
     
            International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                    DOI: 10.55041/IJSREM53192                                          |        Page 1 
 

Technical Research and Architectural Plan for 'Classic Union': A Scalable 

Event Organizing Platform using Flutter and Firebase 
 

Dr. M. Sengaliappan1, Madhana Raja Vel .R 2 

1Professor & Head, Department of Computer Applications, Nehru College of Management, Bharathiar 

University,Coimbatore,Tamilnadu,India 

Cmsengs.7@gmail.com 

2Master of Computer Applications, Nehru College of Management, 

Bharathiar University,Coimbatore,Tamilnadu,India rmrajavel28@gmail.com 

 

Abstract 

This paper details the technical architecture for 'Classic 

Union,' a highly scalable, event-driven application 

designed to streamline event organization and 

management. The system employs a robust hybrid 

technology stack, utilizing Flutter for cross-platform 

presentation and a serverless Firebase backend 

(comprising Firestore, Authentication, and Cloud 

Functions). A local SQLite database is strategically 

integrated to facilitate complex querying and advanced 

offline data persistence. The primary architectural 

contribution addresses the critical challenge of high- 

contention concurrency risks inherent in distributed 

booking systems. The methodology leverages a 

modified Clean Architecture pattern, specifically 

adopting the BLoC/Cubit pattern to ensure a rigorous 

separation of concerns. Key transactional logic, 

specifically event slot reservation and secure payment 

processing, is securely elevated to Firebase Cloud 

Functions (CF). This server-side approach guarantees 

data integrity by implementing atomic transactions for 

concurrency mitigation and secure webhook integration 

(Stripe) for payment finalization. The resultant system 

is engineered for exceptional maintainability, resilience 

against typical race conditions, cost optimization 

through selective  local  data  caching,  and 

seamless scalability necessary for supporting large-

scale event operations. 

1. Introduction 

The contemporary event management sector requires 

digital solutions capable of handling large volumes of 

simultaneous transactions, ensuring real-time data 

synchronization, and maintaining stringent security 

standards for both financial and proprietary user 

information. The ‘Classic Union’ application is 

positioned to address these requirements by combining 

the efficiency of the Flutter framework with the 

distributed computing capabilities of Google’s Firebase 

ecosystem. 

Flutter is selected as the development framework due to 

its inherent cross-platform compatibility and its design 

as an extensible, layered system. This structure, built 

upon a series of independent libraries, ensures that the 

framework level is modular and replaceable, providing 

the necessary foundation for rapid, uniform 

development across mobile operating systems. At its 

core, the Flutter engine, largely written in C++, handles 

primitives like rendering, text layout, and the plugin 

architecture. Meanwhile, Firebase offers a suite of 

managed, scalable backend services, allowing 

development teams to concentrate resources on 

application-specific business logic rather than 

infrastructure management. This combined approach is 

fundamental to meetingthe scalability and performance 

benchmarks required for a high-traffic event 

application. 

1.1 Problem Statement: Addressing 

Distributed System Challenges 

The most complex functional requirement for 'Classic 

Union' resides in reliably managing concurrent requests 

for limited, time-sensitive resources, such as event 

tickets or specific seating slots. 

The Concurrency Paradox 

In high-contention scenarios typical of popular event 

launches, multiple users attempt to secure the same 

resource concurrently. Direct handling of these 

operations using standard client-side Firebase 

transactions presents a significant risk. The mobile and 

web Software Development Kits (SDKs) for Firestore 

utilize an optimistic concurrency control mechanism. 

This mechanism operates under the assumption that 

data contention is unlikely, avoiding database locks to 

maintain speed. If a conflict is detected—meaning a 

https://ijsrem.com/
mailto:Cmsengs.7@gmail.com
mailto:rmrajavel28@gmail.com


     
            International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                    DOI: 10.55041/IJSREM53192                                          |        Page 2 
 

document read within the transaction was modified by 

an external operation—the client-side transaction 

automatically retries. However, under severe 

contention, this retry loop may fail after a finite number 

of attempts, resulting in an ABORTED: Too much 

contention on these documents. Please try again error. 

This unpredictable failure mode is unacceptable for the 

core business function of event booking, which 

demands deterministic, guaranteed resource allocation. 

Security and Compliance 

A secondary, yet equally critical, challenge is ensuring 

strong security throughout the system. This 

encompasses two main areas: first, establishing robust 

Role-Based Access Control (RBAC) to differentiate 

privileges among Admins, Organizers, and Attendees ; 

and second, securing all financial transactions. Payment 

processing requires protecting sensitive API keys and 

handling the inherently asynchronous nature of 

payment state changes reliably, thereby guaranteeing 

financial data integrity and compliance. 

