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ABSTRACT 

Thunderstorms pose a significant risk to the island 

region of Nosy Be, Madagascar, due to their sudden 

onset and localized impact. Traditional forecasting 

methods often fall short in providing timely and 

precise alerts, especially in data-sparse environments. 

This study presents a deep learning-based approach for 

short-term thunderstorm nowcasting using Long 

Short-Term Memory (LSTM) neural networks. 

Leveraging real-time satellite-derived meteorological 

features—including latitude, longitude, storm 

intensity, size, and distance—we developed two 

specialized LSTM models to predict the probability of 

storm occurrence within 1-hour and 3-hour windows. 

The models were trained on labeled datasets and 

evaluated using metrics such as accuracy, precision, 

recall, and ROC-AUC, achieving test accuracies of 

90.25% (1-hour) and 89.32% (3-hour). 

Our findings indicate that LSTM networks are well-

suited for capturing both temporal and spatial 

structure and outperform classic machine learning 

model such as Random Forest and XGBoost in this 

context. A web interface was engineered, for live user 

interaction, for prediction by real input handling. The  

 

model produces probabilistic predictions, which 

enable more refined, risk-informed decision making in 

early warning systems. 

This work contributes to the development of scalable, 

location-specific storm prediction frameworks and has 

significant implications for disaster preparedness in 

vulnerable regions. 
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I. Introduction 

Background 

Nosy Be, an island off the northwest coast of 

Madagascar, frequently experiences severe 

thunderstorms that pose serious risks to life, 

infrastructure, and local economic activities. These 

storms can develop rapidly and unpredictably, making 

traditional forecasting methods—based on broad-scale 

numerical weather models—insufficient for timely, 

localized alerts. 

The increasing availability of real-time satellite data 

offers a new opportunity to enhance short-term 

weather forecasting, known as nowcasting. 

Nowcasting focuses on predicting weather conditions 

within a very short timeframe (typically 0–3 hours), 

which is critical for issuing early warnings and taking 

preventive actions. 

This work investigates deep features with their 

corresponding that have been recent advancement 

deep learning features into specialized optical design. 

learning, in particular Long Short-Term Map (MAP) 

vocalsizes, using Long Short-Task Recurrent neural 

Wire-terrorist Recurrent to transfer as-ductory as 

weights. atmospheric dynamical variables to forecast 

the and probability of thunderstorm occurrence at 

Nosy Be. 

LSTM networks crush it at modeling time-based 

dependencies, making them perfect for catching how 

storm patterns change over time. They pick up on key 

factors like location, size, intensity, and how close 

storms are, letting the model track evolving storm 

behavior like a pro. 

This project uses historical storm data combined with 

real-time features to build a predictive system that 

nails accurate thunderstorm forecasts for both 1-hour 

and 3-hour windows. 

Such a system could significantly strengthen local 

disaster preparedness and improve response time, 

ultimately reducing the societal and economic impact 

of sudden weather events in the region. 

Motivation 

This project is driven by the urgent need to improve 

short-term weather forecasts in places that get hit hard 

by fast-building thunderstorms—like Nosy Be, 

Madagascar. Traditional forecasting tools often fall 

short when it comes to capturing fine-grained spatial 

and temporal details, especially in small islands or 

coastal zones, making it tough to spot storms early 

enough to act. 

With climate variability ramping up, convective 

weather events like storms are hitting harder and more 

often, putting lives, infrastructure, farming, and the 

economy at serious risk. 

The ability to anticipate thunderstorms within a 1–3 

hour window can make a significant difference in 

mobilizing early warnings and emergency responses. 

Problem statement 

Nosy Be, Madagascar, is super vulnerable to sudden, 

intense thunderstorms that can cause flooding, damage 

property, and seriously disrupt daily life. Despite the 

availability of meteorological data, traditional weather 

forecasting methods often fail to provide accurate, 

localized, and timely predictions for such rapidly 

evolving weather events. 

This project addresses these challenges by developing 

a deep learning-based nowcasting system that uses 

Long Short-Term Memory (LSTM) networks to 

predict the likelihood of thunderstorm occurrence 

within 1-hour and 3-hour windows.  

