
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

SyncLab: A Scalable, Containerized Collaborative Coding Environment

with Embedded OS and Real Time Multimedia Interaction

Syed Hisham Akmal, Saad Hussain, Sumanth P S, Chethan K

Shruthi B M, Assistant Professor, Dept of CSE, JSS STU, Mysore

 Syed Hisham Akmal, Dept of CSE, JSS STU, Mysore

Saad Hussain, Dept of CSE, JSS STU, Mysore

Sumanth P S, Dept of CSE, JSS STU, Mysore

Chethan K, Dept of CSE, JSS STU, Mysore

---***---

Abstract—With increasing needs for remote software

development environments, conventional coding platforms

find it increasingly difficult to provide smooth collaboration,

real time interactions, and safe execution of code in distributed

teams. This paper introduces SyncLab, a contemporary,

browser based collaborative development environment meant

to close these gaps by combining containerized virtual

operating systems, embedded code editors, secure video

conferencing and real time white boarding into one unified

interface. Creating isolated, scalable development sessions

without local installation, SyncLab is developed with the use of

Docker, React, VNC, WebRTC and Agora SDK. The system

focuses on accessibility, this is achieved through noVNC based

desktop virtualization and OAuth2 secured user sessions,

creating a seamless experience for developers, educators and

interviewers. The concepts behind SyncLab’s architecture are

built from existing Desktop-as-a-Service (DaaS) models and

addresses the laminations of existing platforms such as

CodeSandbox, GitHub Codespaces, and Replit. Experimental

implementation and literature evidence emphasizes SyncLab’s

efficiency in resource optimization, user experience and cross

platform, making it an excellent solution to the pending issues

in modern software engineering.

Key Words: Containerization, Collaborative Coding, Docker,

VNC, WebRTC, Desktop-as-a-Service (DaaS), a Virtual

Operating System, noVNC, Agora SDK, Software

Development Tools, Cloud based Development.

1.INTRODUCTION

There has been a radical reshaping of the landscape of

software development during the world-wide move towards
remote and hybrid environments. This transformation has
increased the calls for the existence of platforms that promote
collaborative programming, real time communication, and
simplified infrastructure management. Developers, teachers,
and technical crews are increasingly needing to have
environments not only functional but intuitive, secure, and
scalable as well. Popular for obvious reasons, traditional
Integrated Development Environments (IDEs) and online
editors just do not provide the seamless experience of code
execution, team collaboration, and user interaction over the
web.

SyncLab is a proposed solution for these increasing
demands to provide a browser based fully integrated platform
for development. The environment also provides a
containerized embedded Linux environment with web browser

accessibility utilizing Virtual Network Computing (VNC) and
noVNC technologies. The system provides a Visual Studio
Code-like editor, live collaborative whiteboard, secure file-
sharing interface, and real-time video conferencing without
need for complex local configurations. SyncLab presents an
extension of the DaaS paradigm using the containerization
technologies such as Docker to provide isolated, reproducible,
and environments on demand [1].

The addition of remote desktop access using web protocols;
in the form of VNC and noVNC that are used in tools such as
GUIdock-VNC, also allows for SyncLab to deliver GUI-rich
Linux environments directly in the browser without dependency
on the client-side installation [2]. This is consistent with changes
within the containerization community, where reproducibility,
portability, and graphical interface delivery over the cloud have
become essential requirements [3].

In addition, SyncLab explains several limitations observed
in other platforms. Tools such as Replit, GitHub Codespaces,
and CodeSandbox provide partial support, and this is often
characterized by restricted collaboration alternatives, steeper
learning curves or dependence on third party’s repository. What
makes SyncLab unique is: real time collaborative functions,
built in operating system, ability to support multiple use cases,
and ability to be beginner friendly and then grow in capabilities
of the experts.

The rest of this paper is organized as follows: The related
works and technological foundations that were used to
formulate the SyncLab architecture are discussed in Section II.
Section III outlines the system design such as container
orchestration, virtual access, and session management. The
implementation details are presented in section IV while in
section V, we see the results and performance evaluation.
Finally, Section VI closes the paper and proposes directions for
further work.

