Stock Market Prediction using Machine Learning

Miss.Pooja K N ¹, Thippeswamy M B ²

¹Assistant Professor, Department of MCA, BIET, Davanagere

² Student,4th Semester MCA, Department of MCA, BIET, Davanagere

Abstract

The stock market is fundamentally unstable and subject to a variety of unpredictable influences, such as global economic occurrences, political actions, investor attitudes, and news specific to companies. Accurately forecasting stock prices has historically been one of the most difficult challenges in the financial sector. Nevertheless, with the emergence of sophisticated data analytics and machine learning methodologies, it has become feasible to examine extensive amounts of stock market data and discern significant patterns that can aid in predictions. This project introduces a machine learning-driven system for stock market forecasting, which seeks to assist investors, financial analysts, and traders in making well-informed choices. The system utilizes historical stock price information, technical indicators, and, if desired, sentiment analysis derived from financial news and social media to anticipate future stock prices or price fluctuations. A range of supervised learning algorithms, including Linear Regression, Support Vector Machines (SVM), Random Forest, and Long Short-Term Memory (LSTM) networks, have been investigated and applied. These models are assessed based on their accuracy, precision, and capacity to generalize on previously unseen data. The proposed system comprises several modules, including data collection and preprocessing, feature extraction, model training, prediction, and result visualization. It is crafted to be scalable, efficient, and responsive to evolving market dynamics by continuously adapting to newly acquired data. The effectiveness of each machine learning model is compared using pertinent performance metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R2 Score.

I.Introduction

In the digital era, social media platforms like Facebook, Twitter (X), Instagram, and Reddit have revolutionized the manner in which individuals communicate, disseminate information, articulate opinions, and foster communities. These platforms produce enormous quantities of user-generated

content second, encompassing posts, every comments, likes, shares, images, and videos. Although social media has certainly facilitated quicker information sharing and worldwide connectivity, it also presents numerous challenges the most significant being anomalous behavior, which includes cyberbullying, spamming, misinformation, fake accounts, hate speech, phishing

links, extremist propaganda, and organized disinformation campaigns.

Anomalies within social media are characterized as patterns or behaviors that markedly diverge from the standard. Such anomalies may be malicious or indicative of suspicious activities, rendering them a vital concern for platform moderators, governmental bodies, and cybersecurity teams. For example, abrupt increases in tweet volumes featuring similar hashtags could imply bot activity or coordinated propaganda, whereas an individual account that rapidly sends messages to unrelated users might signify spam or phishing attempts.

The demand for an intelligent and automated system to detect these anomalies has surged significantly. Manual moderation has become impractical due to the staggering volume of social media data. This highlights the significance of Machine Learning (ML). ML provides scalable and data-driven methodologies to identify patterns and flag irregularities with high accuracy, learning from extensive datasets and continuously evolving to address new types of anomalies.

This project aims to design and develop a machine learning-based anomaly detection system tailored for social media platforms. The goal is to establish a model capable of analyzing real-time or historical social media data to autonomously detect abnormal behavior or content, with minimal human oversight. The system utilizes algorithms such as Support Vector Machines (SVM) and Decision Trees.

II.RELATED WORK

Jensen (1978) The Efficient Market Hypothesis (E MH), which maintains that asset prices accurately reflect all available information at any given time, was born out of Fama's groundbreaking work on efficient capital markets from 1970.

This idea has been explored and expanded upon in countless research since it was published, adding t o the wealth of financial economics literature.

Jensen (1978) offered a thorough analysis of empir ical tests of the EMH after Fama, contending that n o investing strategy could reliably beat the market

Valavanis (2009) Since the 1990s, there has been a lot of interest in using artificial intelligence meth ods, especially artificial neural networks (ANNs), to anticipate financial time series.

In their thorough analysis of ANN use in forecasting, Zhang, Patuwo, and Hu (1998) emphasized the benefits of ANNs in identifying nonlinear correlations and patterns that conventional statistical mode ls might overlook [2].