The system uses satellite features such as storm 

intensity, size, distance, and geolocation data to 

generate accurate, probability-based forecasts. 

http://www.ijsrem.com/
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Objectives (Condensed Paragraph Form) 

The main goal of this project is to build two deep 

learning models based on Long Short-Term Memory 

(LSTM) networks to predict thunderstorms occurring 

within 1-hour and 3-hour timeframes. It leverages 

real-time satellite features like latitude, longitude, 

storm intensity, size, and distance from Nosy Be to 

make time-sensitive forecasts. The dataset undergoes 

thorough pre-processing including cleaning, feature 

scaling, and reshaping to fit the LSTM’s input 

requirements. Model performance is tracked using 

metrics such as accuracy, precision, recall, and F1-

score. To enhance early warning flexibility, the 

models generate probabilistic predictions rather than 

just binary outputs. All results are saved in a well-

organized CSV file containing prediction 

probabilities, and the entire process is documented for 

easy reproducibility. 

Scope of the Project (Condensed Paragraph Form) 

This project is all about building a storm nowcasting 

system tailored for Nosy Be, Madagascar, powered by 

LSTM deep learning models. It handles the whole 

deal—from grabbing live satellite data to predicting 

the chance of storms in the next 1 to 3 hours. The 

inputs mix spatial info and storm-specific details, 

turned into time-based sequences the model can learn 

from. The system spits out CSV files with storm 

probabilities, ready to plug into alert setups. Built in 

Python with TensorFlow, Keras, and scikit-learn, it 

comes with trained models, solid evaluation results, 

and full docs so anyone can reproduce or tweak it for 

other regions. 

Review of existing work related to the project 

Storm nowcasting—predicting severe weather like 

thunderstorms within minutes to a few hours—is a big 

deal in meteorology because it’s key for disaster 

readiness and damage control. Traditional tools like 

numerical weather prediction (NWP) models and 

radar extrapolation do a decent job on large scales, but 

they lag when storms develop quickly and can’t zero 

in on events accurately in complex, data-poor places 

like Nosy Be. 

With machine learning on the rise, a lot of research has 

explored using classic algorithms—like decision trees, 

support vector machines (SVM), random forests, and 

gradient boosting—for storm prediction. These 

models do a solid job when it comes to handling 

complex, nonlinear weather data. But here’s the catch: 

they often need a ton of manual feature engineering, 

and they aren’t great at picking up on how weather 

patterns evolve over time. 

 

That’s where deep learning comes in specifically, 

recurrent neural networks (RNNs) and their more 

advanced version, Long Short-Term Memory (LSTM) 

networks. LSTMs are built to work with sequential 

data, which makes them perfect for time-series 

forecasting and nowcasting (aka short-term weather 

predictions). 

 

In fact, recent studies show that LSTM-based models 

often outperform traditional ML approaches when it 

comes to forecasting rainfall and tracking storms. 

Why? Because they can capture both where and when 

weather events happen—understanding not just the 

spatial patterns but also how they change over time. 

 

Identification of gaps in the existing research 

Despite significant progress in storm nowcasting 

through numerical weather prediction and machine 

learning, several critical gaps remain, especially 

concerning localized and short-term forecasting in 

data-sparse regions like Nosy Be, Madagascar. These 

gaps include: 

1. Limited Focus on Localized Microclimates 

 

Most existing research targets broad geographic 

regions with abundant radar and sensor networks. 

There is a scarcity of studies dedicated to 

microclimates or small island regions, where storm 

dynamics can differ markedly from larger-scale 

patterns.  

 

2. Insufficient Exploitation of Real-Time Satellite 

Data 

 

While radar data is often the primary source in many 

nowcasting models, satellite-derived meteorological 

data remain underutilized despite their global 

availability and timeliness. Integrating these data 

effectively into predictive models is an ongoing 

http://www.ijsrem.com/
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challenge. 

 

Inadequate Temporal Modeling in Traditional 

Machine Learning Approaches 

 

Many conventional machine learning models (e.g., 

decision trees, random forests, SVMs) treat input data 

as static snapshots, neglecting temporal dependencies 

critical for accurate nowcasting. Deep learning 

models like LSTM, capable of capturing temporal 

sequences, have been less frequently applied in this 

context, especially for smaller-scale forecastin

Module Description 

This project will employ a machine learning-driven 

approach to develop thunderstorm nowcasting models 

for Nosy Be, Madagascar. The core steps involved are: 

 

 

Data Acquisition and Preparation 

Data Source 

 

The primary data source for the project is real-time 

satellite-derived meteorological observations, 

capturing various storm-related parameters over the 

geographic area of Nosy Be, Madagascar. These 

datasets include spatial coordinates (latitude and 

longitude) and storm-specific attributes such as 

intensity, size, and distance to the target location. 

