j.-t' “ARe
@REME}
3 ©-Jeurnal

R

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

Technical Research and Architectural Plan for 'Classic Union': A Scalable
Event Organizing Platform using Flutter and Firebase

Dr. M. Sengaliappanl, Madhana Raja Vel .R 2

1Professor & Head, Department of Computer Applications, Nehru College of Management, Bharathiar
University,Coimbatore, Tamilnadu,India

Cmsengs.7@gmail.com

2Master of Computer Applications, Nehru College of Management,

Bharathiar University,Coimbatore, Tamilnadu,India rmrajavel28@gmail.com

Abstract

This paper details the technical architecture for 'Classic
Union,' a highly scalable, event-driven application
designed to streamline event organization and
management. The system employs a robust hybrid
technology stack, utilizing Flutter for cross-platform
presentation and a serverless Firebase backend
(comprising Firestore, Authentication, and Cloud
Functions). A local SQLite database is strategically
integrated to facilitate complex querying and advanced
offline data persistence. The primary architectural
contribution addresses the critical challenge of high-
contention concurrency risks inherent in distributed
booking systems. The methodology leverages a
modified Clean Architecture pattern, specifically
adopting the BLoC/Cubit pattern to ensure a rigorous
separation of concerns. Key transactional logic,
specifically event slot reservation and secure payment
processing, is securely elevated to Firebase Cloud
Functions (CF). This server-side approach guarantees
data integrity by implementing atomic transactions for
concurrency mitigation and secure webhook integration
(Stripe) for payment finalization. The resultant system
is engineered for exceptional maintainability, resilience
against typical race conditions, cost optimization
through selective local data caching, and
seamless scalability necessary for supporting large-
scale event operations.

1. Introduction

The contemporary event management sector requires
digital solutions capable of handling large volumes of
simultaneous transactions, ensuring real-time data
synchronization, and maintaining stringent security
standards for both financial and proprietary user
information. The ‘Classic Union’ application is
positioned to address these requirements by combining

the efficiency of the Flutter framework with the
distributed computing capabilities of Google’s Firebase
ecosystem.

Flutter is selected as the development framework due to
its inherent cross-platform compatibility and its design
as an extensible, layered system. This structure, built
upon a series of independent libraries, ensures that the
framework level is modular and replaceable, providing
the necessary foundation for rapid, uniform
development across mobile operating systems. At its
core, the Flutter engine, largely written in C++, handles
primitives like rendering, text layout, and the plugin
architecture. Meanwhile, Firebase offers a suite of
managed, scalable backend services, allowing
development teams to concentrate resources on
application-specific business logic rather than
infrastructure management. This combined approach is
fundamental to meetingthe scalability and performance
benchmarks required for a high-traffic event
application.

1.1 Problem Statement:
Distributed System Challenges

Addressing

The most complex functional requirement for 'Classic
Union' resides in reliably managing concurrent requests
for limited, time-sensitive resources, such as event
tickets or specific seating slots.

The Concurrency Paradox

In high-contention scenarios typical of popular event
launches, multiple users attempt to secure the same
resource concurrently. Direct handling of these
operations using standard client-side Firebase
transactions presents a significant risk. The mobile and
web Software Development Kits (SDKs) for Firestore
utilize an optimistic concurrency control mechanism.
This mechanism operates under the assumption that
data contention is unlikely, avoiding database locks to
maintain speed. If a conflict is detected—meaning a

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53192 | Page 1

https://ijsrem.com/
mailto:Cmsengs.7@gmail.com
mailto:rmrajavel28@gmail.com

j” e 1Y
; IJSREM\

Volume: 09 Issue: 10 | Oct - 2025

s seurna International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

document read within the transaction was modified by
an external operation—the client-side transaction
automatically retries. However, under severe
contention, this retry loop may fail after a finite number
of attempts, resulting in an ABORTED: Too much
contention on these documents. Please try again error.
This unpredictable failure mode is unacceptable for the
core business function of event booking, which
demands deterministic, guaranteed resource allocation.

Security and Compliance

A secondary, yet equally critical, challenge is ensuring
strong security throughout the system. This
encompasses two main areas: first, establishing robust
Role-Based Access Control (RBAC) to differentiate
privileges among Admins, Organizers, and Attendees ;
and second, securing all financial transactions. Payment
processing requires protecting sensitive API keys and
handling the inherently asynchronous nature of
payment state changes reliably, thereby guaranteeing
financial data integrity and compliance.