V. K., & Soman, K. P. (2018).

on a risk-adjusted basis [1].

With advances in computational power and data av ailability, researchers began adopting machine lear ning methods, which can handle large amounts of data and model complex, nonlinear relationships. S upport vector machines (SVM), artificial neural ne tworks (ANN), decision trees, and random forests have all been used to predict stock prices and mark et movements. Over the past 20 years, the applicati on of machine learning techniques in stock market prediction has grown rapidly. Early approaches pri marily relied on traditional statistical and econome tric models, such as autoregressive integrated movi

ng average (ARIMA) and generalized autoregressi ve conditional heteroskedasticity (GARCH) model s, which were useful but frequently failed to captur e the highly nonlinear and volatile nature of financ ial time series data [3].

Zhang, Eddy Patuwo, & Hu, 1998

Because financial markets are intricate, dynamic, a nd nonlinear, forecasting changes in stock prices h as long been a difficult task. Although they have be en widely utilized in financial forecasting, traditio nal statistical techniques like generalized autoregre ssive conditional heteroskedasticity (GARCH) mo dels and autoregressive integrated moving average (ARIMA) sometimes fall short in capturing nonlin ear patterns and quick market changes. Machine lea rning methods have become effective tools for stock market prediction in order to overcome these constraints.

The efficiency of artificial neural networks (ANNs) in simulating the nonlinear relationships present in financial time series data was shown in early research (Zhang, Eddy Patuwo, & Hu, 1998) [4].

Kim, 2003; Kara et al., 2011

Because of the possible financial gains and the co mplicated, nonlinear, and noisy nature of market d ata, stock price prediction has long drawn a lot of s cholarly interest.

While statistical and econometric models like gene ralized autoregressive conditional heteroskedasticit y (GARCH) and autoregressive integrated moving average (ARIMA) were useful, they frequently fail ed to capture temporal dependencies and nonlinear ity in financial time series. Machine learning techniques have been extensively investigated for stock market prediction due to the availability of largesc

ale data and improvements in processing power.

The efficiency of artificial neural networks (ANNs) in simulating intricate, nonlinear relationships in financial data was first shown by Zhang, Eddy Pat uwo, and Hu (1998).

Likewise, random forest models and support vector machines (SVM) have been used with differing degrees of effectiveness (Kim, 2003; Kara et al., 2011) [5].

Murphy, 1999

Financial research has placed a lot of emphasis on stock market prediction because of its intrinsic co mplexity and practical significance.

Prediction techniques are often divided into two pr imary categories: technical analysis and fundament al analysis.

A company's intrinsic worth is assessed by fundam ental analysis using financial data, economic indic ators, and qualitative elements including industry c ircumstances and managerial caliber (Graham & D odd, 1934).

This strategy makes the assumption that, given the se fundamentals, stock prices will eventually conv erge to their actual value.

Technical analysis, on the other hand, is predicated on the idea that price patterns tend to recur over ti me and examines past price movements and trade volumes to predict future price trends (Murphy, 19 99).

In this regard, a variety of technical indicators hav e been employed extensively, including Bollinger bands, relative strength index (RSI), and moving a verages. Financial research has placed a lot of emp hasis on stock market prediction because of its intr insic complexity and practical significance.

Prediction techniques are often divided into two pr

imary categories: technical analysis and fundament al analysis.

A company's intrinsic worth is assessed by fundam ental analysis using financial data, economic indic ators, and qualitative elements including industry c ircumstances and managerial caliber (Graham & D odd, 1934).

This strategy makes the assumption that, given the se fundamentals, stock prices will eventually conv erge to their actual value.

Technical analysis, on the other hand, is predicated on the idea that price patterns tend to recur over ti me and examines past price movements and trade volumes to predict future price trends (Murphy, 19 99) [6].

