
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 04 | APRIL - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM7171 | Page 1

Systematic Approach to Prevent Code Vulnerabilities using CI/CD Pipelines

Kamalakar Reddy Ponaka

kamalakar.ponaka@gmail.com

Abstract — This paper discusses a systematic approach to

integrating Static Application Security Testing (SAST), Software

Composition Analysis (SCA), Code Coverage, and Code Quality

Checks into Continuous Integration/Continuous Delivery (CI/CD)

pipelines. Modern CI/CD pipelines accelerate software delivery but

introduce significant security and quality challenges. By

incorporating SAST and SCA for security testing, along with code

coverage and quality checks, organizations can prevent code

vulnerabilities and ensure the maintainability and reliability of their

applications. This approach helps development teams shift security

and quality controls left, catching issues early in the development

lifecycle.

Keywords — CI/CD, DevSecOps, Static Application Security

Testing (SAST), Software Composition Analysis (SCA), Code Coverage,

Code Quality, Vulnerability

I. INTRODUCTION

Continuous Integration and Continuous Delivery (CI/CD)
pipelines have become essential for rapid software development
and delivery. However, as speed increases, security vulnerabilities
and code quality issues often emerge, creating risks for production
environments. To mitigate these risks, organizations must
integrate robust security and quality measures into their CI/CD
workflows. This paper presents a systematic approach to
preventing code vulnerabilities and enforcing code quality by
integrating Static Application Security Testing (SAST), Software
Composition Analysis (SCA), code coverage, and code quality
checks within the CI/CD pipeline.

II. PIPELINE PHASES

A typical CI/CD pipeline includes the following stages:

Source Code Management: Developers commit code to a

version control system (e.g., Git).

Build: The application is compiled, and build artifacts are

generated.

Verify/Test: Automated testing, including unit tests, security

scans, and code quality checks, is performed.

Publish: Publish the generated package and tag with version

number.

Deployment: The application is deployed to testing or

production environments.

III. SECURITY AND QUALITY CHALLENGES IN CI/CD

PIPELINES

CI/CD pipelines consist of several stages, including code

integration, automated testing, and deployment. While this

process increases development speed, it also exposes software to

various security risks and quality issues, such as:

a) Insecure Code: Poor coding practices lead to

vulnerabilities like SQL injection and Cross-Site

Scripting (XSS).

http://www.ijsrem.com/
mailto:kamalakar.ponaka@gmail.com

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 04 | APRIL - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM7171 | Page 2

b) Third-Party Dependencies: Vulnerabilities in third-party

libraries introduce risks into applications, which are often

overlooked in security testing.

c) Low Test Coverage: Insufficient test coverage can leave

critical parts of the application untested, resulting in

undetected bugs and vulnerabilities.

d) Poor Code Quality: Poorly structured, unmaintainable

code increases technical debt and the likelihood of

security breaches due to hidden bugs and complexity.

IV. STATIC APPLICATION SECURITY TESTING (SAST)

SAST involves the static analysis of source code for security

vulnerabilities before the code is compiled or executed. As a

white-box testing technique, SAST identifies issues such as SQL

injection, buffer overflows, and cross-site scripting (XSS) in the

early stages of development.

A. Benefits of SAST

• Early Detection of Vulnerabilities: SAST scans code

as it is written, enabling the early detection of

vulnerabilities.

• Integration in CI/CD: SAST can be integrated into

CI/CD pipelines to scan code after each commit,

ensuring continuous security.

• Comprehensive Coverage: SAST tools analyze code

for a wide range of vulnerabilities across different

programming languages.

B. Challenges of SAST

• False Positives: SAST tools may generate false

positives, requiring manual review to confirm the

relevance of detected vulnerabilities.

• Complexity: Interpreting SAST results requires skilled

developers who understand security issues and how to

resolve them.

V. SOFTWARE COMPOSITION ANALYSIS (SCA)

SCA tools focus on analyzing third-party dependencies for

known vulnerabilities. Many modern applications rely on open-

source libraries and frameworks, which can introduce

vulnerabilities if not properly managed.

A. Benefits of SCA

• Dependency Vulnerability Management: SCA

ensures that third-party libraries are free from known

vulnerabilities.

• License Compliance: SCA helps organizations ensure

that open-source licenses comply with legal

requirements.

• Continuous Monitoring: SCA tools continuously

monitor dependencies for new vulnerabilities, alerting

teams when remediation is required.

B. Challenges of SCA

• Complex Dependency Trees: Managing vulnerabilities

in large dependency trees, where libraries depend on

other libraries, can be challenging.

• False Positives: Some vulnerabilities identified by SCA

tools may not be exploitable in the context of the

application, leading to false positives.

VI. CODE COVERAGE

Code coverage measures the percentage of source code

executed during testing. By increasing code coverage,

organizations can ensure that a larger portion of the codebase is

tested, reducing the risk of untested vulnerabilities or bugs.

A. Types of Code Coverage

a) Line Coverage: Measures the percentage of lines of

code executed during testing.

b) Branch Coverage: Measures how many control

structures (e.g., if statements) are executed.

c) Function Coverage: Measures the percentage of

functions or methods executed during testing.

