
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17487 | Page 1

Systematic Review of Common Web-Application Vulnerabilities

Arhant Bararia1, Ms. Vandana Choudhary 2

1 Information Technology scholar at Maharaja Agrasen Institute of Technology, Delhi-India
2 Assistant Professor, Department of IT, Maharaja Agrasen Institute of Technology, Delhi-India

---***---
Abstract - Organizations are increasingly worried about

web application vulnerabilities because they can be used by

cybercriminals to access private data without authorization. In

this review, we examine the current state of the vulnerabilities

in the web application layer. We begin by discussing the

different types of vulnerabilities that can affect web

applications, including cross-site scripting (XSS), brute force,

SQL injection, and cross-site request forgery (CSRF) attacks.

And then for each vulnerability, we discuss the various

approaches that have been developed to detect and prevent

these vulnerabilities. Finally, we discuss the challenges and

limitations of current approaches and suggest directions for

future research.

Key Words: web application, vulnerabilities, cyber-security,

SQL injection, XSS, CSRF. .

1. INTRODUCTION

[1]. Application software that is hosted on a server and made

accessible through the internet is a web application. Web apps

are extremely risky from a security standpoint since they fully

depend on the open internet. The fact that web applications

are comprised of several layers, including the client layer, the

application layer, and the data layer, makes it challenging to

ensure their security. Since security must be guaranteed at all

tiers of the web application, the security mechanism must be

created accordingly.

Web application vulnerabilities are weak points or faults that

an attacker could use to obtain access without authorization,

steal sensitive information, or carry out other malicious

activities. Numerous factors, such as insufficient input

validation, unsafe coding techniques, and inappropriate

configuration of the web application or its supporting

infrastructure, might lead to these vulnerabilities.

[4] There are many different types of web application

vulnerabilities, some of the most common ones and the ones

we are going to discuss include:

• Password Guessing Attack: A crucial step in gaining

access to a web application is authentication. By

guessing the password, the attacker can gain access

to the system or application in a password guessing

attack. Because of the availability of numerous

automated programs like Cain and Abel, John the

ripper, Hashcat, Hydra, etc., passwords are now

fairly simple to crack. Two methods of password

guessing attacks exist:

• Brute Force Attack

• Dictionary Attack

• SQL injection: This vulnerability occurs when an

attacker can execute malicious SQL statements by

injecting them into a web application's input fields.

This can allow the attacker to access or modify

sensitive data stored in the database.

• Cross-Site Scripting (XSS): This flaw enables an

attacker to insert malicious code (like JavaScript)

into a web page, which is then executed by unwary

site visitors. Sensitive information can be stolen with

this, such as login credentials, or to perform other

malicious actions.

• Cross-Site Request Forgery (CSRF): In order to send

a request to a server of a web application without the

user's knowledge or consent, an attacker must

deceive the user. This attack can be used to carry out

tasks on the user's behalf, like making financial

transfers or changing private data.

Organizations should regularly check their web apps for

vulnerabilities because there are numerous varieties of web

application vulnerabilities and implement appropriate controls

to prevent attacks. We restrict our discussion of the

aforementioned vulnerabilities to those in this review study.

2. PASSWORD GUESSING ATTACK

"Password cracking" is the process of attempting to decipher

or obtain a password that has been saved or communicated by

a computer system. One common method of doing this is to

try different combinations of characters until the correct

password is found. [2]People often choose weak passwords,

such as simple words found in dictionaries, personal

information such as family names, or predictable patterns such

as alternating vowels and consonants (usually examined fewer

than six or seven characters) or recognizable patterns (such as

leetspeak's alternating vowels and consonants, which turns

"password" into "p@55w0rd").).

 One way to increase the chances of successfully cracking a

password is to create a list of words that are specifically

targeted towards the person or system being attacked, using

information such as company websites or personal social

media profiles. As a final option, it is feasible to use a

technique known as a brute force attack to test every possible

password combination. Even if this approach has a chance of

working, the time it takes to use it grows with the length of

the password and the number of password combinations does

as well.

Brute force attacks can be particularly effective against web

applications that have weak password policies, as they allow

an attacker to try a large number of different combinations

without being detected. To prevent brute force attacks, it is

important for web application administrators to enforce strong

password policies and to use measures such as rate limiting

and CAPTCHAs to prevent automated login attempts.

