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Abstract - In recent years, the field of automated mobility 

has made significant advancements in self-driving vehicle 

technology. Even so, navigating complex environments such as 

roads with unexpected pedestrian traffic, uneven surfaces, 

unforeseen obstacles, and narrow pathways remains 

challenging. This paper focuses on an innovative AI-based 

solution to address the unique challenges of autonomous 

driving in Indian environments. Built on Intel's CARLA, an 

open-source autonomous driving simulator. Its focus on 

simulation-based testing ensures the system's reliability in 

diverse scenarios before real-world deployment, tailored 

specifically for Indian roads. The system utilizes reinforcement 

learning for optimal driving strategies with minimal data, 

computer vision for road signs and obstacle detection, and 

context-aware navigation to adapt to varying traffic conditions. 

Offering a promising solution for autonomous driving in 

regions with similar road conditions by being cost-effective, 

scalable, and adaptable. 
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1. INTRODUCTION 

 
Most current automated driving systems are designed for 

well-structured environments and struggle with the 
unpredictable conditions found on roads like those in India. 
Irregular traffic patterns, unmarked lanes, unexpected obstacles, 
and diverse driving behaviors pose challenges that existing 
systems aren’t equipped to handle. In this work, we aim to 
address these gaps by developing a simulation-based testing 
setup focused on navigating such complex scenarios and 
evaluating different approaches to more adaptable and resilient 
driving systems.  

1.1 Background and Context 

One of the most demanding challenges in real-world 
navigation involves guiding vehicles through densely populated 
city environments. These areas are filled with complex 
situations such as busy intersections with multiple moving 
vehicles, the need to recognize various road signals and 
markings, and the requirement to respond to both routine and 
unexpected events such as sudden pedestrian movement, or 
reckless drivers. Navigating these scenarios often involves 
balancing competing demands, like deciding how to slow down 
safely for a pedestrian without risking a rear-end collision from 
a vehicle behind. 

Progress in this field is often slowed by the high costs and 
logistical hurdles involved in testing on actual roads. Operating 
even a single test vehicle demands significant resources, and 
such limited setups rarely provide enough real-world variety to 

cover the wide range of unusual or rare situations needed for a 
comprehensive system check. 

To address these constraints, simulated environments have 
become a practical and safe alternative. They allow for repeated 
trials in complex conditions without the risk and expense of real-
world deployment. Tools like CARLA offer flexible platforms 
for building and testing virtual driving systems from the ground 
up. In this project, we use CARLA to explore the effectiveness 
of different driving strategies by creating a series of increasingly 
challenging navigation scenarios. By altering traffic levels, 
route structures, and weather or lighting conditions, we assess 
how various approaches ranging from rule-based pipelines to 
behavior-driven methods that perform across a range of urban 
challenges. 

1.2 Problem Statement 

Vehicles designed to drive themselves have shown strong 
performance in controlled settings like highways and well-
marked city roads. However, once placed in the kinds of 
conditions found in many real-world locations, such as those 
common in Indian cities and towns often fall short. These 
environments are filled with unpredictable elements: uneven 
roads, potholes, unmarked lanes, stray animals, pedestrians 
weaving through traffic, and narrow or cluttered paths. The 
constantly shifting nature of such settings makes it difficult for 
most existing systems to respond with the flexibility and caution 
required. As a result, these vehicles are not yet ready for broad 
use in places where the road environment cannot be guaranteed 
to follow a set pattern. 

1.3 Objective 

This project aims to improve the reliability and adaptability 
of self-driving systems in real-world, unstructured 
environments like irregular roads, potholes, narrow lanes, and 
unpredictable traffic. By analyzing common navigation 
challenges and reviewing gaps in current solutions, the project 
proposes a modular software design focused on obstacle 
handling, route planning, and responsive movement strategies. 
Using simulation platforms like CARLA, the system will be 
tested across varied conditions to assess its performance and 
identify areas for enhancement. The ultimate goal is to build a 
robust virtual testing framework that supports the development 
of safer and more practical autonomous navigation in complex 
road settings. 

