
          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 08 Issue: 08 | Aug - 2024                         SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM37092                       |        Page 1 

Task Scheduling Using Topological Sorting Method 

 

Vinu K C, H S Saraswathi, Dr. Latha B M, Jeevan B G, Arpit S B, Asha N S 

Department of IS&E, Jain Institute of Technology 

  

Abstract 

 

The paper discusses topological sorting, 

beginning with a fundamental definition and 

various implementation examples. It provides an 

in-depth explanation of the algorithm and 

demonstrates it through different datasets. 

Various scenarios showcasing the application of 

these algorithms are examined, followed by a 

thorough analysis to highlight differences in the 

results achieved. The paper evaluates three 

distinct algorithms for performing topological 

sorts, detailing their respective advantages and 

disadvantages. It includes examples from other 

research to illustrate the differences in sorting 

techniques. Lastly, the paper reviews the concept 

of topological sorting and explores its practical 

uses. 

 

Keywords– DFS (Depth for Search),SRL 

(Source Removal Algorithm) 

 

1 INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

Topological sorting is a method used to order the 

vertices of a graph in a linear sequence that 

reflects their dependencies. Specifically, if there 

is a directed edge from vertex a to vertex b, then 

a must appear before b in the ordering. This 

concept is akin to scheduling tasks where some 

tasks need to be completed before others, similar 

to the requirement of completing prerequisite 

courses before enrolling in advanced ones. To 

implement topological sorting, the graph must be 

a Directed Acyclic Graph (DAG), meaning it 

should be directed and contain no cycles. A DAG 

is characterized by the absence of cycles, 

ensuring that such a linear ordering is feasible. 

 

 DAGs are useful in modeling scenarios that 

involve prerequisite constraints. 

 

Properties of DAGs:  

 

• Source and Sink Vertices: In any Directed 

Acyclic Graph (DAG), there must be at least one 

vertex with no incoming edges (in-degree zero), 

known as a source vertex, and at least one vertex 

with no outgoing edges (out-degree zero), known 

as a sink vertex. 

• Strongly Connected Components: A directed 

graph GGG is a DAG if and only if each vertex 

in GGG forms its own strongly connected 

component. This implies that no vertex in a DAG 

can be reached from any other vertex in a cyclic 

manner. 

• DFS Finishing Times: In a DAG, for any edge 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 08 Issue: 08 | Aug - 2024                         SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM37092                       |        Page 2 

(v,w)(v, w)(v,w), the finishing time of vertex 

www is always less than the finishing time of 

vertex v in a Depth-First Search (DFS) traversal. 

This ordering is crucial for topological sorting. 

• Topological Sort Definition: A topological sort of 

a directed graph G=(V,E)G = (V, E)G=(V,E) is 

an ordering of the vertices such that for every 

directed edge (u,v)(u, v)(u,v) in the graph, vertex 

uuu appears before vertex v in the ordering. 

 

 

2  LITERATURE REVIEW 

 

  Topological sorting is most commonly applied 

to DAGs, which are graphs with directed edges 

and no cycles. The classic definition involves a 

linear ordering of vertices that respects the 

direction of edges. 

In[1]Kahn, A.B. (1962). "Topological Sorting of 

Large Networks." Communications of the ACM, 

5(11), 558-562.Kahn introduced the concept of 

topological sorting and an algorithm for 

achieving it. His method is based on repeatedly 

removing nodes with no incoming edges.  

In[2]Tarjan, R.E. (1972). "Depth-First Search and 

Linear Graph Algorithms.". SIAM Journal on 

Computing, 1(2), 146-160.Tarjan extended 

Kahn’s work and presented an efficient algorithm 

for topological sorting using depth-first search 

(DFS). 

In[3]Topological sorting is crucial for scheduling 

tasks where certain tasks must precede 

others.Reference: Cormen, T.H., Leiserson, C.E., 

Rivest, R.L., & Stein, C. (2009). Introduction to 

Algorithms (3rd ed.). MIT Press 

In[4]In compiler design, topological sorting is 

used to determine the order of code generation 

and instruction scheduling.Reference: Aho, A.V., 

Lam, M.S., Sethi, R., & Ullman, J.D. (2006). 

Compilers: Principles, Techniques, and Tools 

(2nd ed.). Addison-Wesley. 

In[5]Communications of the ACM, 5(11), 558-

562.Researchers have explored various 

improvements to these algorithms, including 

methods for handling specific types of graphs 

and optimizing performance for practical 

applications.Sedgewick, R., & Wayne, K. (2011). 