Justification for Technical Rigor 

To address these challenges, the architectural plan must 

establish a predictable and deterministic solution that 

places data integrity above simple read speed, 

particularly for mutable, critical operations. A highly 

rigorous technical blueprint is required to outline the 

necessary server-side delegation and security 

enforcement mechanisms. 

2. Architectural Framework and 

Design Rationale 

2.1 Layered Flutter Architecture 

(Clean/BLoC Adaptation) 

The 'Classic Union' application employs a modified 

Clean Architecture structure, often referred to as the 

Model-View-ViewModel (MVVM) pattern in the 

Flutter context, with a focus on strict separation of 

concerns. This approach divides the application into 

distinct, responsibility-bound layers: Presentation, 

Domain (Business Logic/View Models), and Data 

(Repositories/Services). 

Component Breakdown 

• Presentation Layer (UI/Views): This layer consists 

of the visual elements and user interface components. 

Views, typically built around the 

Scaffold widget, are solely responsible for rendering 

the current UI state and forwarding user interactions 

(events) to the view model. 

• Domain Layer (BLoC/Cubit): This layer 

encapsulates the application’s core business logic. 

Functioning as the view model, the BLoC or Cubit 

components handle the logic necessary to convert raw 

application data retrieved from the repository into 

specific UI States. They act as the mediator, interacting 

exclusively with the Data Layer to fetch or submit 

information. 

• DataLayer 

(Repositories/Services): The Data Layer serves as the 

source of truth abstraction. Repositories define the 

necessary operations (e.g., fetch event details, submit 

new reservation) and abstract the data sources from the 

business logic. The Services, or Data Sources, 

implement these operations, containing the specific 

code to interact with external systems, such as Firebase 

Firestore API calls or local database commands 

(sqflite). 

State Management Rationale (BLoC/Cubit) 

The Business Logic Component (BLoC) pattern, 

specifically its simplified counterpart, Cubit, is selected 

as the primary state management solution. This choice 

provides a highly structured and reactive data flow 

while minimizing the boilerplate code typically 

associated with full BLoC implementations. Cubit 

offers a scalable solution for managing complex, data-

driven forms and real-time UI updates stemming from 

the backend, providing more structure than standard 

Provider or low- level setState mechanisms. 

The use of BLoC inherently aligns with the event-

driven nature of the Firebase backend. Firestore 

listeners generate real-time data snapshots, which are 

essentially events capturing state changes on the cloud. 

The BLoC pattern, built upon processing UI Events 

and emitting application State changes , provides a 

clean, predictable mechanism for processing these 

asynchronous Firestore snapshots. This synergy 

between the architectural pattern (BLoC) and the data 

source behavior (Firestore real-time events) is critical 

for maintaining consistent user interfaces, mitigating 

the risk of inconsistent UI updates that can plague less 

structured approaches when consuming live data  

streams.  Dedicated  widgets  such as 

BlocProvider manage BLoC access within the widget 

tree, while BlocBuilder and BlocListener efficiently 

handle UI rendering based on state changes and execute 

necessary side effects, such as navigating to a 

confirmation screen after a successful operation. 

 

 

 

https://ijsrem.com/


     
            International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                    DOI: 10.55041/IJSREM53192                                          |        Page 3 
 

3. RELATED WORK AND 

LITERATURE REVIEW 

Mobile event–organizing applications have evolved 

from simple schedule tools into integrated digital 

ecosystems that manage registration, ticketing, live 

updates, and analytics. In particular, campus and 

community event systems now emphasize cross-

platform support, real-time communication, and offline 

reliability [1]. The “Classic Union” application is 

designed within this paradigm, employing Flutter for 

cross-platform development, SQLite for local data 

persistence, and Firebase for cloud synchronization. 

3.1 Cross-Platform Frameworks and Flutter 

Flutter, introduced by Google, enables developers to 

build visually rich, native- compiled applications for 

Android and iOS from a single code base. Studies 

demonstrate that Flutter provides high performance, 

expressive UI capabilities, and reduced development 

time compared with native approaches [2]. Empirical 

analyses further highlight Flutter’s consistent frame 

rendering rate and widget reusability, making it suitable 

for responsive, interactive event-management UIs [3]. 