2. LITEARTURE SURVEY

In building a dynamic, browser-based collaborative coding
environment, such as SyncLab, several base technologies and
ideas are needed. The literature describes several ways to
support remote accessibility, reproducibility, and support for
GUI in containerized environments. This section recapitulates
some of the central findings of previous works that guided the
architecture and implementation of SyncLab.

A. Desktop-as-a-Service and Seamless Application Delivery

Baun, Bouché provides an extensive analysis of different
DaaS models in the age of current DaaS models and suggest a
novel architecture of a DaaS capable of running unmodified
Linux and Windows desktop applications fully inside a web
browser. The authors emphasize the importance of keeping

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

down dependencies on client-side software and promote
browser delivery of desktop environments via remote III.
METHODOLOGY rendering protocol like VNC and RDPs.
The proposed model supports cross platform app deployment,
session persistence and centralized resource control – all things
which share alignment with SyncLab s objectives.

The paper then goes on to outline an increased demand for
scalable and secure multiplatform access amid the BYOD (bring
your own device) trends specifically in educational and
enterprise environments. These findings justify containerized
workspace and browser level session management in SyncLab
to maintain access and operation consistency across
heterogeneous environments.

B. Graphical Desktop Access Using Browser-Based VNC

Mittal et al. [2] introduce GUIdock-VNC, a solution Mittal

et al. [2] present GUIdock-VNC, a tool meant to enclose

containerized bioinformatics workflows in a browser accessible

GUI using Virtual Network Computing (VNC) and noVNC. By

using HTML5 and WebSockets, GUIdock VNC allows

complete graphical interaction inside normal web browsers

unlike X11-based methods. It lessens user-side configuration

load and does away with the need for specialized client software.

The authors show that launching complicated, GUI

intensive programs like Cytoscape inside Docker containers,

accessed effortlessly via a browser interface, is possible. Well

suited for use in cloud environments with strong access control

systems, GUIdock-VNC also supports OAuth2 authentication.

SyncLab's design is built on these ideas, particularly in its

embedded virtual operating system, secure login system, and

noVNC-driven graphical interface.

C. Containerization for Simulation and Visual Performance

Liang [3] looks at Project Chrono, a physics-based multi

physics simulation library, and how it works with Docker

containers. By providing pre-configured environments through

Docker, the study seeks to simplify difficult software builds and

improve reproducibility. Particularly important is the inclusion

of noVNC and XFCE for browser-based real time simulation

visualisation. Running GUI apps in containers, according to

Liang, causes little performance loss and greatly simplifies the

user experience by means of abstraction of dependency control.

The project also demonstrates how GPU-accelerated

applications—e.g., NVIDIA CUDA-based simulations—can be

run from inside containers, so offering insight on handling

compute-intensive activities remotely. SyncLab keeps

responsiveness by means of effective resource orchestration and

browser-based rendering even as it uses Docker to provide

embedded coding environments and user-defined scripts, hence

adopting a comparable approach.

These studies taken together emphasize the need of

integrating containerization, remote GUI access, and safe

session management to provide a smooth cloud-native

development experience. SyncLab combines these concepts into

a single collaborative platform comprising video conferencing,

real-time code editing, whiteboarding, and file sharing,

therefore providing an all-in-one solution for distributed

development and education.

3. METHODOLOGY

The foundation of SyncLab's development is a
containerized, modular architecture intended to offer a smooth,
browser-based collaborative coding environment. The
technological stack, architectural choices, integration
procedures, and system workflows that underpin SyncLab's core
functionality are described in this section. Best practices in real-
time communication, remote GUI access, and containerization,
as noted in earlier studies [1]– [3], inform the methodology.

A. Containerized Virtual Operating Environment

An embedded Linux operating system running in a Docker
container serves as the central component of SyncLab,
providing a safe and separate workspace for every user session.
Docker is selected due to its portability, reproducibility, and
lightweight virtualization, which enable quick environment
instantiation across networks and devices. Because each
workspace comes pre-configured with the necessary
development tools, editors, and terminal access, users are
guaranteed not to have to carry out any local installations or
system configuration.

