
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

[Type here]

STRING MATCHING

(Using Regular Expression)

 Abhay.M

 B.Tech

School of Engineering

Hyderabad, India

2111CS020007@mallareddyuni

versity.ac.in

 Abhinay.M

 B.Tech

 School of Engineering

Hyderabad, India

2111CS020010@mallareddyuni

versity.ac.in

 Abhigynan.B

 B.Tech

School of Engineering

 Hyderabad, India

2111CS020008@mallareddyu

niversity.ac.in

 Abhinaya.C

 B.Tech

School of Engineering

Hyderabad, India

2111CS020011@mallareddyu

niversity.ac.in

 Abhilash Reddy.M

 B.Tech

School of Engineering

 Hyderabad, India

2111CS020009@mallareddyuniversit

y.ac.in

 Abhinaya.G

 B.Tech

School of Engineering

Hyderabad, India

2111CS020012@mallareddyuniversit

y.ac.in

 Guide: Professor kalyani

 School of Engineering,

 Mallareddy University

Abstract: The Regex Tool project is a web

application that allows users to input a text string

and a regular expression, and then checks for and

displays any matching patterns. The tool is built

using Python and the Django web framework. The

project starts with the installation of Django and the

setup of a new Django project. A new Django app is

then created to handle the functionality of the Regex

Tool. The app includes a view function that receives

input from the user via a form and uses Python's re

module to search for matches in the input string

using the provided regular expression. The results

are then displayed to the user on the same page. The

front-end of the Regex Tool is built using HTML,

CSS, and JavaScript, and uses Django's built-in

template system to render the HTML templates. The

user interface includes two input fields for entering

the text string and the regular expression, as well as

a submit button to initiate the search. The results of

the search are displayed in a table, with each row

representing a matching pattern and the columns

showing the location of the match within the input

string Overall, the Regex Tool project is a useful

tool for anyone who needs to search for and analyze

patterns in text data. It demonstrates the power of

regular expressions and how they can be used in

conjunction with Python to create a practical and

user-friendly web application

Keywords:- Neural network, Convolutional neural

network,

Character Recognition, Regular Expression

 I. INTRODUCTION
Regular expressions, often abbreviated as "regex"

are a powerful tool for working with text. They are

essentially a set of rules and patterns that can be

used to match and manipulate strings of text.

Regular expressions are used in a wide range of

applications, including search engines, text editors,

and programming languages. They can be used to

validate user input, search for specific patterns

within a text document, and perform various other

text manipulation tasks. Some of the most common

uses of regular expressions include:

 •Matching strings of text: Regular expressions can

be used to search for specific patterns or sequences

of characters within a string of text. For example,

you could use a regular expression to find all

instances of the word "cat" within a document.

•Validating user input: Regular expressions can be

used to ensure that user input follows a specific

format or pattern. For example, you could use a

regular expression to ensure that a user's email

address is properly formatted.

•Replacing text: Regular expressions can be used to

replace specific patterns or sequences of characters

within a string of text. For example, you could use

a regular expression to replace all instances of the

word "cat" with "dog" within a document. Regular

mailto:2111CS020007@mallareddyuniversity.ac.in
mailto:2111CS020007@mallareddyuniversity.ac.in
mailto:2111CS020010@mallareddyuniversity.ac.in
mailto:2111CS020010@mallareddyuniversity.ac.in
mailto:2111CS020008@mallareddyuniversity.ac.in
mailto:2111CS020008@mallareddyuniversity.ac.in
mailto:2111CS020011@mallareddyuniversity.ac.in
mailto:2111CS020011@mallareddyuniversity.ac.in
mailto:2111CS020009@mallareddyuniversity.ac.in
mailto:2111CS020009@mallareddyuniversity.ac.in
mailto:2111CS020012@mallareddyuniversity.ac.in
mailto:2111CS020012@mallareddyuniversity.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM23183 | Page 2

expressions can be complex and take some time to

master, but they are a powerful tool for anyone who

works with text on a regular basis In real time, this

tool can be used to quickly and easily search for

specific patterns in a large body of text. For

example, suppose you have a document with

hundreds of email addresses and you need to extract

only the email addresses that end with ".edu". Here's

how you could use the regular expression tool to

accomplish this task: Copy and paste the entire

document into the text input box of the tool. In the

regular expression input box, enter the pattern

"(\w+@\w+.edu)". Click the "Submit" or "Search"

button to initiate the search. The tool will scan the

text and highlight all occurrences of email addresses

that end with ".edu" in the output box. 2 You can

then copy and paste the highlighted email addresses

into a separate document or file for further

processing. This is just one example of how regular

expressions can be used to quickly and efficiently

search for specific patterns in text. The tool can be

used for a wide range of applications, such as extract

-racting phone numbers, identifying URLs,

validating input in forms, and much more.