Algorithms (4th ed.). Addison-Wesley. 

In[6]Topological sorting is crucial for scheduling 

tasks where certain tasks must precede 

others.Reference: Cormen, T.H., Leiserson, C.E., 

Rivest, R.L., & Stein, C. (2009). Introduction to 

Algorithms (3rd ed.). MIT Press. 

In[7] compiler design, topological sorting is used 

to determine the order of code generation and 

instruction scheduling.Reference: Aho, A.V., 

Lam, M.S., Sethi, R., & Ullman, J.D. (2006). 

Compilers: Principles, Techniques, and Tools 

(2nd ed.). Addison-Wesley. 

Dependency Resolution 

• Topological sorting helps in resolving 

dependencies in software systems and package 

management.Reference: S. H. & S. H. (2022). "A 

Survey of Dependency Resolution Techniques." 

Software: Practice and Experience, 52(2), 150-

174. 

• While the basic algorithms are efficient, large-

scale applications may face issues related to 

memory and processing constraints. 

• Reference: Cohen, J., & Goldstein, S. (2015). 

"Efficient Algorithms for Large-Scale 

Topological Sorting." Journal of Computer and 

System Sciences, 81(4), 683-702. 

 

 

 

 

 

 

 

 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 08 Issue: 08 | Aug - 2024                         SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM37092                       |        Page 3 

3.RESEARCH  METHODOLOGY 

 

    3.1  DEPTH-FIRST SEARCH 

Depth-first search (DFS) is a traversal technique 

where the algorithm explores a graph by first 

visiting a node’s child before proceeding further 

down the graph until it reaches a terminal node. 

This approach, as described by Cormen and 

colleagues, involves returning to the most 

recently visited node that has not yet been fully 

explored. In this process, nodes that have been 

visited are pushed onto a stack for subsequent 

examination. DFS focuses on nodes that have 

edges directed towards them, rather than away. 

As the algorithm progresses, it follows a pattern 

that ensures nodes already explored are not 

revisited, thus facilitating the topological sorting 

process. 

 

Topological-Sort(G)[1] 

{ 

• CalldfsAllVerticesonGto compute 

f[v]foreachvertexv 

• IfGcontainsabackedge(v,w)(i.e.,iff[w]>f[v]),r

eporterror ; 

• e

lse,aseachvertexisfinishedprependittoalist; //orpushinstack 

• Returnthelist; //listisavalidtopologicalsort 

} 

 

RunningtimeisO(V+E), 

whichistherunningtimeforDFS. 

 

Topologicalorder :A C D  BEH  F  G 

Inthisalgorithmeachnodeandedgearevisitedonly

once,thereforethe algorithmexistsinlinear time. 

Advantages: 

• Memory requirement is linear with respect to 

searchgraph. 

• Time complexity for this algorithm is O(b^d).  

• DFS istimelimited. 

• IfDFSfindsasolutionwithoutexploringmuchdurin

g its path then it would consume very less 

timeand space. 

DFS is a graph traversal algorithm that explores 

as far as possible along each branch before 

backtracking. The algorithm uses a stack to keep 

track of the nodes to visit next. 

Here's a step-by-step breakdown of the code: 

Initialization: 

• graph[MAX_NODES][MAX_NODES]: This is a 

2D array used to represent the adjacency matrix 

of the graph, where graph[i][j] is 1 if there is an 

edge between node i and node j, and 0 otherwise. 

• visited[MAX_NODES]: This is a boolean array 

used to keep track of which nodes have been 

visited during the DFS traversal. 

• numNodes = 6: This specifies the total number of 

nodes in the graph. 

DFS Function: 

• void dfs(int v): This function performs a depth-

first search starting from the node v. 

• Mark the node as visited: visited[v] = true; 

• print the current node: printf("%d ", v); 

• Explore adjacent nodes: For each node next from 

0 to num Nodes - 1, if graph[v][next] is 1 

(indicating an edge from node v to next) and next 

has not been visited (!visited[next]), recursively 

call dfs(next) to continue the traversal. 

      Main Function: 

• Initialize the visited array: Set all elements to 

false, indicating that no nodes have been visited 

yet. 

• Start DFS: Call dfs(0); to begin the depth-first 

search starting from node 0. 

This DFS implementation assumes the graph is 

represented as an adjacency matrix and performs 

a recursive depth-first search starting from a 

given node (in this case, node 0). It prints the 

nodes in the order they are visited. 