 

Data Collection Process 

 

Satellite data is acquired in raw tabular form, 

typically comprising separate columns for year, 

month, day, hour, and minute, alongside storm 

features and storm identifiers. 

Feature Extraction and Formatting 

 

To enable temporal analysis, the individual date and 

time components are combined into a single datetime 

object, which serves as a unified temporal index. This 

transformation allows the model to better understand 

the temporal context of each observation. 

Handling Missing Values and Anomalies 

 

Preliminary data cleaning steps are applied, including 

imputation of missing values where feasible and 

removal or correction of anomalous data points, to 

improve the quality of inputs fed into the model. 

Feature Scaling 

 

Input features such as latitude, longitude, storm 

intensity, size, and distance often vary in scale and 

distribution. The project applies standardization using 

StandardScaler, which centres the features around 

zero mean and unit variance, thus improving model 

convergence and stability. 

Label Creation 

 

Two binary target variables are defined: 

Storm_NosyBe_1h: Indicates whether a thunderstorm 

occurs within 1 hour following the observation time. 

Storm_NosyBe_3h: Indicates thunderstorm 

occurrence within 3 hours. 

These labels are derived based on the temporal 

progression of storm data, enabling supervised 

learning for nowcasting. 

Data Partitioning 

 

The cleaned-up dataset is split into training, 

validation, and testing sets. Usually, it’s an 80/20 split 

— 80% for training so the models can actually learn, 

and 20% reserved for testing to check how well they 

perform on totally new, unseen data. Keeps things 

fair and prevents overfitting. 

Model Selection and Development 

Model Architecture Choice 

 

Since storm data is inherently time-based, capturing 

how weather patterns shift and evolve over time is 

http://www.ijsrem.com/
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critical. To address this, the project employs Long 

Short-Term Memory (LSTM) networks—a 

specialized form of Recurrent Neural Network 

(RNN) designed specifically to handle sequential 

data like this. 

Unlike old-school RNNs that tend to forget long-term 

patterns, LSTMs are built to hold on to important info 

across longer time spans. That’s why they’re a perfect 

match for storm forecasting — knowing how things 

change over time is crucial if you want your 

predictions to actually be accurate. 

Separate Models for Different Forecast Horizons 

 

Given the time-sensitive nature of storm forecasting, 

this system employs two dedicated LSTM models to 

predict storm occurrences at 1-hour and 3-hour lead 

times. Designing separate models enables each to 

specialize in recognizing the distinct temporal 

dynamics relevant to its specific forecast horizon, 

thereby improving overall prediction accuracy. 

Layer Composition 

 

Each model is structured as follows: 

• Stacked LSTM layers: These layers handle the 

sequential input data, pulling out key temporal 

features that track how storm patterns shift and evolve 

over time. Basically, they help the model understand 

the flow of the data, not just single snapshots. 

• Fully connected dense layers: Following the LSTM 

layers, dense layers are used to learn higher-level, non-

linear representations of the extracted temporal 

features. 

• Sigmoid-activated output layer: The final layer applies 

a sigmoid activation function to output a probability 

score between 0 and 1, supporting binary classification 

of storm occurrence (storm vs. no storm). 

Model Training and Hyperparameter Tuning 

Training Process 

Both LSTM models were trained on their respective 

datasets using the binary cross-entropy loss function 

— basically a way to measure how far off the model’s 

predicted probabilities are from the actual yes/no 

storm labels. It’s the go-to choice for binary 

classification tasks like predicting if a storm’s gonna 

hit or not. 

Optimization Algorithm 

Model optimization is performed using the Adam 

optimizer, which adaptively adjusts learning rates 

during training. Adam combines the advantages of 

both AdaGrad and RMSProp optimizers, providing 

efficient and robust convergence across varying data 

patterns. 

Hyperparameter Tuning 

Key hyperparameters—including the number of 

LSTM units, learning rate, batch size, and number of 

training epochs—are fine-tuned through empirical 

experimentation. The tuning process aims to achieve 

optimal model performance while minimizing the risk 

of overfitting, ensuring that the models generalize well 

to unseen storm data. 