3. 2Local Storage with SQLite 

SQLite is a lightweight, serverless relational database 

engine that provides ACID-compliant transactions and 

rapid local querying. It is widely adopted in mobile 

development due to its small footprint and low latency 

[4]. Comparative tests reveal that SQLite excels at 

handling frequent read/write operations and supports 

efficient caching when network connectivity is 

unavailable [5]. In event applications, it ensures smooth 

offline access to participant lists, schedules, and QR-

based tickets. 

3.3 Cloud Integration and Real-Time Data via 

Firebase 

Firebase is a Backend-as-a-Service (BaaS) platform 

offering Realtime Database and Cloud Firestore for 

synchronized cloud storage, authentication, and push 

notifications [6]. These features are essential for 

dynamic environments such as event management, 

where  live  updates,  user  presence,  and 

announcements must be reflected across devices 

instantly [7]. Firebase’s built-in offline caching 

complements local storage, ensuring data consistency 

during intermittent connectivity [8]. 

3. 4Hybrid Approach: SQLite + Firebase 

Several studies propose combining SQLite and Firebase 

to achieve an offline-first design, enabling users to 

interact with data locally while synchronizing with the 

cloud once a connection is re-established [9]. This 

hybrid architecture ensures low-latency interaction and 

seamless cross-device data updates. Such 

synchronization models have been shown to enhance 

user experience and reliability in mobile event 

applications [10]. 

3.5 Security, Privacy, and Scalability 

Data security and user privacy are crucial in event 

applications that handle personal information. Firebase 

offers authentication, access control, and encryption 

mechanisms [11]. However, sensitive data stored 

locally must also be secured via encrypted SQLite 

storage. Studies emphasize efficient Firestore query 

design and rule-based data access to reduce latency and 

cost [12]. Proper data partitioning and real-time sync 

conflict resolution techniques further improve 

scalability and consistency [13]. 

3. 6Research Gap and Application Implications 

Although prior works have demonstrated Flutter-

Firebase integration, limited empirical studies assess 

hybrid offline-first architectures that combine both 

SQLite and Firebase under variable network conditions 

[14]. The “Classic Union” application addresses this 

gap by implementing a dual-storage system to ensure 

reliability, performance, and user convenience in 

community-level event management. 

 

4. HybridPersistence 

Strategy:Firestore and SQLite 

Coexistence 

4.1 Firebase Firestore as the Source of Truth 

Firestore is mandated for handling critical, mutable 

data requiring real-time synchronization, massive 

scalability, and reliable persistence. It serves as the 

single, immutable source of truth for all transactional 

data, including reservations, user roles, and event 

capacities. Furthermore, Firestore provides built-in 

offline data persistence by caching a local copy of data 

that the application actively uses, which generally 

suffices for basic read latency reduction. 

4.2 Strategic Use of Local SQLite 

While Firestore caching supports basic offline 

operation, local SQLite integration, via the sqflite 

plugin , is strategically employed to meet advanced 

data management and cost optimization requirements 

that transcend the capabilities of the native Firestore 

cache. 

The need for a dedicated local relational database stems 

from two major requirements: 

https://ijsrem.com/


     
            International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                    DOI: 10.55041/IJSREM53192                                          |        Page 4 
 

1. Complex Relational Queries: SQLite is a proven 

solution for handling relational data models with 

multiple tables and complex relationships. If the 

application needs to execute advanced local queries—

such as correlating user demographic data (local 

preference settings) with detailed event schedules 

(cached from Firestore) or generating organizer reports 

based on joined local data sets—the relational structure 

and SQL querying capabilities of SQLite are 

significantly superior to a flat document store cache. 

2. Read Optimization and Cost Reduction: For high-

volume data that is static or common across users (e.g., 

localized content, large catalogs of historical events, or 

large, rarely changing configuration parameters), 

repeatedly fetching this data from Firebase generates 

unnecessary read charges. By implementing a cache-

first strategy in the Repository layer— retrieving data 

once, writing it to SQLite,  and  serving  

subsequent requests locally—the number of Firebase 

read operations is drastically reduced, optimizing cloud 

costs and improving access speed for common data 

sets. 

The Repository layer is responsible for defining a clear 

synchronization model: it checks the local SQLite 

cache first and only performs a Firestore fetch if the 

local data is stale or absent. Any critical update is then 

propagated from Firestore back to the SQLite cache. 

Table Title: Hybrid Data Persistence Strategy for 

'Classic Union' 

 

The coexistence of SQLite and Firestore necessitates 

disciplined data management within the Data Layer. 