A new Docker container is dynamically spawned by the
/api/new-instance API endpoint, which starts the container
creation process. The container is registered in the PostgreSQL-
backed session database, and a Redis-based port management
system is used to assign a unique VNC port.

B. GUI Access via VNC and noVNC

SyncLab uses noVNC, an HTML5-based VNC client, on

the frontend and a VNC server (TigerVNC) operating inside the

container to offer browser-based access to the containerized

operating system. This feature enables users to use a web

browser to interact with a complete GUI environment, including

editors, file explorers, and terminals.

This design makes the platform accessible from any device

that supports contemporary web standards and does away with

the need for specialized desktop software. By providing cross

platform compatibility, real-time rendering, and lower

bandwidth consumption through differential screen updates,

noVNC is in line with the tactics suggested in [2] and [3].

C. Real-Time Code Collaboration and Whiteboarding

SyncLab offers a real-time collaborative whiteboard built

with WebSocket-based bi-directional communication to

improve teamwork beyond code. This feature, which is essential

for design discussions, interview situations, and educational use

cases, enables users to collaboratively sketch, annotate, and

visualize concept.

D. Secure Video Conferencing Integration

There is no need to switch between apps because video

conferencing is an integrated feature in every room. Joining

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

audio/video channels requires secure token-based.

authentication.

E. File Management and Custom Scripts

To facilitate resource sharing, users can upload and

download code files and folders from within the workspace

using RESTful API endpoints (/api/upload/:roomId,

/api/download/: roomId). Uploaded files are mounted into the

active Docker container, ensuring they are immediately

accessible in the GUI environment.

Additionally, SyncLab supports custom scripts during

room creation, enabling predefined tasks, data setup, or

environment-specific configurations. These scripts are executed

automatically upon container initialization, offering flexibility

for educators, project leads, and automation enthusiasts.

F. Authentication and Session Persistence

Clerk, a third-party authentication provider, manages user

authentication and is integrated with PostgreSQL to preserve

workspace snapshots, user profiles, and session logs. Role based

access control (RBAC) and OAuth2 integration are enabled by

the system, guaranteeing safe and efficient login procedures.

Redis is used to map rooms to the corresponding Docker

instances to preserve session state. A consistent user experience

requires that users be able to reconnect to their prior sessions

without losing any data in the event of a disconnection.

G. System Workflow Overview

The entire system follows this sequence:

1. Authentication: Users log in via Clerk OAuth2;

backend verifies credentials and creates a user

session.

2. Room Creation: A new Docker container is

instantiated with a unique VNC port and

initialized with optional scripts.

3. Room Access: noVNC connects the user’s

browser to the container's GUI over WebSockets.

4. Collaboration: Users engage in real-time coding,

whiteboarding, and video conferencing.

5. Persistence: Files and snapshots are saved to

PostgreSQL for retrieval or analysis.

Fig. 1: Architecture Diagram

4. RESULT AND DISCUSSION

Several feature-level validations were carried out to assess
SyncLab's practical performance and teamwork effectiveness.
Concurrent accessibility, modular container behavior, dynamic
environment provisioning, and overall system stability under
load were all highlighted in these tests. Workspace isolation,
package customization, resource management, and
collaboration tools are among the essential elements that have
been verified.

A. Functional Validation

1) Workspaces

Users can work in several separate development
environments in the same collaborative space thanks to
SyncLab's workspace feature. This feature guarantees that every
user, or group of users, can operate freely and independently. A
distinct file system structure, a specific VNC port mapping, and
an isolated collection of active processes are all maintained by
the Docker container that supports each workspace. For
instance, Workspace 2 is completely independent under
/home/user2/CodeFiles, whereas Workspace 1 functions with
its own directory structure at /home/user1/CodeFiles. To
prevent graphical session routing overlap, the containers linked
to these workspaces are mapped to distinct ports, such as 6080
and 6081.

An array of websockify port mappings for every active room
is stored in the backend system, which is built with Node.js and
Express and uses Prisma as the ORM. The task of dynamically
updating the active workspace and rerouting user sessions to the
proper container falls to an endpoint called /api/switch-
workspace. A dropdown interface on the frontend makes it
simple for users to switch between the available workspaces.
The active workspace ID and port are maintained by React's
state management, which guarantees that the VNC viewer
reconnects properly without session loss or graphical issues. By
supporting several separate coding environments in one room,
this architecture prevents resource conflicts like file collisions
and port contention.