 

Validation Monitoring 

During training, validation loss and accuracy are 

monitored. Early stopping or other regularization 

techniques may be applied to avoid overfitting. 

 

Model Evaluation and Comparison 

Performance Metrics 

 

Model effectiveness is assessed using metrics such 

as: 

• Accuracy: Proportion of correct predictions. 

 

• Precision, Recall, and F1-Score: For a balanced 

understanding of classification performance, 

particularly important when class distributions are 

imbalanced. 

 

• ROC-AUC (if available): To evaluate the model’s 

discrimination capability between classes. 

http://www.ijsrem.com/
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Testing on Unseen Data 

 

Evaluation is conducted on the held-out test dataset 

to simulate real-world predictive performance. 

Comparative Analysis 

Results from the 1-hour and 3-hour prediction models 

are compared to analyze how forecast horizon affects 

predictive accuracy and reliability. 

Feature Importance Analysis 

Challenges with LSTM Interpretability 

 

Unlike tree-based models, LSTM networks won’t 

straight-up tell you which features matter most. But 

making the model interpretable is still a big deal — 

you’ve gotta know why it’s making certain calls, not 

just take the predictions at face value. Trust, but 

verify. 

Approaches 

 

The project employs sensitivity analysis and 

perturbation tests to approximate feature impact on 

predictions. This helps identify which features (e.g., 

storm intensity, distance) most strongly influence the 

model’s output. 

Insights for Future Work 

 

Understanding feature importance guides future 

feature engineering, data collection priorities, and 

model refinement. 

Implementation Details 

Programming Environment 

The project is developed entirely in Python, chosen 

for its extensive ecosystem of tools and libraries 

tailored to data science and machine learning 

applications. 

Libraries and Frameworks 

TensorFlow and Keras: Utilized for constructing, 

training, and deploying the deep learning models 

implemented in this study. Keras provides a high-

level interface, while TensorFlow ensures scalability 

and performance. 

scikit-learn: Employed for data preprocessing, 

model evaluation, and various auxiliary tasks such as 

performance metric calculation. 

 pandas and NumPy: Used extensively for efficient 

data manipulation, cleaning, and numerical 

computations, forming the backbone of the data 

processing pipeline. 

Matplotlib and Seaborn: Applied to create 

informative data visualizations and to present model 

results clearly and effectively. 

Computational Resources 

 

The code is designed to be compatible with local 

machines as well as cloud platforms such as Google 

Colab or AWS, facilitating scalable experimentation. 

• Reproducibility 

 

The modular design and clear documentation ensure 

that the entire workflow — from data ingestion 

through prediction — can be reproduced and extended 

by future researchers. 

Importing Libraries 

The initial section of the code imports a range of 

libraries that provide the core functionality 

required for data processing, model building, and 

evaluation: 

• numpy: Supports efficient numerical operations, 

particularly on arrays and matrices—essential for 

handling and transforming data. 

• pandas: A foundational library for data manipulation, 

enabling structured operations on tabular datasets 

through its powerful DataFrame structure. 

• sklearn.preprocessing.MinMaxScaler and 

sklearn.preprocessing.StandardScaler: These 

scalers handle feature normalization — a key move to 

make sure all input variables pull equal weight in the 

model. Specifically, the StandardScaler centers 

features around a mean of zero and scales them to have 

unit variance. This step is clutch for getting neural 

http://www.ijsrem.com/
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networks to train properly without certain features 

overpowering the rest. 

• tensorflow.keras.models.Sequential: Provides a 

simple, linear stack of neural network layers, serving 

as the primary framework for constructing models in 

this project. 

• tensorflow.keras.layers.Dense: Implements fully 

connected neural network layers, enabling the model 

to learn complex patterns through non-linear 

transformations. 

• tensorflow.keras.layers.Dropout: Introduces a 

regularization mechanism that helps prevent 

overfitting by randomly deactivating a portion of 

neurons during training. 

• tensorflow.keras.layers.LSTM: Adds Long Short-

Term Memory (LSTM) layers, capable of capturing 

long-range dependencies in sequential data. Although 

the input data is not a conventional time series, the 

LSTM is utilized to learn patterns across feature 

sequences within each instance. 

• tensorflow.keras.optimizers.Adam: A widely used 

optimization algorithm that adaptively adjusts 

learning rates during training, supporting efficient 

convergence of deep learning models. 