 II. PROBLEM STATEMENT

Design and implement a program that utilizes

regular expressions to match and extract specific

patterns from text data. The program should take a

user-defined regular expression pattern and a text

input as input and provide the corresponding

matched results as output.

 Features to include:

Regex Pattern Input: The program should allow

the user to enter a regular expression pattern to

match against the input text.

Text Input: The program should accept text input

from the user, which will be processed and matched

against the provided regular expression pattern.

Matching and Extraction: The program should

use the expression pattern to match against the input

text and extract the corresponding matched results.

It should identify all occurrences of the pattern in

the text and provide them as output.

Output Display: The program should display the

matched results, indicating the portions of the text

that match the specified pattern. Additionally, it

should provide any captured groups within the

pattern, if applicable.

regular

 Fig: UML diagram for Regrex

matcher

 III. LITERATURE REVIEW

The use of regular expressions (regex) has become

an integral part of many software applications and

programming languages. A regex matcher project

involves developing an efficient algorithm or tool

that can match patterns specified by regular

expressions against input text. This literature review

aims to provide an overview of relevant research

and advancements in regex matching techniques.

The literature review highlights various regex

matching algorithms and optimization techniques,

ranging from traditional approaches like NFA and

backtracking to more advanced methods like DFA

and NFA simulation. Understanding the strengths

and weaknesses of different algorithms can guide

the development of an efficient and robust regex

matcher project. Additionally, leveraging existing

tools and libraries can provide insights into best

practices and real-world implementations of regex

matching.

 IV. REQUIRED TOOLS

• Python

• Django

• Re-module

 V. METHODOLOGY
Deterministic Finite Automata (DFA): This

algorithm involves building a finite automata

that reads a string character by character and

decides whether the string matches a given

pattern. The DFA is constructed by taking the

regular expression and converting it into a state

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM23183 | Page 3

machine that can recognize strings matching the

pattern. The DFA algorithm is useful for simple

patterns, but it can become quite complex for

more complex patterns.

Non-Deterministic Finite Automata (NFA):

This algorithm works similar to the DFA

algorithm, but it allows for multiple transitions

from a single state on a single input character.

This makes the NFA more flexible than the

DFA and can handle more complex patterns.

The NFA is converted to a DFA to speed up the

pattern matching process.

Thompson's Construction: This algorithm

involves building an NFA by recursively

breaking down the regular expression into sub-

expressions and combining them using

operators such as concatenation, alternation,

and closure. The resulting NFA can then be

used to match strings against the regular

expression.

Backtracking: This algorithm works by trying

all possible paths through a regular expression

until a match is found. It is often used by regex

engines to handle complex patterns that cannot

be handled by the other algorithms.

Recursive Descent Parsing: This algorithm

involves recursively breaking down a regular

expression into sub-expressions and then

recursively matching the string against those

subexpressions. This algorithm is often used by

programming languages to parse regular

expressions and build a parse tree.

 VI. EXPERIMENT RESULTS

 Fig:

 Fig:

 Fig:

 Fig:

 VII. MERITS OF PROPOSED SYSTEM

 The proposed system for a regex matcher project

offers several merits and benefits. Here are some of

them:

Accuracy: The system aims to improve the

accuracy of regex matching by carefully designing

and testing patterns against a diverse set of sample

data. Through iterative refinement and

optimization, it strives to achieve precise matching

results, minimizing false positives and false

negatives.

Flexibility: Regular expressions provide a powerful

and flexible tool for pattern matching. The proposed

system harnesses this flexibility by allowing users

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM23183 | Page 4

to define and customize patterns according to their

specific needs. It enables the matching of complex

patterns and supports various modifiers, quantifiers,

and metacharacters.