2) Custom Package Installation

SyncLab offers an integrated package installation

mechanism that allows for flexible and secure environment

customization. With the help of this feature, users can

customize their workspace to meet development needs by

installing new software packages on demand within their

isolated containers. Users engage with a responsive package

selector on the frontend, which was constructed with

PACKAGE_LIBRARY.js. Packages are arranged according to

their functions, such as text editors, networking tools, and

development tools. To improve usability, the interface offers

real-time search, filtering, and multi-selection.

To prevent malicious or superfluous installations, the

backend first verifies the chosen packages against a

predetermined security policy before processing these requests.

After validation, the server runs a docker exec command, which

installs the package inside the appropriate container. The

installation procedure is atomic to preserve system integrity,

and intermediate states are closely monitored to prevent

discrepancies. Additionally, SyncLab has sophisticated

features that let users save and restore their container's custom

states, like environment snapshotting via docker commit. A

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

transparent and effective installation process is ensured by the

integration of dependency resolution and progress monitoring

features.

3) Port and Resource Management

For SyncLab to scale across several concurrent sessions

without experiencing system failure or contention, effective port

and resource management is essential. A distinct set of ports is

needed for WebSocket communication and VNC connections in

every room and workspace in SyncLab. SyncLab uses Redis as

a central repository for port availability tracking to make this

possible. To guarantee that no two sessions are given the same

port, the system makes an atomic reservation of ports from the

Redis pool whenever a new room or container is created.

SyncLab starts a systematic cleanup procedure when users

exit a room. The associated container receives a SIGTERM

signal from the backend server, which initiates a graceful

shutdown. Docker rm -f is used to forcefully remove the

container if it does not terminate within the specified timeout

period. The backend removes the room metadata from the

Prisma-managed PostgreSQL database and returns the ports to

the Redis pool after container termination. An API endpoint at

/api/leave-room/: roomId is used to manage this lifecycle, and a

background worker keeps an eye out for any orphaned

containers or unreleased ports to ensure system availability and

hygiene.

4) Whiteboard and In-Room Chat

SyncLab incorporates a live whiteboard and real-time chat
system into every session to further improve collaborative
development. The whiteboard, created with the Fabric.js library,
offers an interactive canvas with basic diagramming tools,
object manipulation, and freehand drawing capabilities.
Updates made by one participant are immediately reflected for
other participants in the room because WebSocket connections
synchronize the canvas state across all users.

The in-room chat feature, which allows participants to text

each other in real time, is a great addition to the whiteboard. To

reduce latency and provide a lightweight messaging layer that

functions independently of other components, the chat is

implemented using raw WebSocket protocols. Users can

participate in design discussions, offer feedback, or exchange

ideas without ever leaving the development environment thanks

to this dual system of textual and graphical communication,

which increases engagement and productivity.

The system was tested by multiple users across different

operating systems and browsers (Windows, macOS, Linux,

Chrome, and Firefox). Each user was able to:

• Authenticate using OAuth2 (Google, GitHub, Email).

• Successfully create a room and instantiate an isolated

Ubuntu/ Kali/ Debian container.

• Access a full Linux GUI environment in-browser

using noVNC with minimal latency.

• Execute development tasks such as code editing,

compilation, and system navigation.

B. Comparison with Related Work

1) Compared to GUIdock-VNC [2]

GUIdock-VNC provided a foundational structure for GUI

container deployment over web. However, SyncLab extends

this concept by introducing:

• Real-time port allocation via Redis

• Persistent session storage via PostgreSQL

• OAuth2-based multi-provider authentication

While GUIdock-VNC emphasized single-session

containers, SyncLab supports multi-session environments with

authentication and isolation built-in.

2) Compared to Project Chrono + Docker Integration [1]

 Though [1] focused on Docker use for simulation

orchestration, SyncLab applies Docker in an interactive, user

centric scenario. SyncLab’s port-mapped architecture and

browser-based accessibility present a more direct, GUI focused

use-case compared to the simulation-heavy approach in [1].