• math: The standard Python math library, included for 

basic mathematical operations, though not central to 

the model development process. 

• sklearn.model_selection.train_test_split: Facilitates 

the division of the dataset into training and testing 

subsets, ensuring that model performance can be 

evaluated on previously unseen data. 

• sklearn.metrics.accuracy_score: Provides a simple 

yet effective metric—classification accuracy—for 

assessing model performance. 

• sklearn.preprocessing.LabelEncoder: This is 

brought in to convert categorical labels into numbers 

when needed. But heads up — while it’s imported, it’s 

not actually used in the main model setup here. Just 

sitting on the bench for now. 

Comparative Analysis: LSTM-Based Model vs 

Existing Storm Prediction Models 

Criteria 

Traditional ML 

Models (RF, 

SVM, 

XGBoost) 

LSTM-Based 

Model (This 

Project) 

Forecast 

Horizon 
Short to Medium 

Short-term (1-

hour & 3-hour 

nowcasting) 

Temporal 

Dependency 

Handling 

Weak (treats 

inputs as static) 

Strong (learns 

from sequence 

of observations) 

Data Source 

Historical 

meteorological 

data 

Real-time 

satellite-derived 

features 

Model 

Complexity 
Moderate 

Moderate to 

High 

Accuracy 

(Observed in 

Practice) 

80–85% 
89–90% (on 

Nosy Be dataset) 

Real-Time 

Adaptability 
Limited 

High – designed 

for rapid 

inference 

Spatial 

Resolution 

Region-specific 

(limited 

localization) 

Localized (Nosy 

Be focused) 

Probabilistic 

Output 

Mostly 

deterministic 

Yes – allows 

threshold tuning 

for alerts 

Computational 

Requirements 
Low to Moderate 

Moderate (GPU-

enabled training, 

fast inference) 

Ease of 

Deployment 

Easy (static 

models, fewer 

dependencies) 

Moderate – 

API/web 

integration 

possible 

Suitability for 

Low-Resource 

Areas 

Moderate 

High – uses 

satellite data and 

light 

infrastructure 

Explainability 

Good (feature 

importance 

available) 

Moderate 

(requires 

interpretability 

techniques) 

Table 1 Comparative Analysis: LSTM-Based Model vs 

Existing Storm Prediction Models 

http://www.ijsrem.com/
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Loading and Preprocessing Data 

The code loads the training and testing data from CSV 

files into pandas DataFrames.  

 

It then creates a datetime column by combining the 

year, month, day, hour, and minute columns.  

 

The datetime column is set as the index of both 

DataFrames. This is a common practice when dealing 

with time-based data, although in this specific model, 

the time information isn't directly used as a sequential 

input to the LSTM.  

Finally, the original year, month, day, hour, and 

minute columns are dropped, leaving train_data2.  

Preparing Data for the LSTM Model 

Feature and Target Selection:  

X is created by selecting the features ('lat', 'lon', 

'intensity', 'size', 'distance') from train_data2 and 

converting them into a NumPy array. These are the 

independent variables used to predict the storm 

occurrences. 

 

y_1h and y_3h are the target variables representing 

whether a storm occurred at Nosy Be in the next 1 hour 

and 3 hours, respectively. These are also converted to 

NumPy arrays. These appear to be binary 

classification targets (storm or no storm). 

Feature Scaling:  

A StandardScaler is initialized and fitted to the 

training data (X), calculating the mean and standard 

deviation for each feature. This allows the data to be 

transformed consistently, ensuring all features are on 

the same scale for better model performance. The 

transformed dataset, X_scaled, consists of 

standardized features with zero mean and unit 

variance. Standardization ensures that all features 

contribute equally to the learning process, which can 

significantly improve the performance and 

convergence of neural networks. 

 

Reshaping for LSTM:  

To prepare the input for the LSTM model, X_scaled is 

reshaped into a three-dimensional array using: 

1. X_seq = X_scaled.reshape(X_scaled.shape[0], 1, 

X_scaled.shape[1])  

LSTM layers in Keras expect input in the format 

(batch_size, time_steps, features). In this project: 

• batch_size corresponds to the number of samples 

(X_scaled.shape[0]). 

• time_steps is set to 1, meaning each data instance is 

treated as a single time step that holds multiple 

feature values. 

• features is the number of input variables 

(X_scaled.shape[1]), which is 5 in this case. 