While Firestore provides eventual consistency across 

devices, SQLite provides immediate consistency 

locally. To prevent compromise of distributed data 

integrity, Firestore is designated as the sole source of 

truth for critical, mutable data (e.g., ticket availability). 

SQLite must function strictly as an immutable, read-

optimized cache for non-critical or static data. The Data 

Layer must enforce that all write operations related to 

critical inventory bypass SQLite entirely and are 

directed through the secure Cloud Function endpoint to 

Firestore. 

5. Critical System Design and 

Implementation 

5.1 High-Concurrency Booking Mechanism 

(Mitigating Race Conditions) 

The inherent risk of concurrent resource access must be 

addressed by moving the booking logic away from the 

client-side environment. Since standard Firestore client 

transactions use optimistic locking—prone to retries 

and ultimate failure (ABORTED errors) under high 

contention —the core booking function is delegated to 

Firebase Cloud Functions (CF). 

Mandatory Server-Side Enforcement 

Cloud Functions provide a serverless environment 

where code executes securely within Google’s data 

centers. This environment is utilized to implement the 

critical transactional logic: 

1. Client Request: The Flutter client calls an HTTPS 

Cloud Function, providing non-sensitive data such as 

the user ID and the target event ID. 

2. Atomic Operation Execution: The Cloud Function 

acts as a secure "manual secretary" for the resource. It 

uses the Firebase Admin SDK to execute a server-side 

atomic transaction on the event availability document 

in Firestore. 

3. Core Logic: Within the atomic transaction block, 

the function first Reads the current capacity. It then 

Verifies that the capacity is greater than zero and 

confirms the user’s  eligibility.  If  successful, it 

Decrements the capacity and 

Writes the updated capacity back to the event 

document while simultaneously  creating the 

reservation document. 

4. Concurrency Resolution: Server-side atomic 

transactions manage data contention internally. If a 

document read is modified by a concurrent operation,

 the transaction automatically retries. This ensures 

that only one operation successfully commits the 

required capacity decrement, providing the necessary 

guarantee of data integrity for resource allocation. 

5.2 Role-Based Access Control (RBAC) and 

Security Rules 

A multi-tiered access control system is implemented to 

separate privileges effectively. The primary roles 

defined are Admin (system oversight), Organizer 

(event management), and Attendee (consumer access). 

Implementation Strategy 

1. Role Storage: User roles are linked to the Firebase 

Authentication system. The definitive role 

information is stored within the user's document in 

Firestore (e.g., /users/{uid}) as a map of roles. 

Crucially, the assignment of these roles is restricted to a 

trusted environment (such as an Admin panel backed 

by Cloud Functions or the Firebase Admin SDK) to 

prevent unauthorized privilege escalation. 

2. Enforcement: Access control is rigorously 

enforced using Firestore Security Rules. These rules 

validate every read and write request by checking the 

https://ijsrem.com/


     
            International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                    DOI: 10.55041/IJSREM53192                                          |        Page 5 
 

authenticated user's ID (request.auth.uid) and cross- 

referencing it with the user’s stored role in the database. 

The effectiveness of security rules as a non- negotiable 

firewall is paramount. Client-side navigation or feature 

toggles based on locally stored roles are insufficient 

and easily bypassed. Therefore, the architecture ensures 

that the final permission check always occurs within 

the security rules, thereby protecting the underlying 

data. 

A common scenario involves granular control for 

Organizers: Security rules must permit an Organizer to 

update specific fields (e.g., event title or content) on 

an event document only if their UID is present as the 

hostUID or within a designated roles map on that 

document. Conversely, the rules must explicitly deny 

the Organizer permission to modify critical fields like 

the event’s roles map or financial data, reserving those 

permissions for the Admin role. 

5.3 Secure Payment Processing (Stripe 

Integration) 

Stripe is chosen as the payment gateway due to its 

robust, developer-friendly official Flutter SDK 

(flutter_stripe) and its built-in security features, 

including PCI-DSS Level 1 compliance and automatic 

tokenization, which simplifies security burdens. 

Security Protocol: Backend-Centric Model 

To maintain the highest level of security, the Stripe 

Secret Key is strictly confined to the secure server 

environment of Firebase Cloud Functions. The 

payment process follows a three-step server-centric 

workflow: 

1. Client Request: The Flutter application initiates 

the purchase, sending the item ID and quantity to a 

dedicated HTTPS Cloud Function endpoint. Crucially, 

the actual price is retrieved or validated server-side 

using trusted data sources to prevent any client-side 

manipulation of the transaction amount. 