Additionally, it is a good idea to use two-factor authentication,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17487 | Page 2

which requires the user to provide an additional form of

verification in addition to their password.

2.1 PREVENTING BRUTE-FORCE ATTACKS

[3] Here are some recommendations for avoiding brute-force

attacks:

1. Use a strong password.

The simplest and most efficient strategy to prevent

brute force attacks is to have a strong password

policy. For any online application or public server,

you should make complicated passwords that cannot

be guessed yet are also manageable to remember.

30% of recycled or changed passwords can be

cracked in 10 attempts.

2. Limit login attempts.

Most websites allow an unlimited number of logins,

but you can use plugins to limit login attempts or

block brute-force attacks. Someone's IP address can

be blocked from accessing that website for a while if

they attempt to log in more frequently than the

number of permitted logins.

3. Use two-factor authentication (2FA):

Two-factor authentication (2FA) is a security

measure that requires users to verify their identity

before being granted access to their accounts. For

example, you might be required to enter your login

credentials and a code sent to your mobile phone in

order to access your account.

4. Use CAPTCHAs.

The acronym CAPTCHA stands for Completely

Automated Public Turing Test to Tell Computers and

Humans Apart. In general, CAPTCHAs are

challenging for automated computer programs to

solve but simple for humans.

5. Use a unique login URL

Another challenging and time-consuming step for an

attacker is creating distinctive login URLs for

various user groups. You are not required to end

brute force attacks. It might, however, discourage

unhindered attacks.

6. Web Application Firewall (WAF)

The Web Application Firewall (WAF) offers

sufficient defense against brute force attacks that try

to obtain access to your system without

authorization. In general, it limits the number of

requests made while in transit from a source to a set

of URLs.

3. SQL INJECTION

By inserting malicious code into a SQL statement, an attacker

can use the SQL injection attack (SQLIA) type to modify a

website's database. This can be done through a variety of

means, such as through a website's form field or a URL

parameter.

Website's database is typically accessed through a SQL

statement that is constructed by the website's code. This

statement might contain user input, such as a search query or a

login username and password. If an attacker is able to inject

their code into this statement, they can potentially access

sensitive data, modify it, or even delete it.

One common way that attackers can inject their code is by

including it in a form field or URL parameter that is not

properly sanitized. For example, if a website has a search

form that allows users to search for products, an attacker

could enter malicious code in the search field that is then

passed to the database as part of the SQL statement.

To protect against SQL injection attacks, it is important to

sanitize all user input and use prepared statements when

constructing SQL statements. It is also a good idea to use an

input validation library or framework to help ensure that user

input is safe.

3.1 TECHNIQUES OF SQL INJECTION ATTACKS

This section reviews the [5] techniques of SQL injection:

1. Tautologies: SQL database derivation is the main

objective of this attack. By requiring that the

condition statement return all true values, it inserts a

query into the database. This provides an attacker

with all of the table's information. Finding the

username and password of the users recorded in the

database is simple after access to the table has been

achieved.

Example:

SELECT * FROM user WHERE username =

“admin” AND password = ‘ ‘ OR 1=1

#”

2. Logical Incorrect Queries: Attackers can leverage

the error messages returned by SQL databases to

learn more about the error's root cause. The error

messages often show information about the table,

column, and circumstances that led to the error.

Example: [6]

SELECT * FROM creditCardUsers

WHERE login=’administrator’ AND

password = convert (int,(select top

1 name from sysobjects where

xtype=’u’))

In this attack error generated is :

” SQL Server's Microsoft OLE DB

Provider (0x80040E07) There was a

problem converting the nvarchar

value "CreditCardsUsers" to an int

column.”

There are 2 things the error message reveals:

i. The server is running a SQL database.

ii. Password is an integer.

3. Union Query: Attackers who utilize code injection

and manipulation to retrieve data from the table

columns can compromise database tables. The urge

to take advantage of security flaws is frequently the

driving force behind this kind of attack.

Example: [6] Someone could attempt to inject the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17487 | Page 3

text:

’UNION SELECT card_number from

DEBIT CARDS where acNo=889005 –

Inserting above in the user field produces following

query:

SELECT * FROM users WHERE user=’’

UNION SELECT cardNumber from

CreditCards where acNo=889005 --

AND pass=’’

For the account "88905", the database returns the

value "cardNumber" in that column. The program

receives the combined result of these two queries

from the database. The value for "cardNumber" is

frequently shown together with the account details in

this procedure.