Graham & Dodd, 1934

Technical analysis and fundamental analysis have historically been the two main analytical methods used in stock market prediction. By examining fina cial accounts, macroeconomic data, and qualitive e lements like market conditions and manament effic acy, fundamental analysis seeks to determine a company's inherent worth (Graham & Dodd, 1934). This strategy is predicated on the idea that stock prices eventually reflect their intrinsic

value.

In contrast, technical analysis looks at past trading volumes and price movements to find trends and p atterns that can be used to predict future prices (M urphy, 1999).

Traers and analysts have made substantial chaine l earning and artificial intelligence techniques into st ock market prediction as computer

cal techniques (Kim, 2003; Kara et al., 2011) [7].

Kim, 2003; Kara et al., 2011

Because of its economic importance and the inhere nt difficulties brought on by the nonlinear and unpr edictable structure of financial data, stock market p rediction has long been a topic of research.

Although they have been widely employed, traditi onal methods, such as time series models like GAR CH and ARIMA, frequently fall short in capturing l ongterm dependencies and complicated nonlinear l inkages in stock price movements.

Machine learning models have become more and more popular for stock prediction jobs as a result o f the development of computing techniques and the accessibility of extensive financial data.

Because they can identify intricate patterns in histo rical data, early machine learning techniques like s upport vector machines (SVM), decision trees, and artificial neural networks (ANN) have outperform ed simply statistical models (Kim, 2003; Kara et al., 2011) [8].

Kim, 2003

With the ability to guide investment choices and c ontrol risks, stock market prediction is a challengin g and extensively researched topic in financial rese arch.

Historically, forecasting methods have depended on statistical models like generalized autoregressive conditional heteroskedasticity (GARCH) and autoregressive integrated moving average (ARIMA). Although these techniques have proven helpful in simulating volatility and linear relationships, they frequently fall short in capturing the intricate nonlinear dynamics and sudden shifts that define financial markets.

Machine learning techniques have being used more

and more to increase prediction accuracy as computational intelligence has grown.

Early research showed that artificial neural networ ks (ANN) could be used to describe chaotic and no nlinear patterns found in financial time series (Zha ng, Eddy Patuwo, & Hu, 1998).

Due to its strong performance in both regression a nd classification tasks, support vector machines (S VM) have also been used extensively for stock mar ket prediction (Kim, 2003) [9].

III.Methodology.

3.1 Information Gathering

Reputable websites like Yahoo Finance, Google Finance, and official stock exchange websites (such the NSE, BSE, and NYSE) are used to gather historical stock market data.

Daily records of open, high, low, and close prices (OHLC) as well as trade volume are often included in the dataset.

External inputs like economic indicators or sentim ent data (news, tweets) are sometimes collected in addition to technical indicators (moving averages,

RSI, MACD). 3.2 Preprocessing Data

To deal with missing numbers, outliers, and other discrepancies, the gathered data is first cleansed. Data normalization or scaling (such as Z-score normalization or MinMax scaling) is frequently used for time series prediction in order to enhance model performance.

After that, the data is converted into a supervised l earning format, where input sequences, or features, are mapped to labels for price movement or prosp ective stock values.

3.3 Engineering Features

To improve the forecasting ability of the model, pertinent features are chosen or designed. Frequently utilized characteristics consist of: Technical indicators include Bollinger Bands, RSI, MACD, and moving averages (EMA, SMA).

3.4 Development of Models

For prediction, a variety of deep learning or machine learning models can be used, including:Random Forest, Support Vector Machine (SVM), and XGB oost are examples of machine learning models.

IV.Technology used

Numerous technologies derived from statistics, ma chine learning, deep learning, and natural language processing (NLP) are used in stock market predict ion. These tools are used to examine past data, iden tify trends, and forecast upcoming price changes.

4.1Econometric and Statistical Technologis

Autoregressive Integrated Moving Average, or AR IMA, is a tool used for trend analysis and linear time series forecasting. Financial market volatility is frequently modeled and predicted using GARCH (Generalized Autoregressive Conditional Heteroske dasticity).

Exponential smoothing techniques are appropriate for trending and seasonal series.