B. Benefits of Code Coverage

• Better Test Assurance: Ensures that critical parts of the

application are tested.

• Early Bug Detection: Uncovers untested code paths

that may harbor bugs or vulnerabilities.

C. Challenges of Code Coverage

• Quality vs. Quantity: High coverage percentages do

not necessarily mean effective testing. It is essential to

ensure that tests are meaningful and validate critical

functionality.

VII. CODE QUALITY CHECKS

Code quality checks ensure that code is maintainable,

readable, and follows industry best practices. Tools such as

SonarQube and CodeClimate evaluate code based on metrics

like cyclomatic complexity, duplication, and maintainability.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 04 | APRIL - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM7171 | Page 3

A. Key Code Quality Metrics

a) Cyclomatic Complexity: Measures the complexity of

code by evaluating control flow paths. Higher

complexity makes code harder to maintain and test.

b) Code Duplication: Identifies duplicate code, which can

increase maintenance overhead.

c) Maintainability Index: Provides an overall score

indicating how maintainable the code is.

B. Benefits of Code Quality Checks

• Improved Maintainability: Enforcing best practices

reduces technical debt and increases code readability.

• Reduced Risk of Bugs: Cleaner, more maintainable

code is less prone to bugs.

C. Challenges of Code Quality Checks

• Developer Overhead: Enforcing strict code quality

checks can slow down development if not optimized.

• Balancing Style and Functionality: Focusing too

much on style-related issues can detract from addressing

functional bugs.

VIII. INTEGRATING SAST, SCA, CODE COVERAGE, AND

CODE QUALITY IN CI/CD PIPELINES

The following steps describe how to systematically integrate

SAST, SCA, code coverage, and code quality checks into CI/CD

pipelines:

A. SAST Integration

a) Pre-Commit Hooks: Run SAST scans before code is

committed to the repository to detect early

vulnerabilities.

b) Automated Scans in Pipeline: Configure automated

SAST scans to run during the build phase.

c) Feedback and Remediation: Notify developers

immediately when vulnerabilities are detected and

require remediation before progressing.

B. SCA Integration

a) Automated Dependency Scanning: Use SCA tools to

scan dependencies for known vulnerabilities during the

build process.

b) Fail on Critical Vulnerabilities: Block deployments if

high/critical vulnerabilities are detected in third-party

libraries.

c) Automated Dependency Updates: Implement tools like

Dependabot or Renovate to automatically update

vulnerable dependencies.

C. Code Coverage Integration

a) Test Coverage Tools: Use tools such as JaCoCo for Java

or pytest-cov for Python to measure code coverage.

b) Coverage Thresholds: Set coverage thresholds (e.g.,

80%) and fail builds if the threshold is not met.

c) Reporting: Generate detailed coverage reports and share

them with development teams to improve test coverage.

D. Code Quality Integration

a) Automated Quality Analysis: Use SonarQube or

CodeClimate to automatically analyze code for quality

metrics.

b) Quality Gates: Set quality gates that block the build if

critical code smells or high complexity issues are

detected.

c) Track Technical Debt: Use code quality tools to track

and manage technical debt over time.

CONCLUSION

Integrating SAST, SCA, code coverage, and code quality checks

into CI/CD pipelines ensures that security and quality are

addressed continuously throughout the development lifecycle.

By shifting left and incorporating these tools early, development

teams can reduce vulnerabilities, improve code quality, and

deliver more secure, maintainable software.

REFERENCES

[1] A. M. Davis, "Cross-site scripting vulnerabilities," IEEE Security &

Privacy, vol. 9, no. 5, pp. 77-80, 2011.

[2] S. M. Bellovin, "Static analysis and software security: A work in progress,"
IEEE Security & Privacy, vol. 5, no. 4, pp. 76-79, 2007.

[3] M. Beller, G. Gousios, and A. Zaidman, "Oops, my tests broke the build:
An empirical study of CI build failures," in Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR), 2017, pp. 123-131.

[4] H. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, "Beyond heuristics:
Learning to classify vulnerabilities and predict exploits," in Proceedings of
the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2010, pp. 105-114.

[5] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Boston, MA: Addison-
Wesley, 2010.

[6] A. L. Bucchiarone, S. Gnesi, P. Pelliccione, and G. Polini, "Continuous
integration of model-based techniques into DevOps," IEEE Software, vol.
35, no. 1, pp. 66-71, 2018.

[7] R. Jenkins, "Automating security checks in CI/CD pipelines," IEEE
Computer, vol. 52, no. 11, pp. 30-37, 2019.

[8] O. Alhazmi and Y. Malaiya, "Quantitative vulnerability assessment of
systems software," in Proceedings of the 2005 International Symposium on
Software Reliability Engineering (ISSRE), 2005, pp. 323-333.

[9] G. Catolino, F. Palomba, D. A. Tamburri, and F. Ferrucci, "Improving code
quality with code smell diversity-aware analysis," IEEE Transactions on
Software Engineering, vol. 48, no. 2, pp. 282-301, 2022.

[10] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict component
failures," in Proceedings of the 28th International Conference on Software
Engineering (ICSE), 2006, pp. 452-461.

http://www.ijsrem.com/

