
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38525 | Page 1

String Matching Algorithm -A Comparative Survey

1
st

 Om Mangle 2
nd

 Gaurav Bhaltilak 3
rd

 Sushant Pawar

Student, Department Of Electronics And Student, Department Of Electronics And Student, Department Of Electronics And

Telecommunication Engineering, Telecommunication Engineering, Telecommunication Engineering,

BRACT’s Vishwakarma Institute BRACT’s Vishwakarma Institute BRACT’s Vishwakarma Institute

Of Information Technology, Of Information Technology, Of Information Technology,

Pune, India Pune, India Pune, India

4
th

 Burhanuddin Mal 5
th

 Dr. Jayashree Tamkhade

Student, Department Of Electronics And Assistant Professor, Department Of Electronics And

Telecommunication Engineering, Telecommunication Engineering,

BRACT’s Vishwakarma Institute BRACT’s Vishwakarma Institute

Of Information Technology, Of Information Technology,

Pune, India Pune, India

Abstract—String matching is a problem with many appli-cations,

ranging from simple text processing to complicated bioinformatics and

plagiarism detection. This paper surveys four of the string matching

algorithms most commonly in use for string matching: Naive, Rabin-

Karp, Knuth-MorrisPratt (KMP), and Boyer-Moore. Each of these

algorithms uses a different approach to a solution of the described

problem. Some algorithms have distinct advantages and difficulties

regarding time and space complexity and practical performance.
The naive algorithm is easy to understand but very inefficient for large

texts since its time complexity is O(m*n). Rabin-Karp uses hashing in an

attempt to speed this up and has an averagecase time complexity of O(m

+ n) but can be slow as O(m
* n) if hash collisions continually happen. The KMP algorithm
develops this further through preprocessing of the pattern to get a
constant time complexity of O(m + n) and hence make it very
suitable for single-pattern searches. Further optimization is done in
the Boyer-Moore algorithm; it scans the pattern from right to left,
skips parts of the text, hence achieving the best cases of O(m + n)
with worst cases rarely going to O(m * n).

This survey makes a deep analysis and comparative study on these

algorithms, focusing on theoretical Aspects, practical implementations,

and performance metrics to give an all-rounded insight into these

algorithms. Conclusions from the survey will
help choose the best-fit algorithm for an application given a scenario
so that the best performance could be achieved considering any string
matching scenario.

I. INTRODUCTION

String matching is one of the most simple and important

problems in computer science, being at the heart of numerous

applications involving text manipulation and bioinformatics. In

string matching algorithms, the goal is to find occurrences of a

given ”pattern” string within a larger ”text” string [3]. These are

very fundamental yet computationally expensive algorithms,

especially with the increase in the size of the text and pattern

complexity.
This survey undertakes a study and comparison of four fa-mous

string matching algorithms: Naive, Rabin-Karp, Knuth-Morris-Pratt

(KMP), and Boyer-Moore. Each algorithm attacks

the string matching problem in a different way, with various

thingsregarding time and space complexity, and practical per-

formance.
The survey will provide an in-depth critical review of the

comparison between algorithms, underlining the theoretical

background, the practical implementation, and the perfor-mance

measures. Once these relative strengths and weaknesses are well

understood for each algorithm, then an informed decision could

be made regarding the applicability of any of them in practical

situations for optimum and effective real-world implementation.

II. BACKGROUND

String matching is one of the basic operations in computer

science, which may serve as the foundation for many important

applications: text editors, search engines, plagiarism detection, and

many others. The problem involves finding all occurrences of a

pattern string within a text string [2]. That is simple to state, not

necessarily easy to do, especially when the text is very long or when

complex patterns are being sought.
String matching algorithms have been developed with the view of

making them efficient by reducing computation time. Early simple

solutions like the Naive algorithm were expensive in terms of time

and space complexity for large texts. This resulted in the

development of more techniques that minimized useless operations

and optimized the performance. Amongst the first few proposed

methods, the Naive Algorithm was one of them. This method offers

simplicity and ease of implementation but definitely suffers in

performance for large-scale applications due to its time complexity

[4]. So we have other algorithms which are more optimised.
In the present survey, a deep consideration is given to each of these

four algorithms by comparing their theoretical underpinnings, practical

implementation issues, and empirical performance. A discussion about

the strengths and weaknesses of each can be found here, with a view

towards gaining insight

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38525 | Page 2

into their applicability in real-world scenarios that shall help

practitioners choose among them for particular needs.

III. LITERATURE SURVEY

IV. METHODOLOGY

A. Naive Algorithm

This is the most basic and simplest string matching algo-rithm

It performs checking at all positions in the text whether an

occurrence of the pattern starts there or not. After each attempt,

the algorithm shifts the pattern by exactly one position to the

right. Time Complexity of this algorithm is O(n*m) considering

the worst case , where n is length of the string in which we are

searching the pattern and m is pattern length .Space complexity is

O(m) [1] [5].
The algorithm is simple and implementation is very easy. It is best

suited for searching a pattern from small text string. It is not good for

larger and more complex strings as it will take higher execution time.