2. LITERATURE REVIEW 

2.1 Existing Systems 

Several prominent automotive companies and technology 

providers have developed advanced systems to support 

autonomous driving, each focusing on different strategies and 

components to enhance safety, perception, and navigation 

across a range of driving environments. 
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Tesla (Autopilot and Full Self-Driving): Tesla’s driver-

assist technologies are among the most recognized in the 

industry. The Autopilot system offers features such as adaptive 

cruise control and lane centering, relying on a network of 

cameras, ultrasonic sensors, and radar to assist with highway 

driving. Tesla's Full Self-Driving (FSD) system is designed for 

more intricate scenarios, particularly in urban areas. It includes 

functions like automatic lane changes, stop sign and traffic light 

recognition, and route navigation through city streets. The 

system is powered by Tesla’s in-house processing hardware, 

which handles visual data from multiple cameras to interpret 

surroundings and support driving decisions. 

Waymo (Alphabet Inc.): Waymo has developed one of the 

most sophisticated autonomous mobility platforms to date. Its 

vehicles are outfitted with a combination of LiDAR, radar, and 

high-resolution cameras to capture a complete 360-degree view 

of their environment. The system operates using detailed pre-

mapped data of its deployment areas, covering lane structures, 

intersections, and traffic infrastructure. Waymo's decision-

making capability draws from constant updates and analysis of 

surrounding objects, allowing it to anticipate behaviour 

patterns of other road users, including cyclists and pedestrians. 

General Motors (Super Cruise and Ultra Cruise): 

General Motors offers Super Cruise as a highway-focused 

hands-free driving solution. It leverages LiDAR-based map 

data, GPS positioning, cameras, and radar to manage speed, 

lane discipline, and vehicle following on selected routes. The 

system includes real-time driver monitoring for added safety. 

Ultra Cruise, GM’s upcoming system, is expected to extend 

beyond highways and cover a larger percentage of real-world 

conditions, including city driving. It aims to integrate deeper 

sensor integration and more expansive map data for improved 

decision-making across varied driving conditions. 

Mobileye (Intel): Mobileye specializes in vision-based 

solutions for both partial and full automation. Its systems 

primarily use camera inputs processed by EyeQ chips to 

interpret surroundings, including lane boundaries, vehicles, and 

pedestrians. One of Mobileye’s key offerings is its REM (Road 

Experience Management) system, which builds detailed maps 

using data collected from everyday drivers. This enables more 

accurate localization and better adaptability in different road 

settings. Additionally, Mobileye promotes a mathematically 

grounded model for vehicle behaviour to ensure safety in 

unpredictable traffic situations. 

NVIDIA Drive: NVIDIA provides an open development 

platform combining high-performance computing with 

modular tools for vehicle autonomy. It’s hardware, such as 

Drive AGX, and accompanying software stack, Drive Works, 

support perception, mapping, decision-making, and vehicle 

control tasks. NVIDIA also emphasizes simulation for 

developing and testing navigation strategies in diverse and 

high-risk scenarios, helping teams to iterate and improve 

without real-world deployment. This platform enables 

customized development suited to varying levels of vehicle 

autonomy. 

2.2 Gaps and Challenges 

Current autonomous systems still face significant 

challenges in unpredictable environments. Many of these 

technologies rely on detailed maps for navigation, which limits 

their functionality in areas that are either poorly mapped or 

frequently changing, such as construction zones or rural roads. 

These systems struggle to detect irregular obstacles like 

animals, pedestrians, or debris, particularly in low-visibility 

conditions or cluttered surroundings. Poor road conditions, 

such as gravel or faded lane markings, further reduce the 

effectiveness of these systems, making them less reliable in 

real-world scenarios. 

Navigating tight spaces like narrow streets or parking areas 

remains a difficult task for many autonomous platforms, which 

are primarily optimized for highways or well-marked city 

roads. In rapidly changing environments, the system’s ability 

to respond quickly is hindered by the high data demands from 

multiple sensors, slowing down decision-making when 

immediate action is needed. While advanced sensors like 

LiDAR provide precise measurements, their high costs limit 

widespread adoption, whereas more affordable camera-based 

solutions often fall short in challenging situations. 

2.3 Proposed Approach 

Our approach combines simulation techniques, data-driven 

modeling, and the integration of multiple sensor inputs to 

develop a reliable and adaptable system. We use CARLA to 

evaluate the effectiveness of three distinct approaches to 

autonomous driving: modular pipeline, imitation learning, and 

reinforcement learning. In CARLA, we create controlled 

navigation scenarios with specific goals, progressively 

increasing their difficulty. These scenarios vary in terms of 

route complexity, traffic presence, and environmental 

conditions. The outcomes of these experiments provide 

valuable insights into how each approach performs under 

different circumstances. 