Justification for Technical Rigor

To address these challenges, the architectural plan must
establish a predictable and deterministic solution that
places data integrity above simple read speed,
particularly for mutable, critical operations. A highly
rigorous technical blueprint is required to outline the
necessary server-side delegation and security
enforcement mechanisms.

2. Architectural
Design Rationale

Framework and

2.1 Layered Flutter
(Clean/BLoC Adaptation)

Architecture

The 'Classic Union' application employs a modified
Clean Architecture structure, often referred to as the
Model-View-ViewModel (MVVM) pattern in the
Flutter context, with a focus on strict separation of
concerns. This approach divides the application into
distinct, responsibility-bound layers: Presentation,
Domain (Business Logic/View Models), and Data
(Repositories/Services).

Component Breakdown

¢ Presentation Layer (Ul/Views): This layer consists
of the visual elements and user interface components.
Views, typically built around the
Scaffold widget, are solely responsible for rendering
the current Ul state and forwarding user interactions
(events) to the view model.

e Domain Layer (BLoC/Cubit): This layer

encapsulates the application’s core business logic.
Functioning as the view model, the BLoC or Cubit
components handle the logic necessary to convert raw
application data retrieved from the repository into
specific Ul States. They act as the mediator, interacting
exclusively with the Data Layer to fetch or submit
information.

e DataLayer

(Repositories/Services): The Data Layer serves as the
source of truth abstraction. Repositories define the
necessary operations (e.g., fetch event details, submit
new reservation) and abstract the data sources from the
business logic. The Services, or Data Sources,
implement these operations, containing the specific
code to interact with external systems, such as Firebase
Firestore API calls or local database commands
(sqflite).

State Management Rationale (BLoC/Cubit)

The Business Logic Component (BLoC) pattern,
specifically its simplified counterpart, Cubit, is selected
as the primary state management solution. This choice
provides a highly structured and reactive data flow
while minimizing the boilerplate code typically
associated with full BLoC implementations. Cubit
offers a scalable solution for managing complex, data-
driven forms and real-time Ul updates stemming from
the backend, providing more structure than standard
Provider or low- level setState mechanisms.

The use of BLoC inherently aligns with the event-
driven nature of the Firebase backend. Firestore
listeners generate real-time data snapshots, which are
essentially events capturing state changes on the cloud.
The BLoC pattern, built upon processing Ul Events
and emitting application State changes , provides a
clean, predictable mechanism for processing these
asynchronous Firestore snapshots. This synergy
between the architectural pattern (BLoC) and the data
source behavior (Firestore real-time events) is critical
for maintaining consistent user interfaces, mitigating
the risk of inconsistent Ul updates that can plague less
structured approaches when consuming live data
streams. Dedicated widgets such as
BlocProvider manage BLoC access within the widget
tree, while BlocBuilder and BlocListener efficiently
handle Ul rendering based on state changes and execute
necessary side effects, such as navigating to a
confirmation screen after a successful operation.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53192 | Page 2

https://ijsrem.com/

j.-t' “ARe
@REME}
3 ©-Jeurnal

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

R

3.RELATED WORK AND
LITERATURE REVIEW

Mobile event—organizing applications have evolved
from simple schedule tools into integrated digital
ecosystems that manage registration, ticketing, live
updates, and analytics. In particular, campus and
community event systems now emphasize cross-
platform support, real-time communication, and offline
reliability [1]. The “Classic Union” application is
designed within this paradigm, employing Flutter for
cross-platform development, SQLite for local data
persistence, and Firebase for cloud synchronization.

3.1 Cross-Platform Frameworks and Flutter

Flutter, introduced by Google, enables developers to
build visually rich, native- compiled applications for
Android and iOS from a single code base. Studies
demonstrate that Flutter provides high performance,
expressive Ul capabilities, and reduced development
time compared with native approaches [2]. Empirical
analyses further highlight Flutter’s consistent frame
rendering rate and widget reusability, making it suitable
for responsive, interactive event-management Uls [3].

3. 2Local Storage with SQLite

SQLite is a lightweight, serverless relational database
engine that provides ACID-compliant transactions and
rapid local querying. It is widely adopted in mobile
development due to its small footprint and low latency
[4]. Comparative tests reveal that SQLite excels at
handling frequent read/write operations and supports
efficient caching when network connectivity is
unavailable [5]. In event applications, it ensures smooth
offline access to participant lists, schedules, and QR-
based tickets.