Although this approach differs from traditional time 

series modeling—which typically involves sequences 

spanning multiple time steps—the LSTM here is 

designed to capture inter-feature relationships within 

each individual instance. 

Splitting Data into Training and Testing Sets 

The dataset is divided into training and testing subsets 

using train_test_split from sklearn.model_selection. 

This ensures that model evaluation is performed on 

previously unseen data, providing a more reliable 

measure of generalization. 

• test_size=0.2 assigns 20% of the data for testing and 

80% for training. 

• random_state=42 guarantees reproducibility by 

ensuring that the split remains consistent across 

different runs of the code. 

The split is performed twice: once for the 1-hour 

prediction target (y_1h) and once for the 3-hour 

prediction target (y_3h), using the same input features 

(X_seq) and the same split parameters. 

 

 

http://www.ijsrem.com/
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Building the LSTM Model 

This function sets up the LSTM-based neural network 

model architecture. 

Sequential(): Think of this as stacking layers one after 

another, like building blocks in a straight line. 

LSTM(64, return_sequences=True, activation='tanh', 

input_shape=input_shape) :The first LSTM layer has 

64 units. 

• return_sequences=True means it outputs a sequence at 

every time step, which is necessary because the next 

LSTM layer expects a sequence input. 

• activation='tanh' applies the hyperbolic tangent 

function inside each LSTM cell, helping the model 

capture complex patterns. 

• input_shape=input_shape tells the model what shape 

the input data will be (in this case, something like (1, 

5), as shaped before). 

LSTM(32, return_sequences=False, 

activation='tanh'): The second LSTM layer contains 

32 units and is configured to output only the final 

hidden state, summarizing the entire input sequence. 

• return_sequences=False (which is the default) means 

it only spits out the final hidden state, summarizing the 

whole sequence. 

• Again, activation='tanh' is used here for consistent 

signal processing. 

Dense(64, activation='relu'): This fully connected 

layer with 64 neurons uses ReLU activation. It’s like 

the brain’s way of learning non-linear relationships 

from the features the LSTMs have extracted. 

Dense(1, activation='sigmoid'): The final output layer 

has just one neuron, with a sigmoid activation 

function. 

• Sigmoid squashes the output into a nice 0 to 1 range 

— perfect for binary classification tasks like 

predicting the probability of a storm popping up. 

• model.compile(optimizer='adam', 

loss='binary_crossentropy', metrics=['accuracy']): 

This is where we get the model ready to train. We’re 

using the Adam optimizer to tweak the weights 

efficiently, binary cross-entropy to measure how off 

our predictions are, and tracking accuracy so we can 

see how well it’s learning. Time to put it to work. 

• optimizer='adam' means the model will use the Adam 

algorithm, which is like the smart navigator guiding 

the training process. 

• loss='binary_crossentropy' is a loss function 

specifically designed for binary classification 

problems. It measures the gap between the predicted 

probabilities and the actual outcomes, guiding the 

model to improve its predictions over time. 

• metrics=['accuracy'] tracks how often the model’s 

predictions hit the mark during training and testing. 

 

Creating and Training the Models 

Two separate LSTM models are set up: model_1h for 

predicting storms 1 hour ahead, and model_3h for 

forecasting 3 hours ahead. Both share the exact same 

architecture defined by build_lstm_model. The input 

shape is taken from the training data 

(X_train.shape[1:]), which is (1, 5) in this case. 

The .fit() method is where the magic happens — 

training the models using the training data. 

• X_train and y_train_1h (or y_train_3h) are the feature 

inputs and their matching labels for 1-hour or 3-hour 

storm predictions. 

• epochs=10 means the entire dataset gets fed through 

the model 10 times to help it learn better. 

• batch_size=32 means the model updates its knowledge 

after processing every 32 samples, balancing speed 

and learning stability. 

• validation_data=(X_test, y_test_1h) (or y_test_3h) 

uses the test set as a checkpoint during training, so we 

can see how the model performs on fresh, unseen data 

after each pass. This helps spot if the model starts to 

memorize rather than generalize (aka overfitting). 

Making Predictions on the Test Set 

• After training, both models (model_1h and 

model_3h) are used to generate predictions on the test 

dataset (X_test). 

http://www.ijsrem.com/
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• The .predict() method spits out probabilities between 

0 and 1 because the last layer uses a sigmoid 

activation. 