 

3. SYSTEM ARCHITECTURE 

 

 
Fig -1: System Architecture 
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4. SIMULATION 

 
CARLA is a high-fidelity simulation platform designed for 

testing self-driving technologies in virtual urban settings. 
Developed using Unreal Engine, it offers detailed environments 
with configurable parameters such as weather conditions, 
lighting, and traffic flow. A range of built-in towns and road 
layouts are available, supporting diverse scenarios that mirror 
real-world traffic dynamics. 

In this study, CARLA was utilized to replicate driving 
environments that include moving vehicles, complex road 
geometries, and unexpected elements like pedestrians and 
changes in surface conditions. Virtual sensors such as cameras, 
LiDAR, and GPS modules were attached to the vehicle models 
to enable data collection for tasks involving perception, 
positioning, and movement control. 

The simulation framework supports interaction through 
Python and integrates well with robotics middleware and 
machine learning tools. This made it possible to implement, test, 
and refine driving logic in a repeatable and risk-free setting, 
while evaluating system performance across various 
environmental and traffic challenges. 

 

 
Fig -2: CARLA Sensors 

 

5. IMPLEMENTATION 
 

5.1 System Overview 

This study makes use of CARLA, an advanced urban driving 
simulator designed to support the development and assessment 
of self-driving technologies in realistic environments. CARLA 
replicates cityscapes with considerable detail, including diverse 
road structures, pedestrians, vehicles, and varying weather 
conditions. To ensure a consistent framework for comparison, 
all methods under evaluation are designed to operate under the 
same setup—receiving visual data from a forward-facing 
camera and a navigation cue indicating the intended turn 
direction. Their task is to process this information and output 
decisions for steering, acceleration, and braking. 

The simulator acts as the testing ground for three distinct 
approaches to autonomous navigation: a classical rules-based 
system, a model based on learning from driving demonstrations, 
and a method that refines behavior through repeated trial and 
feedback. Despite their differences in internal logic, all 
approaches share a common objective: to operate a vehicle 
safely and efficiently under a wide range of traffic and 
environmental conditions. The shared interface and structured 
layout of the simulation provide a level playing field, allowing 
for direct performance comparisons and deeper insight into each 
method’s strengths and shortcomings. 

5.2 Simulation Setup 

The evaluation is carried out in two virtual towns created 
within the CARLA simulator. Town 1 is used exclusively for 
training, while Town 2 is reserved for testing. The two towns 
differ in layout, complexity, and road topology, enabling a clear 

separation between familiar and unfamiliar driving conditions. 
This distinction is critical in assessing whether a system can 
function reliably in areas beyond those it was originally exposed 
to. 

To introduce environmental diversity, five different weather 
settings are included: clear daylight, overcast skies, wet roads, 
intense rainfall, and sunset with light rain. These variations 
simulate real-world driving conditions that affect visibility and 
road behaviour. Additionally, four levels of task complexity are 
defined ranging from simple straight-line driving to full city 
navigation that includes avoiding pedestrians and other vehicles. 
Each task is tested multiple times, and the vehicle must reach its 
destination within a time window calculated from an expected 
average speed. 

The simulation setup also ensures the presence of dynamic 
elements. Vehicles and pedestrians appear unpredictably, 
especially in the more complex scenarios. These variables create 
challenges similar to those faced in actual urban driving, where 
road users do not always behave in predictable or orderly ways. 
This setup ensures that the systems are not only capable of basic 
navigation but also of handling unpredictable events. 

 

5.3 Approach 

The first approach follows a modular architecture that 
divides the driving task into three stages: detecting elements in 
the environment, choosing how to act based on those elements, 
and issuing movement instructions. The perception stage uses 
trained models to recognize features like lanes and intersections. 
A set of defined rules then decides the appropriate course of 
action, whether to continue forward, turn, or stop. Finally, the 
control system adjusts the vehicle’s motion using tuning 
techniques that ensure smooth operation. While this method is 
transparent and can be inspected easily, it relies heavily on the 
accuracy of its visual recognition models and the completeness 
of its predefined rules. 

The second method uses recorded examples of human 
driving to learn how to respond to different situations. A large 
collection of driving data is gathered from a human-operated 
vehicle in the simulator. This data is then used to train a network 
to associate visual input and navigation cues with correct driving 
responses. To prepare the system for a range of scenarios, the 
images are altered to simulate changes in lighting, blur, and 
obstruction making it less likely to be thrown off by weather 
changes or visual noise. The goal here is not to manually specify 
how to drive but to teach the system through observation and 
exposure. 