3.3 Cloud Integration and Real-Time Data via
Firebase

Firebase is a Backend-as-a-Service (BaaS) platform
offering Realtime Database and Cloud Firestore for
synchronized cloud storage, authentication, and push
notifications [6]. These features are essential for
dynamic environments such as event management,
where live updates, user presence, and
announcements must be reflected across devices
instantly [7]. Firebase’s built-in offline caching
complements local storage, ensuring data consistency
during intermittent connectivity [8].

3. 4Hybrid Approach: SQLite + Firebase

Several studies propose combining SQLite and Firebase
to achieve an offline-first design, enabling users to
interact with data locally while synchronizing with the

cloud once a connection is re-established [9]. This
hybrid architecture ensures low-latency interaction and
seamless cross-device data updates. Such
synchronization models have been shown to enhance
user experience and reliability in mobile event
applications [10].

3.5 Security, Privacy, and Scalability

Data security and user privacy are crucial in event
applications that handle personal information. Firebase
offers authentication, access control, and encryption
mechanisms [11]. However, sensitive data stored
locally must also be secured via encrypted SQLite
storage. Studies emphasize efficient Firestore query
design and rule-based data access to reduce latency and
cost [12]. Proper data partitioning and real-time sync
conflict resolution techniques further improve
scalability and consistency [13].

3. 6Research Gap and Application Implications

Although prior works have demonstrated Flutter-
Firebase integration, limited empirical studies assess
hybrid offline-first architectures that combine both
SQLite and Firebase under variable network conditions
[14]. The “Classic Union” application addresses this
gap by implementing a dual-storage system to ensure
reliability, performance, and user convenience in
community-level event management.

4. HybridPersistence
Strategy:Firestore and SQLite
Coexistence

4.1 Firebase Firestore as the Source of Truth

Firestore is mandated for handling critical, mutable
data requiring real-time synchronization, massive
scalability, and reliable persistence. It serves as the
single, immutable source of truth for all transactional
data, including reservations, user roles, and event
capacities. Furthermore, Firestore provides built-in
offline data persistence by caching a local copy of data
that the application actively uses, which generally
suffices for basic read latency reduction.

4.2 Strategic Use of Local SQLite

While Firestore caching supports basic offline
operation, local SQLite integration, via the sqflite
plugin , is strategically employed to meet advanced
data management and cost optimization requirements
that transcend the capabilities of the native Firestore
cache.

The need for a dedicated local relational database stems
from two major requirements:

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53192 | Page 3

https://ijsrem.com/

j” e 1Y
; IJSREM\

Volume: 09 Issue: 10 | Oct - 2025

s seurna International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

1. Complex Relational Queries: SQLite is a proven
solution for handling relational data models with
multiple tables and complex relationships. If the
application needs to execute advanced local queries—
such as correlating user demographic data (local
preference settings) with detailed event schedules
(cached from Firestore) or generating organizer reports
based on joined local data sets—the relational structure
and SQL querying capabilities of SQLite are
significantly superior to a flat document store cache.

2. Read Optimization and Cost Reduction: For high-
volume data that is static or common across users (e.g.,
localized content, large catalogs of historical events, or
large, rarely changing configuration parameters),
repeatedly fetching this data from Firebase generates
unnecessary read charges. By implementing a cache-
first strategy in the Repository layer— retrieving data
once, writing it to SQLite, and serving
subsequent requests locally—the number of Firebase
read operations is drastically reduced, optimizing cloud
costs and improving access speed for common data
sets.

The Repository layer is responsible for defining a clear
synchronization model: it checks the local SQLite
cache first and only performs a Firestore fetch if the
local data is stale or absent. Any critical update is then
propagated from Firestore back to the SQLite cache.

Table Title: Hybrid Data Persistence Strategy for
'Classic Union'

The coexistence of SQLite and Firestore necessitates
disciplined data management within the Data Layer.
While Firestore provides eventual consistency across
devices, SQLite provides immediate consistency
locally. To prevent compromise of distributed data
integrity, Firestore is designated as the sole source of
truth for critical, mutable data (e.g., ticket availability).
SQLite must function strictly as an immutable, read-
optimized cache for non-critical or static data. The Data
Layer must enforce that all write operations related to
critical inventory bypass SQLite entirely and are
directed through the secure Cloud Function endpoint to
Firestore.