4. Stored Procedure: Stored procedures are a way of

carrying out SQL commands directly from your

application. They're usually done by injecting SQL

function calls into the database. This attack's

objectives include performing denial of service,

privilege escalation, and remote command execution.

[7,8] Many developers mistakenly believe that by

employing stored procedures while creating Web

applications, they are protected from SQL injection

attacks. In actuality, stored procedures might be

subject to attacks in the same way as regular

programs.

Example: [6]

To determine whether the user's credentials were

successfully authenticated, stored procedure

IS_AUTHENICATED produces a boolean value.

The only requirement for a SQL injection attack is

the injection of the vector SHUTDOWN;— into the

username or password fields.

Following the usual execution of the first query, a

malicious second query is run that shuts down the

database.

5. Piggy-Backed Queries: In this case, the attacker

manipulates the data utilizing the DELETE,

INSERT, and UPDATE clauses after maliciously

injecting ordinary queries to exploit them.

Example:

 SELECT * FROM employees WHERE

username=’raman’ AND pass = ‘’;

DROP TABLE users — ‘

The database would recognize the query delimiter (;)

following the first query and would then carry out the

DROP TABLE query.

6. Alternate Encodings: The attackers use special

characters like ASCII, Unicode, and hexadecimals to

bypass filters that developers have put in place to

protect their systems.

This attack aims to bypass filters and defenses put in

place by the web application's creator.

Example: [7]

This is similarly an example of a piggy-backed

query, however, to get around a filter, DROP

TABLE is encoded in hexadecimal.

SELECT * FROM employees WHERE

user=’adminUser’ ;

exec(char(0x44524f50205441424c45))

– AND pass=’’

3.2 PREVENTION OF SQL INJECTION

ATTACKS

To stop SQL injection attacks, a number of methods are

available. Some of these techniques are just good

programming practices, while others are automated

frameworks. The benefits and limitations of each strategy are

discussed in this section.

1. Defensive Coding Practices: Incorrect input

validation leads to SQL injection vulnerabilities,

which are best avoided by using good coding

techniques.

a) Input examination: SQL injection attacks

can be prevented by checking the input

parameters for validity. For numeric inputs,

this can be done by rejecting any input that

does not consist of only digits.

b) Encoding of inputs: Using functions to

decrypt strings in a way that the database

interprets all meta-characters as regular

characters after being specially encoded.

c) Identification of all input sources: All

sources of information used by developers

when building an application must be

examined. This means that developers must

check all the information they receive, both

from inside and outside the company.

2. Black Box Testing: [9] WAVES is a black-box

technique that Huang and colleagues suggest using to

check web applications for SQL injection

vulnerabilities. The method employs a web crawler

to find all potential SQLIA injection locations in a

web application. By employing machine learning to

direct the testing, this method enhances penetration

testing methods. Like any penetration testing

method, it cannot ensure that the testing will be

finished.

3. Combined Static and Dynamic Analysis: [10] A

method for verifying the type validity of SQL queries

that are created dynamically is JDBC-Checker. This

method can be used to stop attacks that rely on type

mismatches in a dynamically created query string,

but it is not intended to detect and prevent general

SQLIAs. This method's main flaw is that it can only

be used for tautology detection and prevention. [11]

AMNESIA is a model-based approach that combines

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17487 | Page 4

runtime monitoring with static analysis. Before any

queries are submitted to the database, AMNESIA

intercepts them all and compares them to the

statically created models. The database identifies

queries that break the model as SQLIAs and forbids

them from running. This method's main drawback is

that the effectiveness of its static analysis for creating

query models depends on how accurate it is. This

stage could become less accurate and provide false

positives or false negatives depending on the sort of

code obfuscation or query development technique

used.

4. Intrusion Detection System: [12] An intrusion

detection system (IDS) should be used to prevent

SQL injection attacks, according to esteemed

colleagues at Valeur. The machine learning method

used to train this IDS system uses a set of common

application queries. The method creates models of

the normal queries and then keeps track of the

program while it is running to find queries that

deviate from the model.

4. CROSS-SITE SCRIPTING (XSS)

Cross-Site Scripting (XSS) is a form of code injection that

attackers can use to exploit web browsers and gain access to

sensitive data. XSS attacks are typically launched on the client

side, but they can also be exploited on the web server side

through attacks that inject malicious JavaScript payloads. XSS

attacks on web applications can be exploited by crafting and

injecting a malicious JavaScript payload that seems benign

and then executing it within the trust zone of the web

application.