2. Payment Intent Creation (CF): The Cloud 

Function utilizes the secure, private Stripe Secret Key 

to interact with  the  Stripe  API,  creating a 

PaymentIntent. It then securely transmits only the 

public, non- sensitive client_secret back to the Flutter 

client. 

3. Client Payment: The Flutter application uses

 the official flutter_stripe package and the received 

client_secret to present the Payment Sheet (e.g., Apple 

Pay, Google Pay, Card Form). All sensitive financial 

data is collected and tokenized directly by Stripe, 

bypassing the 'Classic Union' servers entirely, thus 

fulfilling PCI compliance requirements. 

Asynchronous Transaction Finalization (Webhooks) 

Payment finalization is an asynchronous process, often 

completing after the client-side UI confirmation. 

Relying solely on the client's connectivity at the 

moment of payment success is fragile. To guarantee 

reliable reservation status updates (e.g., moving a 

reservation from PENDING to PAID), a dedicated, 

secure Cloud Function is deployed as a webhook 

listener. Stripe  sends  real-time  events (e.g., 

checkout.session.completed) to this webhook. The 

function validates the signature of the incoming 

webhook and, using the secure Admin SDK, updates 

the corresponding reservation document in Firestore, 

providing an out-of-band, tamper-proof mechanism for 

transaction finality. 

 

6. Architectural Diagrams and Data 

Flow Analysis 

6.1 High-Level System Architecture Diagram 

(Conceptual Model) 

The high-level architecture comprises three interacting 

domains: the Flutter Client, the Firebase 

Ecosystem, and the External Services (Stripe). Data 

flow is rigorously controlled: 

1. Authentication and RBAC Flow: User 

authentication occurs via Firebase Auth, feeding into 

Firestore Security Rules which act as the access control 

gate for all database operations. 

2. Application Data Flow: Managed through the 

layered Flutter architecture (Presentation Domain 

Data), with Repositories mediating access between the 

local SQLite cache and the remote Firestore source of 

truth. 

3. Critical Logic Flow: Client requests for resource 

allocation or payment initiation are routed exclusively 

via HTTPS calls to secure Cloud Functions, which 

execute high- integrity, server-side business logic. 

 

6.2 Detailed Data Flow Diagram (DFD) and 

Sequence Diagram 

https://ijsrem.com/


     
            International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                    DOI: 10.55041/IJSREM53192                                          |        Page 6 
 

The most critical flow within the system, the High-

Integrity Event Reservation process, is best illustrated 

using a sequence diagram to demonstrate the 

necessary delegation to the server environment for 

atomic operations. This visualization confirms that the 

mechanism to mitigate high-contention race conditions 

is structurally enforced. 

Sequence Diagram: High-Integrity Event Reservation 

Flow 

 

 

7. Discussion and Evaluation 

7.1 Architectural Strengths and Trade-offs 

The proposed architecture achieves its core design 

goals by leveraging the strengths of its chosen 

components. Firebase inherently provides horizontal 

scalability, allowing the system to handle increasing 

load without manual server provisioning. The BLoC 

architecture ensures that the local UI rendering remains 

fast and responsive, efficiently managing complex, 

incoming data streams without freezing the user 

interface. 

The design’s primary strength is the delegation of 

concurrency control to the Cloud Functions. By 

executing the booking logic in a server-side atomic 

transaction, the architecture guarantees data integrity 

and prevents resource over- allocation, successfully 

resolving the risks associated with client-side optimistic 

concurrency failures during peak event demand. 

A notable trade-off involves the complexity introduced 

by the hybrid persistence model (Firestore and SQLite). 

Integrating and synchronizing two distinct database 

technologies requires careful maintenance and rigorous 

Repository implementation. However, this complexity 

is justified by the functional necessity of optimizing 

read performance, supporting advanced offline 

querying, and achieving significant cost reductions by 

minimizing routine Firebase read operations, making 

the overall system more economical and robust for 

long-term operation. 

7.2 Evaluation Against Non-Functional 

Requirements (NFRs) 

• Security: High security standards are met through 

the multi-layered enforcement of RBAC via Firestore 

Security Rules and the secure, decoupled payment flow 

utilizing Cloud Functions and Stripe Webhooks. 

Sensitive financial processes are entirely backend-

centric, preventing exposure of secret keys. 

• Data Integrity: Achieved through mandatory 

server-side atomic transactions for all resource-

modifying operations (booking, capacity updates). 