S. Critical System Design and
Implementation

5.1 High-Concurrency Booking Mechanism
(Mitigating Race Conditions)

The inherent risk of concurrent resource access must be
addressed by moving the booking logic away from the
client-side environment. Since standard Firestore client
transactions use optimistic locking—prone to retries

and ultimate failure (ABORTED errors) under high
contention —the core booking function is delegated to
Firebase Cloud Functions (CF).

Mandatory Server-Side Enforcement

Cloud Functions provide a serverless environment
where code executes securely within Google’s data
centers. This environment is utilized to implement the
critical transactional logic:

1. Client Request: The Flutter client calls an HTTPS
Cloud Function, providing non-sensitive data such as
the user ID and the target event ID.

2. Atomic Operation Execution: The Cloud Function
acts as a secure "manual secretary” for the resource. It
uses the Firebase Admin SDK to execute a server-side
atomic transaction on the event availability document
in Firestore.

3. Core Logic: Within the atomic transaction block,
the function first Reads the current capacity. It then
Verifies that the capacity is greater than zero and
confirms the user’s eligibility. If successful, it
Decrements the capacity and
Writes the updated capacity back to the event
document while simultaneously creating the
reservation document.

4. Concurrency Resolution: Server-side atomic
transactions manage data contention internally. If a
document read is modified by a concurrent operation,
the transaction automatically retries. This ensures
that only one operation successfully commits the
required capacity decrement, providing the necessary
guarantee of data integrity for resource allocation.

5.2 Role-Based Access Control (RBAC) and
Security Rules

A multi-tiered access control system is implemented to
separate privileges effectively. The primary roles
defined are Admin (system oversight), Organizer
(event management), and Attendee (consumer access).

Implementation Strategy

1. Role Storage: User roles are linked to the Firebase
Authentication system. The definitive role
information is stored within the user's document in
Firestore (e.g., /users/{uid}) as a map of roles.
Crucially, the assignment of these roles is restricted to a
trusted environment (such as an Admin panel backed
by Cloud Functions or the Firebase Admin SDK) to
prevent unauthorized privilege escalation.

2. Enforcement: Access control is rigorously
enforced using Firestore Security Rules. These rules
validate every read and write request by checking the

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53192 | Page 4

https://ijsrem.com/

j.-t' “ARe
@REME‘%
3 ©-Jeurnal

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

R

authenticated user's ID (request.auth.uid) and cross-
referencing it with the user’s stored role in the database.

The effectiveness of security rules as a non- negotiable
firewall is paramount. Client-side navigation or feature
toggles based on locally stored roles are insufficient
and easily bypassed. Therefore, the architecture ensures
that the final permission check always occurs within
the security rules, thereby protecting the underlying
data.

A common scenario involves granular control for
Organizers: Security rules must permit an Organizer to
update specific fields (e.g., event title or content) on
an event document only if their UID is present as the
hostUID or within a designated roles map on that
document. Conversely, the rules must explicitly deny
the Organizer permission to modify critical fields like
the event’s roles map or financial data, reserving those
permissions for the Admin role.

5.3 Secure Payment Processing (Stripe
Integration)

Stripe is chosen as the payment gateway due to its
robust, developer-friendly official Flutter SDK
(flutter_stripe) and its built-in security features,
including PCI-DSS Level 1 compliance and automatic
tokenization, which simplifies security burdens.

Security Protocol: Backend-Centric Model

To maintain the highest level of security, the Stripe
Secret Key is strictly confined to the secure server
environment of Firebase Cloud Functions. The
payment process follows a three-step server-centric
workflow:

1. Client Request: The Flutter application initiates
the purchase, sending the item ID and quantity to a
dedicated HTTPS Cloud Function endpoint. Crucially,
the actual price is retrieved or validated server-side
using trusted data sources to prevent any client-side
manipulation of the transaction amount.

2. Payment Intent Creation (CF): The Cloud
Function utilizes the secure, private Stripe Secret Key
to interact with the Stripe API, creating a
PaymentIntent. It then securely transmits only the
public, non- sensitive client_secret back to the Flutter
client.

3. Client Payment: The Flutter application uses

the official flutter stripe package and the received
client_secret to present the Payment Sheet (e.g., Apple
Pay, Google Pay, Card Form). All sensitive financial
data is collected and tokenized directly by Stripe,
bypassing the 'Classic Union' servers entirely, thus
fulfilling PCI compliance requirements.