 

 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 08 Issue: 08 | Aug - 2024                         SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM37092                       |        Page 4 

3.2  SOURCE REMOVAL  ALGORITHM 

Themaintechniqueusedinthisalgorithmistore

peatedlyidentifyandremoveasourceandallth

ecorrespondingedgesassociated to it.. 

The algorithm follows three simple steps: 

• Pick a vertex and output  it 

• Remove the source and all the edges 

associated with it 

• Keep repeating till the graph is empty 

 

The algorithm is implemented in such a 

manner that it visits all the vertices in a 

topological sort manner. This algorithm 

usually uses an array to record the in-

degree vertices. As a result there is no 

explicit need to delete vertices and 

edges.The algorithm uses a priority queue 

to record vertices with-in degree zero that 

hasn’t been visited yet. 

 

Algorithm goes as follows: 

1  Initialize: 

• Set num Visited Vertices to 0. 

 2  Repeat until there are no more vertices to 

visit: 

• Check for vertices: If there are no vertices with 

an in-degree of 0, exit the loop. 

• Select and Process: Choose a vertex v with an in-

degree of 0. 

• Visit the Vertex: Perform any required operations 

for visiting v. 

• Update Count: Increment num Visited Vertices 

by 1. 

• Remove Vertex: Delete vertex v and all its 

outgoing edges from the graph. 

2 Return: The total number of visited vertices, num 

Visited Vertices. 

 

 

 

Topological Sort Algorithm 

Efficiency 

This algorithm operates with a time complexity 

of \( O(|V| + |E|) \), where \(|V|\) is the number of 

vertices and \(|E|\) is the number of edges. 

 Description 

The algorithm processes vertices in an order that 

respects their dependencies, eventually producing 

a topologically sorted list. It works as follows: 

1. Initialize: 

   - Create an empty list `L` to store the 

topological order. 

   - Create a set `S` to hold vertices with no 

incoming edges. 

2. Setup: 

   - Add all vertices with an in-degree of 0 to the 

set `S`. 

3. Processing Loop: 

   - While the set `S` is not empty: 

   - Remove a vertex `n` from `S`. 

   - Insert `n` into the list `L`. 

   - For each vertex `m` that has an edge directed 

from `n` to `m`: 

     Remove the edge from the graph. 

   - If `m` now has no other incoming edges, add 

`m` to the set `S`. 

4. Cycle Detection: 

   - After processing, if there are still edges 

remaining in the graph, return an error indicating 

the presence of a cycle (topological sorting is not 

possible).- Otherwise, return the list `L` as the 

topologically sorted order of vertices. 

 Notes 

- This algorithm is particularly suited for 

Directed Acyclic Graphs (DAGs).  

- The final ordering of vertices in `L` might vary 

depending on the order of vertex removal from 

set `S`. 

- If the graph contains cycles, topological sorting 

cannot be completed. 

 

By following these steps, the algorithm 

efficiently generates a valid topological sort or 

identifies if sorting is not feasible due to cycles in 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 08 Issue: 08 | Aug - 2024                         SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM37092                       |        Page 5 

the graph. 

 

Setup 

1. Initialization: 

o Nodes: Suppose we have the following nodes: 7, 

5, 3, 11, 8, 2, 9, 10. 

o Identify Nodes with No Incoming Edges: First, 

find all nodes with no incoming edges and add 

them to a set S. 

o List Initialization: Create an empty list L that will 

eventually hold the sorted nodes. 

Strategies for Node Ordering 

Depending on the criteria used to choose the next 

node from set S, different topological sorts may 

result: 

1. Smallest Numbered Node First: 

o Order nodes based on the smallest numerical 

value available. 

o Example Result: 3, 5, 7, 8, 11, 2, 9, 10. 

2. Smallest Numbered Node First with a Modified 

Order: 

o Select nodes based on the smallest available 

number, but the sequence may differ based on 

edge removal order. 

o Example Result: 3, 7, 8, 5, 11, 10, 2, 9. 

3. Fewest Edges First: 

o Prefer nodes with the fewest outgoing edges 

when multiple choices are available. 

o Example Result: 5, 7, 3, 8, 11, 10, 9, 2. 

4. Largest Numbered Node First: 

o Choose nodes with the highest numerical value 

available. 

o Example Result: 7, 5, 11, 3, 10, 8, 9, 2. 

5. Alternative Order with a Different Priority: 

o Choose nodes based on a different set of criteria 

or priority. 

o Example Result: 7, 5, 11, 2, 3, 8, 9, 10. 

Notes 

Graph Requirement: Ensure that the graph is 

acyclic for a valid topological sort. 