The final method attempts to improve performance through 
self-guided exploration. The system begins with no prior 
knowledge and repeatedly attempts to complete navigation 
tasks. Feedback is given in the form of numerical scores 
encouraging safe and efficient driving and penalizing mistakes 
like collisions or driving off the road. Over time, the system 
adjusts its decisions to favor behaviors that lead to higher scores. 
However, because the system must discover good behavior 
through trial alone, and because useful feedback is rare in many 
situations, this method can be slow to develop effective 
strategies. In this study, the system was trained for the 
equivalent of millions of driving steps to allow patterns to 
emerge. 

6. PERFORMANCE EVALUATION 

 
Criteria used to measure performance, focuses not only on 

task completion but also on the vehicle’s ability to adhere to 
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road rules and avoid hazards. The simulation scenarios are 
structured to test the systems across a spectrum of challenges, 
from routine drives to complex urban navigation involving 
unpredictable elements.  

 

6.1 Methodology 

The main indicator of success is whether the vehicle reaches 
its destination within the time limit for each test run. This 
success rate reflects how reliably each approach completes 
assigned tasks under different weather conditions and in both 
towns. Additional observations such as collisions, veering off 
the road, and crossing lane markings are also recorded. These 
help to assess the safety and rule compliance of each method, 
which are vital for real-world driving. 

Testing each system in a town it has never encountered 
before along with unfamiliar weather settings, offers a strong 
measure of adaptability. A method that performs well in this 
context can be considered more likely to handle unforeseen 
situations outside of the training environment. This setup 
therefore moves beyond simple benchmarking to test how 
broadly applicable and dependable each strategy is. 

 

6.2 Simulation Scenario Performance 

The classical modular approach performs well in 
straightforward conditions, particularly in the town used during 
training. It handles tasks like straight-line driving and single 
turns with a high degree of accuracy. However, in the second 
town and during poor weather, performance declines. This is 
due to its reliance on segmentation and rule systems that are not 
flexible enough to deal with novel layouts or visual noise. 

The model trained on driving demonstrations shows solid 
results across a broader set of challenges. It navigates complex 
routes more consistently than the modular system and is less 
affected by lighting and weather variations. This robustness 
comes from the variety introduced during its training phase. 
Nevertheless, its performance still dips slightly when placed in 
the second town, suggesting that while it adapts well to visual 
changes, it may be sensitive to unfamiliar road layouts. 

The trial-based method performs the weakest. In nearly all 
scenarios, the vehicle fails to reach its target, either by becoming 
stuck, colliding with obstacles, or driving off course. Even after 
extensive training, this method struggles with the structured 
nature of urban driving. Its reward system, designed to 
encourage progress and penalize unsafe behavior, often leads to 
confusing or ineffective results, especially when feedback is 
delayed or ambiguous. 

7. RESULT 
7.1 Analysis 

Comparing the three systems reveals both the potential and 
the current limitations of automated driving technologies in 
controlled virtual settings. The modular system offers clarity 
and performs reliably in basic conditions. However, its rule-
bound nature makes it brittle in the face of unfamiliar situations. 
It is suited to environments where layout and rules are well 
understood in advance. 

The second method offers a more flexible solution. By 
learning from example, it avoids the need for hand-written rules 
and adapts better to changes in the environment. Its performance 
in more difficult tasks and under different weather conditions 
supports this conclusion. Still, it falls short in entirely new areas, 

revealing a tendency to learn specific routes or visual patterns 
rather than more abstract strategies. 

The final method is promising in theory but does not deliver 
strong results here. The learning process is slow, and even after 
substantial time spent interacting with the simulation, the 
system remains unreliable. It frequently fails to make 
meaningful progress toward its goals and struggles with basic 
tasks like avoiding collisions. This suggests that improvements 
in reward design, training strategy, or input interpretation will 
be needed before such methods can be considered viable. 

 

Table -1: Quantitative Evaluation 
  

 Training 
Conditions 

New Town New 
Weather 

New Town 
and 

Weather 

Straight 98 97 100 80 

One Turn 89 61 95 50 

Navigation 86 40 94 47 

Nav. 
Dynamic 

83 38 89 44 

 

7.2 Limitations and Future Developments 

Despite the detailed environment and structured testing 
process provided by CARLA, none of the current systems are 
able to consistently handle the full range of challenges 
presented. Even the most successful approach falls short when 
asked to navigate unfamiliar roads under poor visibility. This 
points to a broader issue: while current methods can be tuned to 
perform well in known settings, they are still far from being 
fully adaptable or universally reliable. 

