1: By adding delays-Adding buffers/inverter 

cells/delay cells can help fix the hold violations. The hold 

violations path may have its start point or end point in other 

setup violated paths. So, the delay cells must be carefully added 

here. 

Method 2: Decreasing size of certain cells in data path-It is 

better to decrease the size of cells nearer to the capture flop 

because there is less likelihood of affecting other paths and 

causing new errors. 

\section{Setup and Hold Violations} 

\par Setup and hold violations are two of the more impsortant 

violations that are found during a static timing analysis for a 

SoC. In general, the setup and hold analysis ensure that the 

correct data value is taken at the right clock edge to prevent any 

discrepancies in the data latched. 

5. SETUP VIOLATIONS 

The setup time is the minimum duration before the 

clock's active edge during which the data must remain stable to 

ensure proper latching. Failure to adhere to this requirement 

may result in incorrect data capture, commonly referred to as a 

setup violation. 

5.1 Reason for Setup Violation 

In Figure 6, when the D input is 0 and the CLK signal 

is in a LOW state, the input D is transferred to node Z resulting 

in specific values for W, Y, and Z. This process involves a 

delay as the data travels through the path D-W-X-Y-Z, known 

as the SETUP time.  

 

When the CLK signal transitions to a HIGH state, T1 

is disabled and T2 is enabled, activating the left-side latching 

circuit. This circuit captures the value at node Z and outputs the 

corresponding values (Q = 0 and Q' = 1). 
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It is indispensable for node Z to have a stable value by 

then. Any data sent before the setup time, as defined above, will 

produce a stable value at node Z. This defines the reason for the 

setup time within a flop. 

6. HOLD VIOLATIONS 

The term "hold time" refers to the minimum duration 

following the active edge of the clock during which data must 

remain stable. Failure to adhere to this requirement may result 

in inaccurate data being captured, referred to as a hold 

violation. It is important to note that both setup and hold times 

are evaluated in relation to the active clock edge exclusively. 

6.1 Reason for Hold Violation 

As previously mentioned, HOLD time is measured in 

relation to the active clock edge only. In Figure 3.5, input data 

D is provided to the inverter, or any other logic preceding 

transmission gate T1, and is incorporated into the flip-flop. The 

CLK and CLK BAR in Figure 3.6 regulate the operation of the 

transmission gates, following the rise of the CLK signal, after 

being processed through buffers and inverters. 

A delay exists between the CLK and CLK BAR 

signals, causing a delay in the switching of the transmission 

gate. It is important to keep a consistent value at the input to 

ensure stability at node W, which ultimately affects the output. 

This is why hold time is necessary within a flip-flop. 

An initial setup time is always present, while the hold 

time can vary between positive, zero, or negative values. As 

previously mentioned, there may be combinational logic 

preceding the first transmission gate in order to enable set-reset 

or scan functionality in the flip-flop, among other possibilities. 

This additional logic introduces a delay in the path of the input 

data D reaching the transmission gate, which in turn determines 

the hold time value. 

6.2 Methods to Fix Hold Violations 

Insert buffers or delay cells in the data path to increase 

the delay and ensure the data remains stable during the hold 

time. 

Care must be taken to add buffers in non-critical paths 

to avoid introducing new setup violations. Decrease the size of 

the cells in the data path to reduce the drive strength and 

increase the propagation delay. This method is effective when 

applied to cells closer to the capture flip-flop. Delay the clock 

signal at the launch flip-flop or advance the clock signal at the 

capture flip-flop. 

This adjustment ensures the data has enough time to 

stabilize before being captured. Use a flip-flop with a stronger 

drive strength for capturing the data signal to minimize the 

impact of noise and improve signal integrity. 

Strategically reposition buffers in the data path to 

balance the propagation delays. This can help in mitigating the 

effects of clock skew and high capacitance loads. Implement 

multi-stage buffers to gradually increase the delay in the data 

path without causing abrupt changes in signal timing.  

Optimize the process parameters and operating 

voltage to ensure consistent propagation delays across different 

PVT corners. 