Although these techniques are fundamental and us eful as standards, they have trouble with chaotic an d nonlinear patterns.

4.2 Support Vector Machine (SVM):

A useful tool for regression and price movement cl assification in machine learning technologies. For b oth regression and classification, Random Forest a

International Journal of Scientific Research in Engineering and Management (IJSREM)

SIIF Rating: 8.586 Volume: 09 Issue: 08 | Aug - 2025

nd Decision Trees are reliable ensemble techniques that provide interpretability and effective manage ment of feature interactions. High

performance models known as gradient boosting al gorithms (such as XGBoost and LightGBM) combi ne weak learners to create powerful predicting syst ems. For trend-

based classification tasks on smaller datasets, KNe arest Neighbors (KNN) is a straightforward yet effi cient method.

Usually, these algorithms need carefully thought,o ut characteristics like lagged prices, technical indic ators, and other derived information.

4.3 Technologies for Deep Learning

Shortterm temporal dependencies are captured by r ecurrent neural networks (RNNs), which are appro priate for sequential data. Long Short-Term Memory Networks (LSTM): A sophisticated variant of RNN, LSTM is frequently used to predic t stock prices by learning longterm dependencies in time series data.

Gated Recurrent Units (GRU): A more straightfor ward substitute for LSTM that performs similarly a nd has fewer parameters.

Adapted from image processing, convolutional neu ral networks (CNN) are used to identify local patte rns.

4.4 Sentiment analysis and natural language pr ocessing (NLP) Models for Sentiment Analysis: Examine news headlines, articles, and social media posts to determine the mood of the market and inv

Transformer

estors.

based Models (e.g., BERT, GPT): sophisticated nat ural language processing models that comprehend t he context and semantics of textual input, enabling improved sentiment and event

analysis.

Large amounts of textual data can be mined for ev ent, based signals using text mining and keyword e xtraction. Since news events and investor emotion c an have a big impact on stock movements, these te chnologies incorporate qualitative market signals.

4.5 Tools for Technical Analysis

Determine the direction of the trend and the levels of support and resistance using moving averages (SMA, EMA).

Relative Strength Index (RSI): A metric used to as sess overbought or oversold positions based on rec ent price fluctuations.

Moving Average Convergence Divergence,

or MACD, is a tool used for trend-

following and momentum indications.

Bolinger Bands: Assess possible breakouts and pri ce volatility.

Examine volume indicators to determine how stron gly prices are moving.

Both machine learning and deep learning models fr equently use technical indications.

4. 6 Ensemble and Hybrid Methods

Hybrid ARIMAML Models: To capture both linear and nonlinear trends, combine machine learning a nd linear statistical forecasting.

Ensemble Learning: To increase prediction accura cyand robustness, combine several models (such as bagging, boosting, and stacking).

IJSREM Le-Jeurnal

V.Result

Accuracy Of Decision Tree= 46.15384615384615

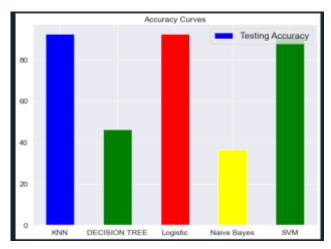
Accuracy Of KNN= 92.3076923076923

Accuracy Of Logistic Regreession= 92.3076923076923

Accuracy Of Naive Bayes= 36.36363636363637

Accuracy Of SVM= 90.9090909090909

Fig 5.3 Conclusion Matrix of KNN



The classification accuracy of several machine lear ning algorithms, most likely used for a stock mark et prediction task (or other compable classification challenge), is displayed in the image you supplied.

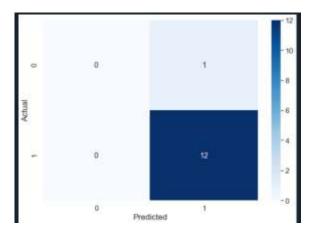


Fig 5.2 Accuracy curves

A crucial component of machine learning research is the evaluation of classification models, particula

rly in applications with binary outcomes. The confu sion matrix, which offers comprehensive insight in to the kinds of errors a model makesspecifically, fa lse positives and false negatives a commonly use d tool for performance evaluation.