4.1 XSS PAYLOAD INJECTION PROCESS

[13] Usually, malicious JavaScript code is injected into

websites that the victim visits and gets infected. This is only

conceivable if the online application allows user input since

an attacker can include a malicious JavaScript string that will

be rendered as code on the victim's browser. Since the victim

assumes that the post will include only text, the attacker can

include a malicious script:

<script>alert(‘‘XSS Attack’’)<\script>

As a result, when a victim accesses the website, their browser

will now display the warning "XSS Attack" when they click

on this most recent post.

4.2 TECHNIQUES OF XSS ATTACKS.

An Internet user's web browser can run JavaScript code

without necessarily performing bad deeds. In actuality, it runs

in a very constrained environment with very limited access to

the user's login information and a few files on the user's

operating system.

[14] However, when you take into account the subsequent

information, the potential for JavaScript to be malevolent

becomes more apparent.

• Some sensitive user data, including cookies, can be

accessed by JavaScript. JavaScript is now potentially

a dangerous source as a result of this.

• JavaScript may use XMLHttpRequest and other

techniques to send HTTP requests with any content

to any destination.

• JavaScript is capable of modifying the contents of

tags, attributes, and elements on the current page in

addition to other HTML manipulations.

[14] A website's cookies can be accessed by an attacker using

cookie theft, and those cookies can be exploited to retrieve

sensitive data like session IDs.

[14] Keylogging poses a significant security risk. A keystroke

event listener can be registered by an attacker, who can then

broadcast every keystroke the user makes to his own server,

potentially collecting sensitive data.

Attackers might stealthily obtain your personal information by

using phishing. They can modify the DOM of the website by

introducing a fake login form and setting the form's action

property to point at their own server. The attacker can exploit

the information the user submits to gain control of their

account. [14]

Jakob Kallin [14] states that there are 3 different forms of

XSS attacks:

• Persistent XSS attack / Stored XSS

• Non Persistent XSS / Reflected XSS

• DOM Based XSS

1. Persistent XSS: An attacker might inject malicious

code into a vulnerable website or web application, which

would then be stored in server and served to additional

users who visit the website, leading to a persistent XSS

(stored XSS) attack. Persistent XSS is a type of

vulnerability that can be particularly harmful because it

targets websites that allow users to share content. This

could include forums, blogs, email servers, or other

websites where users can share information.

.

[15] If persistent XSS assaults are not adequately

addressed, they can have a devastating and long-lasting

impact on your applications. Similar to a pandemic, once

it's established on a victim's website, anyone who visits it

may become ill. The visitor doesn't have to click on a

malicious link in order for the payload to be executed (as

is the case with Non-Persistent XSS). All they need to do

is go to an infected website.

2. Non-Persistent XSS: The victim of a reflected XSS

attack is duped into sending a malicious string along

with their request to a website. The response that is

sent back to the recipient then contains this malicious

string.

Reflected XSS is a type of attack in which the

attacker tricks the victim into sending a request that

includes a malicious string. This type of attack is

difficult to perform, as the victim would need to

willingly send a request that includes the malicious

string.

In fact, there are at least two typical methods for

getting a victim to conduct an XSS assault back at

himself:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17487 | Page 5

• If the user wants to fool a specific individual

into visiting a harmful URL, they can send them

one.

• The attacker can post a malicious URL on his

website or a social media platform, wait for

people to click it, and then use it to target a huge

number of people.

Both of these techniques can be more effective when a

URL shortening service is used to hide the malicious string

from users who might otherwise be able to recognize it.

3. DOM-based XSS: An XSS attack known as DOM-

based XSS occurs when the legal JavaScript on the

page is first performed before the malicious string is

actually parsed by the victim's browser.

The way DOM-based XSS operates is as follows:

• The attacker makes a URL that contains a

malicious string and transmits it to the victim.

• The victim is misled into requesting a website for

a URL.

• The response from the website did not contain the

harmful string.

• The browser runs the script in the response, which

results in the malicious script being put into the

page.

• The attacker added the malicious script to the

website, which transmitted the victim's cookies to

the attacker's server.