Asynchronous Transaction Finalization (Webhooks)

Payment finalization is an asynchronous process, often
completing after the client-side UI confirmation.
Relying solely on the client's connectivity at the
moment of payment success is fragile. To guarantee
reliable reservation status updates (e.g., moving a
reservation from PENDING to PAID), a dedicated,
secure Cloud Function is deployed as a webhook
listener. Stripe sends real-time events (e.g.,
checkout.session.completed) to this webhook. The
function validates the signature of the incoming
webhook and, using the secure Admin SDK, updates
the corresponding reservation document in Firestore,
providing an out-of-band, tamper-proof mechanism for
transaction finality.

6. Architectural Diagrams and Data
Flow Analysis

6.1 High-Level System Architecture Diagram
(Conceptual Model)

The high-level architecture comprises three interacting
domains: the Flutter Client, the Firebase
Ecosystem, and the External Services (Stripe). Data
flow is rigorously controlled:

1. Authentication and RBAC Flow: User
authentication occurs via Firebase Auth, feeding into
Firestore Security Rules which act as the access control
gate for all database operations.

2. Application Data Flow: Managed through the
layered Flutter architecture (Presentation Domain
Data), with Repositories mediating access between the
local SQLite cache and the remote Firestore source of
truth.

3. Critical Logic Flow: Client requests for resource
allocation or payment initiation are routed exclusively
via HTTPS calls to secure Cloud Functions, which
execute high- integrity, server-side business logic.

6.2 Detailed Data Flow Diagram (DFD) and

Data Flow Diagram for ‘'Classic Union”

ISR el Flutter ’}

Event Dut
| Dots |
O P S
A At |
’ - ‘ Firebase
User \
» SOLite & J Payment

Local Sxorape | Data Confrmatior

|

Payman! Reguest

Sequence Diagram

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53192 | Page 5

https://ijsrem.com/

{t-, ‘33‘
¢ TISREM 3

Volume: 09 Issue: 10 | Oct - 2025

SJIF Rating: 8.586

International Journal of Scientific Research in Engineering and Management (IJSREM)

ISSN: 2582-3930

The most critical flow within the system, the High-
Integrity Event Reservation process, is best illustrated
using a sequence diagram to demonstrate the
necessary delegation to the server environment for
atomic operations. This visualization confirms that the
mechanism to mitigate high-contention race conditions
is structurally enforced.

Sequence Diagram: High-Integrity Event Reservation
Flow

System Flow Diagram

Flutter

Data

7. Discussion and Evaluation

7.1 Architectural Strengths and Trade-offs

The proposed architecture achieves its core design
goals by leveraging the strengths of its chosen
components. Firebase inherently provides horizontal
scalability, allowing the system to handle increasing
load without manual server provisioning. The BLoC
architecture ensures that the local Ul rendering remains
fast and responsive, efficiently managing complex,
incoming data streams without freezing the user
interface.

The design’s primary strength is the delegation of
concurrency control to the Cloud Functions. By
executing the booking logic in a server-side atomic
transaction, the architecture guarantees data integrity
and prevents resource over- allocation, successfully
resolving the risks associated with client-side optimistic
concurrency failures during peak event demand.

A notable trade-off involves the complexity introduced
by the hybrid persistence model (Firestore and SQLite).
Integrating and synchronizing two distinct database
technologies requires careful maintenance and rigorous
Repository implementation. However, this complexity
is justified by the functional necessity of optimizing
read performance, supporting advanced offline
querying, and achieving significant cost reductions by
minimizing routine Firebase read operations, making
the overall system more economical and robust for
long-term operation.

© 2025, IJSREM | https://ijsrem.com

7.2 Evaluation Against

Requirements (NFRs)

Non-Functional

e Security: High security standards are met through
the multi-layered enforcement of RBAC via Firestore
Security Rules and the secure, decoupled payment flow
utilizing Cloud Functions and Stripe Webhooks.
Sensitive financial processes are entirely backend-
centric, preventing exposure of secret keys.

e Data Integrity: Achieved
server-side atomic transactions

through mandatory

modifying operations (booking, capacity updates).

e Maintainability:

The

adherence to

BLoC, enforces distinct, testable layers, which is
crucial for reducing technical debt and simplifying
feature development in a large-scale application.