Applications of this algorithm is simple text searches and educational

purposes.
Example, consider we have to search pattern “AAB” from

text “ACAABABC”. So the match will be found at second

shift . Initially there is a mismatch and there is a mismatch in

first shift also so every time there is mismatch the search will

shift ahead by one index.

Fig. 2. Naive Algorithm

B. Knuth-Morris-Pratt (KMP) Algorithm

Knuth, Morris and Pratt introduced a linear time algorithm for

string matching. Here the matching time is O(n). In KMP the

execution time is lesser than that of Na¨ıve Algorithm [6]. In

KMP we form suffixes and prefixes for the pattern we have to

search. The idea of KMP is that is there any suffix same as prefix

which means we are checking if the beginning part of pattern is

appearing again in the pattern.
Here we generate pie table for a pattern which is same as

the size of pattern and it is based on longest prefix that is same

as suffix. Consider the following example for a pattern

“ABABD”
In the below pattern suppose there is mismatch at B so the search

will not backtrack to pattern index shift +1 rather it will start

searching from the corresponding index number assigned
Fig. 1. Literature Survey in pie table for the index where mismatch is happened. This

algorithm will take n times for parsing (searching) and m for

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38525 | Page 3

Fig. 3. KMP Algorithm

creating pie table. The algorithm has time complexity

O(m*(n-m+1)) in worst case whereas is average case it is O(m

+n) [10].
KMP can be used in data mining, text editors. The

algorithm is faster and best suited for larger text than that of

na¨ıve algorithm. Here we have additional step of creating

LPS or pie table so the implementation is complex and not

efficient for smaller texts.

C. Boyer Moore Algorithm

The Boyer-Moore algorithm is an efficient pattern-searching

technique in a given text. The algorithm finds all occurrences of the

pattern in the text using mainly two important heuristics: bad character

heuristic and, sometimes, good suffix heuristic. Instead, it determines

how far the pattern can shift along the text after a mismatch has taken

place—faster against the naive approach or Knuth-Morris-Pratt algorithm

[5]. The advantage of this algorithm consists in its ability to maximize

the shift distance for mismatched characters and matched suffixes, which

makes it very effective for large texts and patterns.
The average time complexity of the Boyer-Moore algorithm

is O(n + m), where n is the length of the text, and m is the

length of the pattern.
The Boyer-Moore algorithm performs pattern searches in

text using effective heuristics, namely the bad character rule

and occasionally the good suffix rule [5]. It is, therefore,

applicable in many fields such as in text editors, data mining,

bioinformatics, and network security. While it does entail a

preprocessing stage, on occasion, it is not faster than other

algorithms

D. Rabin Karp Algorithm

Rabin-Karp is the string matching algorithm which uses the rolling

hashing function for searching the pattern in a text [1]. The hashing

approach based on hash technique for matching. Both pattern and text

values comparison based on hash value. The comparison is from left to

right comparing the hash of text and pattern. The hash technique has best

performance because

in these technique we use integer numbers which decrease the

computation time [7].
The algorithm has two steps pre-processing and searching. In

preprocessing string is converted into decimal numbers. And

computing the hash value for text and pattern. And in searching

phase comparison of hash value is done if they match then

compare the string character by character [9]. Time complexity of

the algorithm for Average case O(n + m) , Worst Case it is : O

((n-m+1).m) where n is the length of the text and m is the length

of the pattern [9].
Advantages are Better when searching the multiple patterns

in the text, The average case time complexity is fast and

linear, Implementation is easy compared to other string

matching algorithm [1].
Disadvantages are Hash collisions when different substrings

generate same hash value, False positive where hash value match but

string might not requires the multiple string com-parison, The

algorithm requires extra memory to store hash values for the pattern

and substrings of the text [1].
Eg:

Fig. 4. Robin Karp Algorithm

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38525 | Page 4

E. Comparison Table

Fig. 5. Comparison Table

V. APPLICATIONS

A. Plagiarism Detection:

Plagiarism detection relies importantly on string match-ing

algorithms, representing a process of finding copied or paraphrased

parts of documents. Generally speaking, these algorithms compare

word and character sequences in order to find similar ones. Several

methods, such as exact matching, shingling, and others, allow for the

direct detection of identical or almost identical sequences. Also, there

is a fingerprinting technique that generates special hash values of

sequences, allowing one to compare documents effectively and find

suspi-cious matches. Apart from that, contextual similarity analysis

also detects semantic and syntactic aspects to discover para-phrased

or reworded text. Using these integrated approaches, the plagiarism

detection system will identify material whether duplicated verbatim

or paraphrased, hence protecting academic integrity from intellectual

property theft.