4.3 PREVENTING XSS ATTACK

Input sanitization is the process of removing anything that

could potentially harm the application. This can be done by

removing white-space characters, removing characters that are

not allowed in the application, or removing characters that are

harmful if entered incorrectly. The process of making sure the

input is correct and complies with the application's criteria is

known as input validation. This can be done by checking for

specific values, ensuring that the characters are in the correct

order, or checking for errors.

There are two essentially distinct approaches to safe input

handling that a web developer can take:

• User input is converted through the process of

encoding so that the browser can read it without

misinterpreting it as code.

• The process of validation makes sure that user input

is secure and free of dangerous directives.

Both methods of preventing XSS involve checking to make

sure that the data you are submitting is not malicious.

5. CROSS-SITE REQUEST FORGERY

A cyber-attack known as a cross-site request forgery (CSRF)

tricked victims into unintentionally acting on the attacker's

behalf. CSRF attacks take advantage of a weakness in web

applications' security that makes it impossible to distinguish

between a user's genuine request and one made during an

authenticated session.

Social engineering tactics are frequently used in CSRF attacks

to persuade the victim user to visit a page or click a link that

contains a malicious request. The link causes the victim's

browser to send a fraudulent request to the intended website.

The majority of websites automatically include session

information in browser requests, such as a valid token or login

information that the website connects to the user. The website

considers the new malicious request as a genuine request from

the user and executes it if the authenticated user is already

engaged in an active session with the target website.

5.1 DIFFERENCE BETWEEN CSRF AND XSS

[16] Attacks like CSRF and XSS happen when a user uses

their browser to access a web application and the web

application trusts the user. Attackers may take advantage of

this trust to carry out illegal operations on the user's behalf.

Attackers can run malicious scripts, access responses, and

send sensitive follow-up data to destinations of their choice

because of the two-way nature of XSS attacks. In contrast,

CSRF is a one-way attack method. As a result, an attacker can

only send her HTTP queries; he or she cannot receive

responses to those requests.

While XSS attacks do not call for an authorized user to be in

an active session, CSRF attacks do. When a user logs in, XSS

attacks can store and send payloads.

The activities a user can do, such as clicking on a malicious

link or going to the hacker's website, are the only ones that

fall under the purview of CSRF attacks. Contrarily, XSS

attacks broaden the attack surface by enabling the execution

of malicious scripts to carry out any action the attacker

chooses.

A XSS attack stores malicious code on a website, while a

CSRF attack stores malicious code on a third-party website

that the affected user is redirected to.

5.2 CSRF ATTACK PREVENTION

Here are some techniques [17] that can be implemented in

web applications to make them less vulnerable to CSRF:

1. REST: REST(Representational state transfer) is a

way of organizing your web requests so that they are

easy to read and understand, and can handle large

amounts of traffic. Following a RESTful design will

help make your code easier to work with and faster

2. Anti-forgery tokens: Use of POST, PUT, PATCH,

and DELETE requests to keep the website secure. An

anti-forgery token is added to each request to make

sure that only trusted sources can make requests in

order to protect these endpoints. An anti-forgery

token will be written out to a hidden HTML field in

every server response. The client authenticates

requests sent to the server using this token. The

server is now aware that the request came from a

reliable source.

3. Set correct cookie attributes: Websites can add a

persistent state using cookies. Typically, this is

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17487 | Page 6

employed to store session data, authorize users, and

more. It's also a simple approach to reveal

weaknesses, though. Cookies have a variety of

attributes that control their behavior. Cross-site

request forgery attacks can be prevented with the use

of Chrome's SameSite property. With the help of

SameSite, you can control which websites can access

your cookies, ensuring that only dependable parties

have access to your information.

4. Additional Authentication: To protect website’s

critical data and sensitive actions, authentication is

recommended before proceeding. This could be a

one-time password, a simple CAPTCHA, or

validating passwords.

6. CONCLUSION

In conclusion, this review paper has provided an overview of

the most common types of web application vulnerabilities and

the tools and techniques that can be used to identify and

mitigate them. We have seen that SQL injection, cross-site

scripting (XSS), and cross-site request forgery (CSRF) are

among the most prevalent types of vulnerabilities, and that

code review, penetration testing, and secure coding practices

are key strategies for preventing and addressing these

vulnerabilities.

It is clear that web application vulnerabilities can have serious

consequences, including data breaches and financial losses.

Therefore, it is essential that organizations prioritize the

security of their web applications and take steps to prevent

and mitigate vulnerabilities. This includes regularly updating

and patching applications, as well as implementing effective

security measures such as input validation and authentication

controls.