3) Compared to Web-Based Desktop Virtualization [3]

 The architecture in [3] highlights containerized desktop

applications. SyncLab advances this by integrating web native

GUI access (via noVNC), centralized session orchestration, and

lightweight backend logic with containerized resource

provisioning.

5. CONCLUSION

This paper presented SyncLab, a lightweight, container
based virtual development environment that provides browser-
accessible Linux GUIs using Docker, noVNC, and a Node.js-
based orchestration layer. The system successfully addresses
challenges in remote software development, such as
environment setup complexity, resource isolation, and
accessibility, by leveraging modern containerization and real
time communication technologies.

Key findings from the implementation and evaluation
include:

• Browser-Based GUI Accessibility: Through
noVNC integration, users experienced a responsive
Linux GUI environment directly within their web
browser, with minimal input lag.

• Scalability and Reliability: The system supported
concurrent multi-user sessions with minimal
resource contention, thanks to Redis-based
dynamic port allocation virtualization. and
Docker's lightweight

• Secure and Extensible Architecture: Integration
with OAuth2 providers ensures secure user
authentication and facilitates role-based access,
laying the groundwork for educational, enterprise,
or team-based applications.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

Compared to existing literature and tools, SyncLab extends
functionality by combining session persistence, scalable
container deployment, and real-time web-based GUI interaction
into a unified platform. These results have practical implications
for educational institutions, hackathon platforms, remote teams,
and cloud-based IDE services.

Future work will focus on integrating GPU support,
adopting WebRTC for lower-latency communication, and
developing automated resource cleanup and session analytics
dashboards to enhance usability and maintainability.

REFERENCES

[1] C. Baun and J. Bouché, “Closing the Gap between Web

Applications and Desktop Applications by Designing a Novel
Desktop-as-a-Service (DaaS),” Open Journal of Cloud
Computing, vol. 8, no. 1, 2023.

[2] V. Mittal et al., “GUIdock-VNC: Using a Graphical Desktop
Sharing System to Provide a Browser-Based Interface for
Containerized Software,” GigaScience, vol. 6, 2017.

[3] T. Liang, “Integration of Docker Containers and Project Chrono,”
Simulation-Based Engineering Lab, University of Wisconsin-
Madison, Technical Report 2023-04.

[4] R. Afreen, “Bring your own device (BYOD) in higher education:
Opportunities and challenges,” International Journal of Emerging
Trends & Technology in Computer Science, vol. 3, no. 1, pp.
233–236, 2014.

[5] M. Afrin, J. Jin, A. Rahman, A. Rahman, J. Wan, and E. Hossain,
“Resource Allocation and Service Provisioning in Multi-Agent
Cloud Robotics: A Comprehensive Survey,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 2, pp. 842–
870, 2021.

[6] S. A. Algarni, M. R. Ikbal, R. Alroobaea, A. S. Ghiduk, and F.
Nadeem, “Performance evaluation of xen, kvm, and proxmox
hypervisors,” International Journal of Open-Source Software and
Processes (IJOSSP), vol. 9, no. 2, pp. 39–54, 2018.

[7] M. Amaral, “Kubevirt scale test by creating 400 vmis on a single
node,” in Free and Open-source Software Developers’ European
Meeting, 2022.

[8] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
USENIX annual technical conference, FREENIX Track, vol. 41.
California, USA, 2005, p. 46.

[9] A. Binu and G. S. Kumar, “Virtualization techniques: a methodical
review of XEN and KVM,” in Advances in Computing and
Communications: First International Conference, ACC 2011,
Kochi, India, July 22-24, 2011. Proceedings, Part I 1. Springer,
2011, pp. 399–410.

[10] M. Bolte, M. Sievers, G. Birkenheuer, O. Nieh orster, and A.
Brinkmann, “Non-intrusive ¨ virtualization management using
libvirt,” in 2010 Design, Automation & Test in Europe
Conference & Exhibition (DATE 2010). IEEE, 2010, pp. 574–
579.

http://www.ijsrem.com/

