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ABSTRACT 

We attempt to use a machine learning approach to anticipate stock prices in this project. When it comes to 

stock price predictions, machine learning works well. The goal is to forecast future stock prices. make more 

accurate and better investment decisions We propose incorporating mathematical functions into stock prices. 

To arrive at an acceptable timescale, examine the prediction system, machine learning, and other external 

factors. delivers accurate stock predictions and lucrative trades There are some There are two types of stocks. 

Day trading is another name for intraday trading. The phrase "day trading" was thrown around. Interday 

traders invest in a diverse range of assets. at least one day after another, and frequently for several days or 

weeks, LSTMs are quite effective in solving sequence prediction problems. because they may store 

information from the past. 
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1. INTRODUCTION 

We've all heard the term stock, without a doubt. Stock, in particular, is linked to partners and organisations 

that have become well-known and are settling into the marketization cosmos. The second word for the stock 

is share, which is commonly used in ordinary conversation. It's even referred to as a growth plan, and it's 

something that people perceive to be a long-term investment that generates and distributes abundant assets 

during retirement. A successful stock forecast can result in large gains for both the seller and the broker. 

Prediction is sometimes described as chaotic rather than random, meaning that it can be predicted by studying 

the history of the relevant stock market. Artificial intelligence in the form of machine learning 

The dataset used in machine learning is crucial. The data source Because a small modification in the data 

might produce large changes in the conclusion, it should be as specific as possible. This project entails On a 

dataset collected, supervised machine learning is used. Yahoo Finance is a search engine for financial 

information. The following five variables make up this dataset: open, close, low, high, and volume are all 

options. The terms open, close, low, and high are used. multiple stock bid prices at different periods with 

virtually direct names. The volume is the number of shares that have passed from one person to another. 

During the historical period, one owner to another. The model is then put to the test. the test results For this, 

regression and LSTM models are used. separate speculation The goal of regression is to reduce error, and 

LSTM helps with that. helps you recall things 

 

2. Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) 

Long Short Term Memory (LSTM) is one of several types of RNNs, which can also collect data from past 

stages and use it for future prediction [7]. In general, an artificial neural network (ANN) consists of three 

layers: 
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1). input layer 

2). Hidden layers 

3).output layer 

dimension of the data, the nodes of the input layer connect to the hidden layer via links called ‘synapses’. 

The relation between every two nodes from (input to the hidden layer), has a coefficient called weight, which 

is the decision-maker for signals. The process of learning is naturally a continuous adjustment of weights, 

after completing the process of learning, the Artificial NN will have optimal weights for each synapse. The 

hidden layer nodes apply a sigmoid or tangent hyperbolic (tanh) function on the sum of weights coming from 

the input layer which is called the activation function, this transformation will generate values, with a 

minimized error rate between the train and test data using the SoftMax function. 

The values obtained after this transformation constitute the output layer of our NN, these values may not be 

the best output, in this case, a backpropagation process will be applied to target the optimal value of error, 

and the backpropagation process connects the output layer to the hidden layer, sending a signal conforming 

the best weight with 

the optimal error for the number of epochs decided. This process will be repeated trying to improve our 

predictions and minimize the prediction error.After completing this process, the model will be trained. The 

class of NN that predict future value based on the passed sequence of observations is called Recurrent Neural 

Network (RNN) this type of NN makes use of earlier stages to learn data and forecast future trends. The 

earlier stages of data should be remembered to predict and guess future values, in this case, the hidden layer 

act as a stock for the past information from the sequential data. The term recurrent is used to describe the 

process of using elements of earlier sequences to forecast future data. Since RNNs cannot store long-term 

memories, the use of long-term memory (LSTM) based on " memory strings" has proven to be very useful 

for predicting when long-term data is present. In LSTM, the memorization of the previous step can be 

performed through the gate with the memory line active. This diagram  illustrates aLSTM node configuration 

.  

 

The ability to memorize the sequence of data makes the LSTM a special kind of RNN. Every LSTM node 

must be consisting of a set of cells responsible for storing passed data streams, the upper line in each cell 

links the models as a transport line handing over data from the past to the present ones, and the independence 

of cells helps the model dispose filter of add values of a cell to another. In the end, the sigmoidal neural 

network layer composing the gates drive the cell to an optimal value by disposing or letting data pass through. 

Each sigmoid layer has a binary value (0 or 1) with 0 “let nothing pass through”; and 1 “let everything pass 

through.” The goal here is to control the state of each cell, the gates are controlled as follow: Forget Gate 

outputs a number between 0 and 1, where 1 illustrates “completely keep this”; whereas, 0 indicates 

“completely ignore this.” Memory Gate chooses which new data will be stored in the cell. First, a sigmoid 
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layer “input door layer” chooses which values will be changed. Next, a tanh layer makes a vector of new 

candidate values that could be added to the state. The output gate determines the output of each cell. The 

output value is based on the status of the cell with the filtered and most recently added data. 

3. Methodology and data 

The data in this article consists of the daily market prices of two stocks on the New York Stock Exchange 

NYSE (GOOGL and TSLA) obtained from Yahoo Finance. For GOOGL, the data series covers the period 

from January 1, 2005, to May 10, 2022, and for TSLA, the data series covers the period from January 1, 

2005, to May 10, 2022. To build our model we will use an LSTM RNN. Our model uses 70% of the data for 

training and 30% of the remaining data for testing. Optimize the model using root mean squared error for 

training. We also used 4, different epochs (12 epochs, 25 epochs, 50 epochs, and 100 epochs) for the training 

data, and the model consists of: 

 

 

Figure 2: the LSTM model structure 

 

 

 

Layer (type) 
Output Shape Parameters 

lstm_1 (LSTM) (None, 50, 96) 37632 

dropout 1 (Dropout) (None, 50, 96) 0 
lstm 2 (LSTM) (None, 50, 96) 74112 

dropout 2 (Dropout) (None, 50, 96) 0 
lstm 3 (LSTM) (None, 50, 96) 74112 

dropout_3 (Dropout) (None, 50, 96) 0 
lstm 4 (LSTM) (None, 96) 74112 

dropout 4 (Dropout) (None, 96) 0 
dense 1 (Dense) (None, 1) 97 
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4. Result and discussion 

After training the NN, the test results showed different results, and the number of epochs and data length 

significantly affect the test results. For example, if we change the data set for TSLA from January 1, 

2005 to May 10, 2022, the result is: 
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Looking at the data, you can see that initially the data was less volatile and had lower values. In Figure, the 

Blue line represents the actual market value and the Redline represents the predicted price value after TSLA 

started peeking. A large value increases the volatility of the asset and changes its characteristics. In our case, 

it is better to avoid this kind of change. Our model lost its open price tracking over the 600-700 days we 

tested, consistent with changes in data characteristics. 

5. Conclusion 

This paper proposes an LSTM-based RNN built to predict the future value of GOOGL and TSLA assets, and 

the result of our model showed promising results.                                                The test results confirm that 

our model can track changes in the open price for both assets. For future work, we will try to find the best 

set of combat data lengths and the number of training periods that best fit our assets and maximize the 

accuracy of our predictions. 
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