Future research in this field should focus on developing new

and more effective methods for identifying and mitigating

web application vulnerabilities, as well as on the identification

of emerging threats. Additionally, there is a need for more

comprehensive and up-to-date guidelines and best practices

for web application security. By addressing these issues, we

can work towards a more secure and reliable online

environment for users and organizations alike.

ACKNOWLEDGEMENT

This paper and the research behind it would not have been

possible without the exceptional support of my supervisor,

Ms. Vandana Choudhary. Her enthusiasm, knowledge and

exacting attention to detail have been an inspiration and kept

my work on track.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17487 | Page 7

REFERENCES

1. Dhingra, Tanvi. “A Review on Web

Application Security - IJCSET.” IJCSET,

IJCSET, May

2015, https://ijcset.net/docs/Volumes/volume

5issue5/ijcset2015050508.pdf.

2. digininja. “DVWA/DVWA_v1.3.Pdf at

Master · Digininja/DVWA · Github.” DVWA

Documentation, Sept.

2015, https://github.com/digininja/DVWA/bl

ob/master/docs/DVWA_v1.3.pdf

3. Descalso, Alessandra. “How to Prevent Brute

Force Attacks.” Intelligent Technical

Solutions, Intelligent Technical Solutions, 29

Nov.

2022, https://www.itsasap.com/blog/how-to-

prevent-brute-force-attacks.

4. OWASP. “Owasp Top Ten.” OWASP Top

Ten | OWASP Foundation, Open Web

Application Security

Project, https://owasp.org/www-project-top-

ten/.

5. Lawal, M. A., Abu Bakar Md Sultan, and

Ayanloye O. Shakiru. "Systematic literature

review on SQL injection attack."

International Journal of Soft Computing 11.1

(2016): 26-35.

6. Halfond, William G., Jeremy Viegas, and

Alessandro Orso. "A classification of SQL-

injection attacks and countermeasures."

Proceedings of the IEEE international

symposium on secure software engineering.

Vol. 1. IEEE, 2006.

7. M. Howard and D. LeBlanc. Writing Secure

Code. Microsoft Press, Redmond,

Washington, second edition, 2003.

8. C. A. Mackay. SQL Injection Attacks and

Some Tips on How to Prevent Them.

Technical report, The Code Project, January

2005.

http://www.codeproject.com/cs/database/

SqlInjectionAttacks.asp

9. Y. Huang, S. Huang, T. Lin, and C. Tsai.

Web Application Security Assessment by

Fault Injection and Behavior Monitoring. In

Proceedings of the 11th International World

Wide Web Conference (WWW 03), May

2003

10. C. Gould, Z. Su, and P. Devanbu. JDBC

Checker: A Static Analysis Tool for

SQL/JDBC Applications. In Proceedings of

the 26th International Conference on

Software Engineering (ICSE 04) – Formal

Demos, pages 697–698, 2004.

11. W. G. Halfond and A. Orso. Combining

Static Analysis and Runtime Monitoring to

Counter SQL-Injection Attacks. In

Proceedings of the Third International ICSE

Workshop on Dynamic Analysis (WODA

2005), pages 22–28, St. Louis, MO, USA,

May 2005

12. F. Valeur, D. Mutz, and G. Vigna. A

Learning-Based Approach to the Detection of

SQL Attacks. In Proceedings of the

Conference on Detection of Intrusions and

Malware and Vulnerability Assessment

(DIMVA), Vienna, Austria, July 2005

13. Gupta, S., & Gupta, B. B. (2015). Cross-Site

Scripting (XSS) attacks and defense

mechanisms: classification and state-of-the-

art. International Journal of System

Assurance Engineering and Management,

8(S1), 512–530. doi:10.1007/s13198-015-

0376-0

14. Kallin, Jakob, and Irene Lobo Valbuna.

“Excess XSS.” Excess XSS: A

 Comprehensive Tutorial on Cross-Site

Scripting, https://excess-xss.com/.

15. Maric, Nadim. “What Is Persistent (Stored)

XSS and How It Works.” Bright Security, 3

Dec. 2021, https://brightsec.com/blog/cross-

site-scripting-persistent/.

16. Sengupta, Sudip. “XSS vs CRSF - the

Differences Fully Explained.” Crashtest

Security, 24 Nov. 2022, https://crashtest-

security.com/xss-vs-csrf-difference/.