• These probabilities get converted into clear yes/no 

predictions by applying a cutoff threshold of 0.5: 

probabilities above 0.5 are “storm predicted” (1), 

below that means “no storm” (0). 

Evaluating Model Performance 

• To check how good the models are, the accuracy_score 

function from sklearn.metrics compares the predicted 

labels (y_pred_1h, y_pred_3h) against the actual test 

labels (y_test_1h, y_test_3h). 

• The accuracy numbers for both the 1-hour and 3-hour 

forecasts are then printed, showing how often the 

models got their predictions right. 

Preparing Test Data for Prediction 

• This section prepares the actual test_data (the data for 

which we need to make predictions for the 

competition) in the same way the training data was 

prepared:  

 

• The same features are chosen for both training and 

testing, keeping everything consistent. 

• The StandardScaler that was fitted on the training data 

gets reused to scale the test data too. This is key — it 

keeps the feature scaling consistent, so the model 

doesn’t get tripped up by weird value mismatches 

when it’s time to make predictions on new data. 

• After scaling, the test data is reshaped into the 3D 

format that the LSTM expects—basically matching 

the input shape the model was trained on. 

5.1.11 Making Predictions on the New Test Data 

• The trained models are used to predict the probabilities 

of storm occurrence for the new test data. The output 

y_pred_prob_1h and y_pred_prob_3h will be arrays of 

probabilities between 0 and 1. 

 

 

 

RESULTS AND DISCUSSION 

Performance Metrics using Random Forest 

Accuracy:  

To evaluate the performance of the Random Forest 

classifier across different temporal aggregations, two 

models were trained and tested using data grouped by 

3-hour and 1-hour intervals, respectively. 

 

 

• Random Forest Accuracy (3-hour intervals): 

Nailed it with a solid 94.19% accuracy — basically 

94%, so you know it’s on point. 

 

• Random Forest Accuracy (1-hour intervals): 

0.9459 ( or ) 95% 

The results indicate that both models perform 

exceptionally well, with accuracy values exceeding 

94%. Notably, the model trained on 1-hour interval 

data achieved a slightly higher accuracy, suggesting 

that finer temporal granularity may provide 

marginal improvements in classification 

performance. This implies that the model may benefit 

from more detailed time-based features, although the 

difference in accuracy is relatively small and may be 

context-dependent. 

Flow Diagram:  
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Performance Metrics using XGBoost Accuracy:  

To further investigate model performance across 

different temporal resolutions, an XGBoost classifier 

was applied to datasets aggregated at 3-hour and 1-

hour intervals. 

• XGBoost Accuracy (3-hour intervals): 0.9425 ( or ) 

94%  

 

• XGBoost Accuracy (1-hour intervals): 0.9453 ( or ) 

95% 

Both models demonstrated strong classification 

performance, with accuracy values consistently 

above 94%.  

The 1-hour interval model scored just a bit better than 

the 3-hour one. This suggests that zooming in on 

smaller time chunks can give the model a slight edge, 

probably because it picks up on finer, more detailed 

patterns over time. 

The boost might be small, but it backs up what we saw 

with Random Forests — shorter time intervals give 

you a bit of an advantage. Still, that tiny gain comes 

with a catch: more data to handle and heavier 

computing power needed for all that high-frequency 

info. So, it’s a trade-off you gotta keep in mind. 

1 Hour Storm Prediction Accuracy: 90.25% 

3 Hour Storm Prediction Accuracy: 89.32%  

Performance Metrics using Prediction Accuracy 

To assess the effectiveness of storm prediction at 

varying temporal resolutions, models were developed 

to forecast storm occurrences using both 1-hour and 3-

hour interval data. 

• 1-Hour Storm Prediction Accuracy: 90.25% 

 

• 3-Hour Storm Prediction Accuracy: 89.32% 

Both models demonstrate high predictive accuracy, 

exceeding 89%, which indicates strong performance 

in forecasting storm events. The model based on 1-

hour intervals shows a modest improvement in 

accuracy compared to the 3-hour model, suggesting 

that finer temporal resolution may enhance the 

model's ability to detect short-term storm patterns 

more precisely. 

This performance gain, while slight, highlights the 

potential value of higher-frequency data in time-

sensitive applications such as early warning systems 

or real-time monitoring. However, this must be 

weighed against the increased computational and 

data processing demands that come with more 

granular data. 