Twelve positive cases were accurately predicted by the model.One negative case was incorrectly categ orized as positive.

There are neither false negatives nor true negatives

With poor performance for class 0 but great precisi on and recall for class 1, this suggests a bias towar d class 1 prediction.

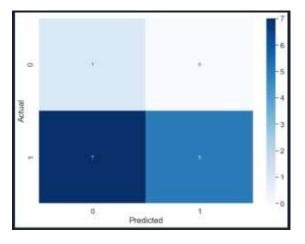
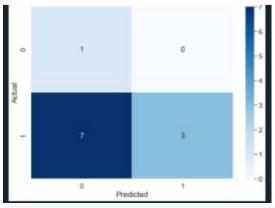


Fig 5.4 Conclusion Matrix of Decision

High False Negatives: Recall and sensitivity are gr eatly impacted by the model's failure to detect seve n true positive cases.

Since there are no false positives, the positive class has perfect precision.

Overall, the model has trouble accurately detecting class 1 and is biased toward class 0 prediction.



An essential component of evaluating classification models is confusion matrix analysis.

By quantifying true/false positives and negatives, i t offers profound insights into the advantages and disadvantages of predictive models.

Misclassifying positive cases (false negatives) can have major repercussions in a variety of real, world applications, including fraud detection, disease dia gnosis, and stock market prediction.

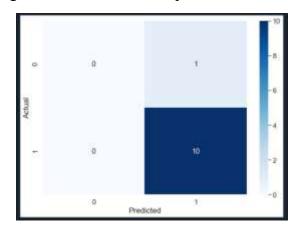


Fig 5.6 Conclusion Matrix of Naïve Bayes

Confusion matrices are widely used in the evaluation of classification algorithms, especially in binary classification problems. They provide a visual representation of the performance of machine learning models by detailing the counts of true positives, false positives, true negatives, and false negatives.

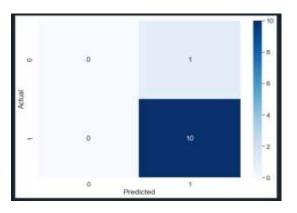


Fig 5.7 Conclusion Matrix of SVM

A common method for assessing classification performance, particularly in jobs involving imbalanced binary classification, is a confusion matrix.

For domains where one form of misclassification i s more expensive than the other, the matrix aids in identifying particular error types, such as false posi tives and false negatives.

References

- 1) Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383–417. **Fama, E. F.** (1970).
- 2) (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62. Surveying stock market forecasting techniques—Part II: Soft computing methods. Expert Systems with Applications, 36(3), 5932–5941. Zhang, G., Eddy Patuwo, B., & Hu, M. Y Atsalakis, G. S., & Valavanis, K. P. (2009).
- 3) Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259–268 Patel, J., Shah, S., Thakkar, P., & Kotecha, K (2015)...

4) Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669.

Fischer, T., & Krauss, C. (2018).

- Stock price prediction using LSTM, RNN 5) and CNN-sliding window model. IEEE International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1643– 1647. Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, **K. P.** (2017).
- 6) A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review, 53(4), 3007–3057. Nti, I. K., Adekova, A. F., & Weyori, B. A. (2020).
- 7) A LSTM-based method for stock returns prediction: A case study of China stock market. IEEE International Conference on Big Data (Big Data), 2823–2824. Chen, K., Zhou, Y., & Dai, F. (2015).
- 8) NSE stock market prediction using deep-learning models. Procedia Computer Science, 132, 1351–1362.Hiransha,M.,Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2018).
- 9) Machine learning techniques and use of event information for stock market prediction: A survey and evaluation. Expert Systems with Applications, 38(8), 9515–9521. Yoo, P. D., Kim, M. H., & Jan, T. S. (2005).