Apply retiming techniques to redistribute the timing 

budget by relocating flip-flops in the design, balancing the hold 

and setup constraints. 

6.2 Automation in STA 

Automation plays a crucial role in enhancing the 

efficiency, accuracy, and scalability of Static Timing Analysis 

(STA). The integration of automation scripts and tools 

simplifies the STA process, reduces manual effort, and 

minimizes human errors. This section outlines the automation 

techniques employed in STA, focusing on the development and 

application of Perl, Python, and Flask scripts. 

6.2.1 Perl Scripts for Data Extraction and Analysis: 

Clock ID Comparison Script: 

Functionality: Compares clock ID reports by parsing CSV 

files and analyzing timing data. 

Output: Generates a summary report highlighting key metrics 

like median values, arrival windows, and performance 

variations. 

Benefits: Enhances the accuracy and efficiency of timing 

analysis by automating the comparison process. 

6.2.2 Python Scripts for Visualization and Reporting: 

Retimer Script: 

Purpose: Analyzes and visualizes slack and distance data for 

buses in electronic circuit designs. 

Features: Aggregates data, generates scatter plots, and 

highlights critical timing information with annotations. 

Practical Usage: Assists engineers in identifying optimization 

areas and documenting analysis efforts through clear 

visualizations. 

6.2.3 Hyperlink Script: 

http://www.ijsrem.com/
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Functionality: Extracts critical timing information from 

reports and generates HTML links for detailed analysis. 

Output: Provides a structured overview of timing violations, 

facilitating efficient troubleshooting and resolution. 

Flask for Web-Based Interfaces: 

Implementation: Flask is used to create web-based interfaces 

for visualizing STA results and interacting with timing data. 

Features: Dynamic generation of HTML reports, interactive 

data visualization, and user-friendly navigation through timing 

analysis results. 

Benefits: Enhances accessibility and usability of STA results, 

allowing engineers to quickly assess and address timing issues. 

Benefits of Automation in STA 

Increased Efficiency: Automation reduces the manual effort 

involved in STA, allowing engineers to focus on more strategic 

tasks. 

Improved Accuracy: Automated scripts minimize human 

errors, ensuring more accurate and reliable timing analysis 

results. 

Scalability: Automation enables the handling of complex and 

large-scale designs, ensuring timely delivery of reliable timing 

analysis results. 

Enhanced Visualization: Automated visualization tools 

provide clear and detailed insights into timing performance, 

aiding in the identification and resolution of timing issues. 

Resource Optimization: Automation optimizes the use of 

computational resources, reducing operational costs and 

improving overall productivity. 

7. CONCLUSIONS 

 

In this study, we explored the significance and methodology of 

Static Timing Analysis (STA) for high-performance GPU 

cores. The architectural complexity of GPU designs, coupled 

with diverse operating conditions, necessitates rigorous timing 

analysis to ensure reliability and efficiency. STA evaluates the 

timing behavior of these designs under various scenarios, 

identifying and mitigating potential timing violations that could 

impact performance. 

We developed automation scripts using Perl, Python, and Flask 

to streamline the STA process. These scripts seamlessly 

integrate with existing STA tools, enhancing the overall 

efficiency and accuracy of timing analysis. By automating 

repetitive tasks and providing advanced visualization 

capabilities, these tools significantly reduce manual effort and 

minimize human errors. 

Our research addressed common timing issues such as setup 

and hold violations through various techniques, including 

voltage threshold swapping, buffer insertion, and clock 

pushing. Advanced crosstalk mitigation strategies were also 

implemented to maintain signal integrity and prevent timing 

violations. The results demonstrated substantial improvements 

in timing performance, with a significant reduction in the 

number of paths violating timing constraints. 

The effective application of Engineering Change Orders (ECO) 

further optimized the design, achieving timing closure without 

requiring complete redesigns. This study underscores the 

critical importance of STA in ensuring the reliability, 

performance, and efficiency of high-performance GPU 

designs. The findings provide valuable insights for engineers 

and designers, contributing to the advancement of STA 

practices in the semiconductor industry and driving further 

innovations in GPU design and optimization techniques. 
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