• Maintainability: The adherence to Clean 

Architecture principles, coupled with the modularity of 

BLoC, enforces distinct, testable layers, which is 

crucial for reducing technical debt and simplifying 

feature development in a large-scale application. 

8. Sample Output 
 

 

Figure 8.1 User Data Management 
 

 

Figure 8.2 Admin Data Management 

 

Figure 8.3 Over View Data Management 

https://ijsrem.com/


     
            International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                    DOI: 10.55041/IJSREM53192                                          |        Page 7 
 

 

Figure 8.4 Sample login page 

 

 

9. Conclusion 

This architectural plan successfully establishes a 

resilient, scalable, and secure framework for the 

'Classic Union' event organizing application. The 

technical contribution lies in the strategic formulation 

of a hybrid data persistence  model  that  

maximizes  cost efficiency (SQLite caching) without 

compromising distributed integrity (Firestore source of 

truth). Crucially, the plan implements a high-integrity 

server-side concurrency model using Firebase Cloud 

Functions to govern resource allocation, thereby 

circumventing the inherent limitations of client-side 

optimistic locking for high-contention booking flows. 

The overall framework provides a dependable 

foundation for the application's immediate development 

phase. 

8.1 Future Work and Enhancements 

Future development efforts should focus on enhancing 

the attendee and organizer experience, leveraging the 

architecture’s modularity to integrate high-engagement 

features: 

• Advanced Attendee Experience: The modular 

design supports integrating high-touch features

 such as Contactless Check-In. This can be 

implemented using NFC or QR code scanning 

functionalities built into the branded event app, 

utilizing the Flutter embedder’s native capabilities for 

seamless access. Real-time check-in status updates can 

be managed efficiently using the low-latency Firebase 

Realtime Database layer, triggered via the check-in 

event. 

 

• Gamification and 

Personalization: Leveraging the local SQLite storage, 

which holds cached event metadata and user 

preferences, can enable the development of 

personalization tools. This includes implementing 

features like AI-based personalized event 

recommendations or gamification elements, such as 

leaderboards and virtual scavenger hunts, thereby 

enhancing overall attendee engagement. 

• Enhanced Analytics and Reporting: Extending 

the data layer to integrate granular tracking of sales, 

attendance, and session performance will allow 

organizers and sponsors to gain deeper, more precise 

insights. This granular data is essential for accurate 

calculation of Return on Investment (ROI) and 

facilitating robust financial planning for subsequent 

events. 

 

9.REFERENCES 
• [1] P. Kirubhakar et al., “Mobile Application 

for College Event Management,” IRJMETS, vol. 

V, 

pp. 1–6, 2024. 

[2] T. Väänänen, “Flutter in Cross- Platform 

Development: Tools and Performance Analysis,” 

MSc Thesis,  Univ.  of  Oulu,  2025. 

[3] Google Developers, Flutter Documentation, 

Google LLC, 2025. 

[4] O. Obradović and M. Keleč, “Performance 

Analysis on Android SQLite Database,” Semantic 

Scholar, 2019. 

[5] IJSRET, “A Smart Event Management App 

Using Flutter and Firebase (Evecurate),” vol. 6, 

no. 3, 

pp. 122–127, 2021. 

[6] Google Firebase, “Cloud Firestore

 Documentation,” 

Firebase Docs, 2025. 

[7] Google Firebase, “Realtime Database 

Overview,” Firebase Docs, 2025. 

[8] Google Firebase, “Choose a Database: Cloud 

Firestore or Realtime Database,” Firebase Blog,

 2025. 

[9] S. K. Verma et al., “A Performance 

Comparison of SQLite and Firebase Databases 

from a Practical Perspective,” ResearchGate,

  2024. 

[10] K. Anand and P. Nandhini, “Hybrid Mobile 

App for Event Management using Flutter and 

https://ijsrem.com/


     
            International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                    DOI: 10.55041/IJSREM53192                                          |        Page 8 
 

Firebase,” IJERT, vol. 13, no. 2, 

pp. 45–50, 2024. 

[11] Google Firebase, “Firebase Authentication 

and Security Rules,” Docs,  2025. 

[12] Firebase Developers Blog, “Optimizing 

Firestore Performance and  Cost,” 2025. 

 

[13] J. Lee et al., “Synchronization and Conflict 

Resolution in Offline- First Mobile Apps,” ACM 

Mobile Computing, vol. 23, no. 4, pp. 112– 

120, 2023. 

[14] ResearchGate, “Literature Review on the 

Development of Mobile Applications for Academic 

Events,” 2024. 

https://ijsrem.com/