Efficiency: The system emphasizes performance

optimization techniques to ensure efficient

matching of regular expressions. By applying

optimizations such as precompilation, minimizing

backtracking, and utilizing efficient quantifiers and

boundary conditions, the system aims to deliver fast

and responsive matching even for large input strings

or complex patterns.

Versatility: Regular expressions can be utilized in

a wide range of applications, including text parsing,

data validation, search functionality, and more. The

proposed system can be integrated into different

software systems or applications to provide regex

matching capabilities, enhancing their functionality

and usefulness.

Documentation and Maintainability: The system

promotes good documentation practices by

documenting the regex patterns, optimizations

applied, and any known limitations. This

documentation helps future developers understand

the implementation and facilitates maintenance,

allowing for easier troubleshooting, bug fixes, or

future enhancements.

Extensibility: The proposed system can be extended

to accommodate additional features or

requirements. As the project evolves, new patterns

can be added, existing patterns can be modified, and

optimizations can be further refined. This

extensibility allows the system to adapt to changing

needs and ensures its long-term viability.

Scalability: The system is designed to handle

varying scales of input data and patterns. Whether

dealing with small strings or large documents, the

proposed system aims to provide efficient and

accurate matching. By optimizing performance and

considering edge cases, it strives to maintain

scalability even as the dataset or pattern complexity

increases.

Cost-Effectiveness: Regular expressions are a cost-

effective solution for pattern matching tasks, as they

are widely available and supported by numerous

programming languages and libraries. The proposed

system leverages these existing resources, reducing

development costs and time-to-market.

 VIII. ARCHITECTURE DIAGRAM

 Fig: Architecture

In conclusion, regular expressions provide a concise

and flexible way to handle complex pattern

matching tasks. They require a certain level of

knowledge and skill to use effectively, but the effort

is well worth it for anyone working with text data

on a regular basis. With regular expressions, you

can quickly and easily search, extract, and

manipulate text data, making it an invaluable tool

for data analysis, web development, and many other

fields.

 X. Future Enhancement:

Regular expressions have been around for several

decades and have already undergone numerous

enhancements and improvements. However, there is

always room for further enhancements, and here are

some potential areas for improvement:

1.Performance optimization: Regular expressions

can be very powerful, but they can also be slow to

Select the

but button

Replace

ment

Matching

Validatio

n

Enter the

string you

want to

search

Enter the

string you

wants to

search

Enter the

string

you

wants to

enter

Enter the

text to

replace

Regular

expression Enter

mail id,

number to

validate

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM23183 | Page 5

execute when working with large data sets. Future

enhancements could focus on optimizing

performance, possibly by using more advanced

algorithms and data structures.

2.Natural language processing: While regular

expressions are excellent at working with structured

data, they struggle with natural language processing

(NLP) tasks such as sentiment analysis or semantic

parsing. Future enhancements could involve

incorporating NLP capabilities into regular

expressions to enable more advanced text analysis.

3.Improved syntax: The syntax for regular

expressions can be difficult to learn and use

effectively. Future enhancements could focus on

making the syntax more intuitive and userfriendly,

possibly by introducing more natural language-like

expressions.

4.Cross-platform standardization: Different

programming languages and platforms may have

their own implementations of regular expressions,

leading to inconsistencies in behavior and syntax.

Future enhancements could involve developing a

cross-platform standard for regular expressions to

ensure consistent behavior across all platforms.

Overall, regular expressions are already a powerful

tool, but there is always room for improvement.

These enhancements could make regular

expressions even more versatile and effective,

enabling them to handle a wider range of text

processing task.

ACKNOWLEDGMENT

We are so thankful to Prof. kalyani of department

Artificial intelligence & Machine learning (AIML)

for her guidance and support. We consider ourself

to be extremely privileged to have been her students.

We benefited enormously from her excellence as a

professor and as a researcher. We are very grateful

to her for being patient and for all her time that she

spent in discussing about the project to guide us. We

are Immensely grateful for her helpful discussion,

support, and encouragement throughout the Project.

We gave our best under her guidance. Finally, we

consider ourselves to be extremely fortunate to have

had the to opportunity to do project under the

guidance of prof. Kalyani. We also express our

heartfelt gratitude to Dr. Thayyaba Khatoon (Head

of the Department), for giving all of us such a

wonderful opportunity to explore ourselves and the

outside world to work on the real-life scenarios

where the Artificial Intelligence is being used

nowadays.

http://www.ijsrem.com/