Variation: The final order in list L can differ 

depending on the node selection strategy used 

and the initial graph structure. 

ANALYZING TOPOLOGICALSORT 

A topological sort of a Directed Acyclic Graph 

(DAG) has a noteworthy characteristic: if every 

pair of consecutive vertices in the sorted 

sequence is connected by a directed edge, the 

sequence often represents a directed Hamiltonian 

path. This characteristic implies: 

1. Uniqueness of Topological Sort: 

o When the sorted sequence of vertices forms a 

directed Hamiltonian path (i.e., each consecutive 

vertex pair in the sort has a direct edge between 

them), it indicates that the topological sorting is 

unique. 

o The directed Hamiltonian path ensures there is 

only one way to order the vertices while 

respecting all dependency constraints, leading to 

a single, unique topological ordering. 

 

2. Multiple Topological Orders: 

o If the topological sort does not create a directed 

Hamiltonian path (i.e., not every pair of 

consecutive vertices in the sort is connected by 

an edge), this suggests that the graph may have 

more than one valid topological ordering. 

o The absence of a Hamiltonian path means there 

are alternative ways to arrange the vertices while 

still satisfying the graph's ordering requirements. 

 

APPLICATIONS 

  Topological Sorting in Planning and 

Scheduling: 

• Topological sorting is employed in various 

planning and scheduling tasks to determine a 

feasible order of operations or events based on 

their dependencies. 

  Application in Defect Identification: 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 08 Issue: 08 | Aug - 2024                         SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM37092                       |        Page 6 

• With some adjustments, topological sorting can 

be utilized to uncover defects or issues within 

processes or systems. 

  Cycle Detection in Graphs: 

This method is a powerful tool for detecting 

cycles within a graph, which can help determine 

whether a graph is acyclic or not. 

  Error Detection in DNA Sequencing: 

Topological sorting is frequently applied to 

identify errors in the assembly of DNA 

fragments, aiding in the accurate reconstruction 

of genetic sequences. 

 

CONCLUSION 

 

This paper provides a comprehensive overview 

of topological sorting, starting with its definition 

and moving on to explore various 

implementations. It discusses the advantages of 

different algorithms used for topological sorting 

and provides detailed examples to illustrate their 

application. The paper contrasts cyclic and 

acyclic graphs, examining how the presence of 

cycles affects the analysis of each algorithm. 

Additionally, it addresses the time and space 

complexities associated with topological sorting. 

Towards the end, the paper draws a comparison 

between sequences of consecutively connected 

vertices and Hamiltonian paths. It concludes by 

discussing the diverse applications and 

implementations of topological sorting across 

various domains. 

 

ACKNOWLEDGMENT 

This research paper was completed with the 

assistance and support of many individuals. I 

would like to extend my sincere gratitude to 

Assistant Professor Sarswati for her unwavering 

support and encouragement, as well as her 

insightful guidance on the organization and 

presentation of the paper. 

 

 

REFERENCES 

  

1.http://www.cs.sunysb.edu/~algorith/files/topolog

ical-sorting.shtml 

2.http://en.wikipedia.org/wiki/Topological_sorting 

3.http://www.cs.nott.ac.uk/~nza/G5BADS06/lect

ure18.pdf 

4.http://www.cs.nott.ac.uk/~nza/G5BADS06/lect

ure18.pdf 

5.http://www.cse.cuhk.edu.hk/~taoyf/course/2100

sum11/lec14.pdf

http://www.ijsrem.com/
http://www.cs.sunysb.edu/~algorit
http://en.wikipedia.org/wiki/Topological_sorting
http://en.wikipedia.org/wiki/Topological_sorting
http://www.cs.nott.ac.uk/~nza/G5BADS06/lecture18.pdf
http://www.cs.nott.ac.uk/~nza/G5BADS06/lecture18.pdf
http://www.cs.nott.ac.uk/~nza/G5BADS06/lecture18.pdf
http://www.cs.nott.ac.uk/~nza/G5BADS06/lecture18.pdf
http://www.cs.nott.ac.uk/~nza/G5BADS06/lecture18.pdf
http://www.cs.nott.ac.uk/~nza/G5BADS06/lecture18.pdf
http://www.cse.cuhk.edu.hk/~taoyf/course/2100sum11/lec14.pdf
http://www.cse.cuhk.edu.hk/~taoyf/course/2100sum11/lec14.pdf
http://www.cse.cuhk.edu.hk/~taoyf/course/2100sum11/lec14.pdf