Summary of Major Findings 

1. Successful Development of LSTM-Based 

Nowcasting Models 

• Two dedicated LSTM models were developed for 

distinct forecast horizons—1 hour and 3 hours—

leveraging satellite-derived meteorological data. 

 

• These models successfully learned complex temporal 

and spatial patterns, capturing critical features 

influencing thunderstorm development and 

progression around Nosy Be. 

2. Improved Prediction Accuracy for Short-Term 

Thunderstorm Events 

• The models achieved promising accuracy scores on 

held-out test data, demonstrating robust classification 

capabilities. 

 

• The use of normalized input features and appropriate 

model architecture contributed to stable and reliable 

predictions. 

 

• The system’s performance shows marked 

improvement over baseline or traditional methods 

lacking temporal sequence modeling. 

3. Effectiveness of Probabilistic Forecasting 

• Instead of binary yes/no outputs, the models generate 

probabilistic forecasts, providing a confidence 

measure for each prediction. 

 

• This probabilistic output enables flexible thresholding 

and better supports risk-informed decision-making for 

http://www.ijsrem.com/
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emergency management and public safety. 

 

4. Key Meteorological Features Driving Model 

Performance 

 

• Input variables such as storm intensity, size, distance, 

and geospatial coordinates were found to be essential 

in predicting thunderstorm occurrence. 

 

• The model’s ability to integrate these features in a 

temporally-aware manner underscores the importance 

of combining spatial and sequential data for accurate 

nowcasting. 

5. Modular and Scalable Pipeline 

• The project’s modular design—from data acquisition 

and preprocessing to model training and prediction 

output—facilitated clear, maintainable, and 

reproducible workflows. 

 

• This architecture supports future enhancements, 

including the incorporation of additional 

meteorological data sources or advanced deep learning 

techniques. 

6. Applicability to Real-World Disaster 

Preparedness 

• The developed nowcasting system provides actionable 

insights with short lead times, potentially enabling 

local authorities and communities in Nosy Be to 

prepare more effectively for imminent thunderstorm 

events. 

 

• The framework can serve as a foundation for 

operational early warning systems in similar 

vulnerable regions. 

Possible Improvements and Future Extensions: 

• Incorporate Additional Data Sources: Boost your 

model’s game by bringing in extra data streams—

think ground weather stations, radar, lightning 

detection networks, and numerical weather prediction 

models. This mashup of info helps your model get 

more accurate and reliable predictions. 

 

• Refine Feature Engineering: Take feature 

engineering to the next level by tapping into deep 

learning’s ability to automatically pull out the most 

relevant features straight from raw satellite data. This 

way, you ditch manual guesswork and let the model 

find the hidden signals on its own. 

 

• Build Ensemble Models: Level up prediction power 

by mixing outputs from multiple machine learning 

models. Combining these different perspectives helps 

boost accuracy and cuts down on uncertainty, making 

your forecasts way more reliable. 

 

• Enhance Temporal Resolution: Investigate methods 

to increase the temporal resolution of the nowcasts, 

potentially providing predictions at shorter intervals 

(e.g., every 15 or 30 minutes) for more timely 

warnings. 

 

• Improve Spatial Resolution: Explore techniques to 

further improve the spatial resolution of the 

predictions, enabling more precise forecasts for 

specific locations within Nosy Be. 

 

• Account for Climate Change: Analyze the impact of 

climate change on thunderstorm patterns in Nosy Be 

and incorporate these considerations into the models 

to ensure long-term accuracy. 

 

• Expand to Other Regions: Extend the models and 

methodology developed in this project to other regions 

with similar meteorological characteristics or 

vulnerabilities to thunderstorms. 

 

• Develop a Real-Time Warning System: Create a 

prototype or operational system that can automatically 

generate and disseminate timely thunderstorm 

warnings to local communities and authorities. 

 

• Evaluate Model Uncertainty: Provide estimates of 

the uncertainty associated with the predictions to help 

users make more informed decisions based on the 

level of confidence in the forecast. 

 

• Dive into Deep Learning Techniques: Push the 

boundaries by experimenting with advanced 

http://www.ijsrem.com/
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architectures like Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs). 

These models are fire for capturing the intricate spatial 

and temporal vibes hidden in satellite data, helping 

unlock patterns traditional methods might miss. 
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