B. Data Mining:

String matching algorithms play a significant role in data mining,

relating to large text datasets for finding patterns or extracting

relevant information. These algorithms include the determination of

occurrences of any given substring (pattern) within a larger string

(text), and assessment for similarity between two different strings.

Basically, algorithms related

to strings are of much importance for data mining, including tasks

that pertain to keyword identification, detection of du-plicate

entries, clustering like texts, or matching a user query against the

most appropriate document. Efficient algorithms, such as Knuth-

Morris-Pratt (KMP) and Boyer-Moore, achieve this by reducing

the number of comparisons required to find patterns. These

techniques amply enhance the speed and accu-racy of text

mining, thereby helping in information retrieval, text

classification, and natural language processing through locating

relevant patterns in a large volume of unstructured data with

speed.

C. Web Searches:

String matching algorithms like Knuth-Morris-Pratt (KMP),

Rabin-Karp, and Boyer-Moore are essential in optimizing web

searches for efficient query matching. KMP improves search

efficiency by avoiding redundant comparisons, particularly useful for

exact string matching in large datasets. Rabin-Karp uses hashing to

search for patterns in a document, which allows it to handle multiple

pattern searches, though it can face hash collisions. Boyer-Moore

optimizes the search process by skipping sections of the text where

mismatches occur, making it faster, especially for longer patterns.

These algorithms are vital in ensuring quick and accurate retrieval of

relevant documents in web searches.

VI. CONCLUSION

In other words, the string matching algorithm depends basically

upon the nature of the problem arising and the other parameters

involved. While the Naive algorithm is inefficient for big texts and

big patterns, it is easy to implement and therefore sometimes

appropriate for little texts and/or little frequency search. The KMP

algorithm, while it guarantees linear time, presents a good alternative

for when there are multiple searches of a fixed pattern, for the fact

that it requires a preprocessing overhead in the beginning, in addition

it can be utilized for all the subsequent searches. Rabin-Karp is

advantageous for searching multiple patterns at once, though hash

collisions can occasionally reduce its efficiency. Finally, the Boyer-

Moore algorithm excels in practice, especially with larger alphabets

and when the pattern is much shorter than the text, making it an

excellent choice for real-world applications where speed is crucial.

Each algorithm presents different tradeoffs, so understanding their

benefits and limitations is key to choosing the right one for any given

task.

REFERENCES

[1] Saqib Iqbal Hakak, Amiruddin Kamsin, Palainahnakote Shivakuma,

Gul-shan Amin Gilkar, Wazir Zada Khan, Muhammad Imran, ”Exact
String Matching Algorithms: Survey, Issues, and Future Research
Directions” 2019, IEEE Access Special Section On New Trends In
Brain Signal Processing And Analysis.

[2] Syeda Shabnam Hasan, Fareal Ahmed, Rosina Surovi Khan ”Approxi-
mate String Matching Algorithms: A Brief Survey and Comparison”,
International Journal of Computer Applications, 2015, vol-120, pp.
0975-8887.

[3] Chinta Someswararao, K. Butchi Raju, S.V. Appaji, S. Viswanadha Raju and

K.K.V.V.V.S. Reddy, ”Recent Advancements in Parallel Algorithms for

String Matching on Computing Models – A Survey and Experimental

Results” ADCONS 2011, 2012, pp. 270-278.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38525 | Page 5

[4] Awatif Alqahtani, Hosam Alhakami, Tahani Alsubait, Abdullah Baz, ”A

Survey of Text Matching Techniques ” 2021 Engineering, Technology

& Applied Science Research , vol-11 pp. 6656-6661.
[5] Brian Gallagher, ”Matching Structure and Semantics: A Survey on

Graph-Based Pattern Matching”, American Association for Artificial
Intelligence, 2006.

[6] Gene Myers, ”A Fast Bit-Vector Algorithm for Approximate String
Matching Based on Dynamic Programming” 1999, Journal of the ACM,
vol-46, pp. 395-415.

[7] Akram Abdulrazzaq, Atheer & Abdul Rashid, Nur’Aini & Hasan, Awsan
& Abu-Hashem, Muhannad, ”The exact string matching algorithms

efficiency review,” 2013, Global Journal on Technology

[8] Dany Breslauer, Zvi Galil, ”Efficient comparison Based String Match-
ing” 1993, Journal of Complexity, pp. 339-365.

[9] Diwate, Rahul., ”Study of Different Algorithms for Pattern Matching,”
2013, International Journal of Advanced Research in Computer Science
and Software Engineering.

[10] Vidya SaiKrishna, Prof. Akhtar Rasool and Dr. Nilay Khare, ”String
Matching and its Applications in Diversified Fields” 2012, IJCSI Inter-
national Journal of Computer Science, vol-9.

http://www.ijsrem.com/