17. Tischler, Natalie, and Jill Newberry Queenan.

“Preventing CSRF Attacks.” Veracode, 16

Feb. 2016,

https://www.veracode.com/blog/secure-

development/preventing-csrf-attacks

http://www.ijsrem.com/
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://ijcset.net/docs/Volumes/volume5issue5/ijcset2015050508.pdf%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552677092%26amp;usg%3DAOvVaw2v153s-xcfp0erdDJ8IAHO&sa=D&source=docs&ust=1671771552712873&usg=AOvVaw1PDQq-gGtSzrXHG0Vxxr27
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://ijcset.net/docs/Volumes/volume5issue5/ijcset2015050508.pdf%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552677092%26amp;usg%3DAOvVaw2v153s-xcfp0erdDJ8IAHO&sa=D&source=docs&ust=1671771552712873&usg=AOvVaw1PDQq-gGtSzrXHG0Vxxr27
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://github.com/digininja/DVWA/blob/master/docs/DVWA_v1.3.pdf%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552677424%26amp;usg%3DAOvVaw2WQKdSqK03b3xTr_vuSs5O&sa=D&source=docs&ust=1671771552713286&usg=AOvVaw37gqVQ4XXI62domeIdRUnu
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://github.com/digininja/DVWA/blob/master/docs/DVWA_v1.3.pdf%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552677424%26amp;usg%3DAOvVaw2WQKdSqK03b3xTr_vuSs5O&sa=D&source=docs&ust=1671771552713286&usg=AOvVaw37gqVQ4XXI62domeIdRUnu
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://www.itsasap.com/blog/how-to-prevent-brute-force-attacks%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552677755%26amp;usg%3DAOvVaw0cBrWivkAfuaOoiSyoeD2F&sa=D&source=docs&ust=1671771552713431&usg=AOvVaw0Yl9n4lVVDFxl48hk3R-gb
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://www.itsasap.com/blog/how-to-prevent-brute-force-attacks%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552677755%26amp;usg%3DAOvVaw0cBrWivkAfuaOoiSyoeD2F&sa=D&source=docs&ust=1671771552713431&usg=AOvVaw0Yl9n4lVVDFxl48hk3R-gb
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://owasp.org/www-project-top-ten/%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552678052%26amp;usg%3DAOvVaw2-A7ehzoNRPJnRYnfUdtfU&sa=D&source=docs&ust=1671771552713561&usg=AOvVaw1SJSLmMf2glzcaljOmxDlj
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://owasp.org/www-project-top-ten/%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552678052%26amp;usg%3DAOvVaw2-A7ehzoNRPJnRYnfUdtfU&sa=D&source=docs&ust=1671771552713561&usg=AOvVaw1SJSLmMf2glzcaljOmxDlj
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://excess-xss.com/%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552679270%26amp;usg%3DAOvVaw2G1oYGX-bEmwbK2zoAgw9y&sa=D&source=docs&ust=1671771552714501&usg=AOvVaw09Ta_GS1xVKV_9PWbJkMGL
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://brightsec.com/blog/cross-site-scripting-persistent/%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552679577%26amp;usg%3DAOvVaw29RqADGfPNapjJibF5466E&sa=D&source=docs&ust=1671771552714740&usg=AOvVaw0nLrakqBb1wmfuLalo1n8e
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://brightsec.com/blog/cross-site-scripting-persistent/%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552679577%26amp;usg%3DAOvVaw29RqADGfPNapjJibF5466E&sa=D&source=docs&ust=1671771552714740&usg=AOvVaw0nLrakqBb1wmfuLalo1n8e
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://crashtest-security.com/xss-vs-csrf-difference/%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552679894%26amp;usg%3DAOvVaw2b45fpVw2EuvEYqIZYoEcF&sa=D&source=docs&ust=1671771552714975&usg=AOvVaw3s0NejoR4NoDp4wGAnGQhn
https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://crashtest-security.com/xss-vs-csrf-difference/%26amp;sa%3DD%26amp;source%3Deditors%26amp;ust%3D1671771552679894%26amp;usg%3DAOvVaw2b45fpVw2EuvEYqIZYoEcF&sa=D&source=docs&ust=1671771552714975&usg=AOvVaw3s0NejoR4NoDp4wGAnGQhn
https://www.veracode.com/blog/secure-development/preventing-csrf-attacks
https://www.veracode.com/blog/secure-development/preventing-csrf-attacks