8. Sample Output

Figure 8.1 User Data Management

Figure 8.2 Admin Data Management

High-Integrity Event Reservation Flow

~~ f
(--’I Tag
" S
L) “Book Now
User

Flutter
App

P

I Frebose
Cloud
Function

Start aotome thie

P———Y '

e CLErwil et Cupacty

jo

Decrumant capacey snd
’

Show booking
SUCOesd J erree
-

Firestore |

Vrify capaoity » 0

and user wagbie
CIWIe resansaion

Commit changes

atome)

Figure 8.3 Over View Data Management

DOI: 10.55041/IJSREM53192

| Page 6

for all resource-

Clean
Architecture principles, coupled with the modularity of

https://ijsrem.com/

j.-t.' 1Y
@REME%
3 ©-Jeurnal

R

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

Classic Union

Login to Classic Union

Email:

Password:

[Login][Register]

Forgot Password

Figure 8.4 Sample login page

9. Conclusion

This architectural plan successfully establishes a
resilient, scalable, and secure framework for the
'Classic Union' event organizing application. The
technical contribution lies in the strategic formulation
of a hybrid data persistence model that
maximizes cost efficiency (SQLite caching) without
compromising distributed integrity (Firestore source of
truth). Crucially, the plan implements a high-integrity
server-side concurrency model using Firebase Cloud
Functions to govern resource allocation, thereby
circumventing the inherent limitations of client-side
optimistic locking for high-contention booking flows.
The overall framework provides a dependable
foundation for the application's immediate development
phase.

8.1 Future Work and Enhancements

Future development efforts should focus on enhancing
the attendee and organizer experience, leveraging the
architecture’s modularity to integrate high-engagement
features:

e Advanced Attendee Experience: The modular
design supports integrating high-touch features

such as Contactless Check-In. This can be
implemented using NFC or QR code scanning
functionalities built into the branded event app,
utilizing the Flutter embedder’s native capabilities for
seamless access. Real-time check-in status updates can
be managed efficiently using the low-latency Firebase
Realtime Database layer, triggered via the check-in
event.

o Gamification and
Personalization: Leveraging the local SQLite storage,
which holds cached event metadata and user
preferences, can enable the development of
personalization tools. This includes implementing
features like Al-based personalized event
recommendations or gamification elements, such as
leaderboards and virtual scavenger hunts, thereby
enhancing overall attendee engagement.

¢ Enhanced Analytics and Reporting: Extending
the data layer to integrate granular tracking of sales,
attendance, and session performance will allow
organizers and sponsors to gain deeper, more precise
insights. This granular data is essential for accurate
calculation of Return on Investment (ROI) and
facilitating robust financial planning for subsequent
events.

9.REFERENCES

e [1] P. Kirubhakar et al., “Mobile Application
for College Event Management,” IRJIMETS, vol.
Vv,

pp. 1-6, 2024.

[2] T. Vééndnen, “Flutter in Cross- Platform
Development: Tools and Performance Analysis,”
MSc Thesis, Univ. of Oulu, 2025.

[3] Google Developers, Flutter Documentation,
Google LLC, 2025.

[4] O. Obradovi¢ and M. Kele¢, “Performance
Analysis on Android SQLite Database, ” Semantic
Scholar,2019.

[5] IUSRET, “4 Smart Event Management App
Using Flutter and Firebase (Evecurate),” vol. 6,
no. 3,

pp. 122-127, 2021.

[6] Google Firebase, “Cloud Firestore

Documentation,”
Firebase Docs, 2025.
[7] Google Firebase, “Realtime Database
Overview, ” Firebase Docs, 2025.

[8] Google Firebase, “Choose a Database: Cloud

Firestore or Realtime Database,” Firebase Blog,
2025.

[9] S.K. Verma et al., “4 Performance

Comparison of SQLite and Firebase Databases

from a Practical Perspective,” ResearchGate,

2024.
[10]K. Anand and P. Nandhini, “Hybrid Mobile
App for Event Management using Flutter and

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53192 | Page 7

https://ijsrem.com/

| S8 \3§
§ IISREM
@«Q International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Firebase,” 1JERT, vol. 13, no. 2,
pp. 45-50, 2024.
[11]Google Firebase, “Firebase Authentication

and Security Rules,” Docs, 2025.
[12]Firebase Developers Blog, “Optimizing
Firestore Performance and Cost,” 2025.

[13]J. Lee et al., “Synchronization and Conflict
Resolution in Offline- First Mobile Apps,” ACM
Mobile Computing, vol. 23, no. 4, pp. 112—
120,2023.

[14]ResecarchGate, “Literature Review on the
Development of Mobile Applications for Academic
Events,” 2024.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJ]SREM53192 | Page 8

https://ijsrem.com/