Future developments should explore techniques that make 
better use of past experiences over time, such as models that 
remember sequences of actions or changes in the environment. 
Including different types of input such as depth estimation or 
external signals like GPS could also improve situational 
awareness. Additionally, the simulation itself could be 
expanded to include a wider variety of locations, interactions, 
and unpredictable behavior from other road users. Addressing 
these areas will be crucial for advancing the next generation of 
vehicle autonomy. 

8. CONCLUSIONS 

 
This work introduces a comprehensive simulation platform 

designed for the study and advancement of self-driving 

systems. Beyond the core software framework and protocols, 

the project makes available a rich set of digital resources 

custom-built for this environment can be reused and adapted 

for a variety of research and development purposes. The 

simulator has been employed to evaluate three different 

strategies for vehicle autonomy: a structured, rule-based 

architecture; a model shaped through behavioral observation; 

and another developed through iterative learning driven by 

outcomes. Each of these methods was tested within urban 

layouts populated with both vehicular and pedestrian traffic, 

providing a realistic and controlled setting to assess decision-

making and navigation capabilities. By facilitating in-depth 

diagnostics and performance reviews, the simulator offers 

valuable insights into system limitations and design challenges, 

laying the groundwork for future enhancements. 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 05 | May - 2025                             SJIF Rating: 8.586                                     ISSN: 2582-3930                                                                                                 

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM47285                                               |        Page 5 
 

 

REFERENCES 

 
1. CARLA, "CARLA Simulator," [Online]. Available: 

https://carla.org 

2. Li, X., and Wong, J. “Road Quality Detection in Autonomous 

Vehicles Using Convolutional Neural Networks,” IEEE 

Transactions on Intelligent Transportation Systems, vol. 12, 6, 

2021, pp. 481-492 

3. An, B., and Xiao, L. “Enhanced Vision-Based Obstacle Detection 

for Real-Time Autonomous Navigation,” International Journal of 

Autonomous Systems, vol. 10, 8, 2021, pp. 381-393 

4. Zhu, T., and Li, W. “Design and Implementation of Simulated Road 

Conditions for Autonomous Vehicles,” Computers in Industry, vol. 

45, 12, 2021, pp. 310-325 

5. H. A. Ignatious, H. El Sayed, M. Khan, “An overview of sensors in 

autonomous vehicles,” Procedia Computer Science, vol. 198, no. 

2021, pp. 736–741, 2021 

6. J. Alfred Daniel, C. Chandru Vignesh, B. A. Muthu, R. Senthil 

Kumar, C. B. Sivaparthipan, C. E. M. Marin, “Fully convolutional 

neural networks for LIDAR–camera fusion for pedestrian detection 

in autonomous vehicle,” Multimedia Tools and Applications, vol. 

82, no. 16, pp. 1–24, 2023 

7. Bauer, Thomas, et al. "Reference Architectures for Automotive 

Software." Reference Architectures for Critical Domains: 

Industrial Uses and Impacts. Cham: Springer International 

Publishing, 2022. 73-111 

8. D. Parekh, N. Poddar, A. Rajpurkar, M. Chahal, N. Kumar, G. P. 

Joshi, et al., “A review on autonomous vehicles: Progress, methods 

and challenges,” Electronics, vol. 11, no. 14, p. 2162, 2022 

9. Dekkati, Sreekanth. "Automotive Software Engineering: Real-

World Necessity and Significance." Engineering International 10.1 

(2022): 33-44 

10. Saha, Sujoy Kumar. "Past, Present and Future of Automotive 

Software Engineering." Quest, Journal of Research in Mechanical 

Engineering 8 (2022): 29-36 

11. J. Alfred Daniel, C. Chandru Vignesh, B. A. Muthu, R. Senthil 

Kumar, C. B. Sivaparthipan, C. E. M. Marin, “Fully convolutional 

neural networks for LIDAR–camera fusion for pedestrian detection 

in autonomous vehicle,” Multimedia Tools and Applications, vol. 

82, no. 16, pp. 1–24, 2023 

12. Tengilimoglu, O. Carsten, Z. Wadud, “Implications of automated 

vehicles for physical road environment: A comprehensive review,” 

Transportation Research Part E: Logistics and Transportation 

Review, vol. 169, p.102989, 2023 

 

 

 

http://www.ijsrem.com/

