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Temporal Regularized Matrix Factorization for High-Dimensional Time 

Series Forecasting 

Introduction 

A. Background on Time Series Forecasting 

Time series forecasting plays a critical role in numerous 

domains, including finance, economics, climatology, and 

retail. The ability to predict future values based on 

historical patterns enables better decision-making, 

resource allocation, and risk management. Traditional 

approaches to time series forecasting include statistical 

methods such as autoregressive integrated moving average 

(ARIMA) models, exponential smoothing, and vector 

autoregression (VAR)[1]. 

B. Challenges in High-Dimensional Time Series 

Data 

Modern applications of time series forecasting increasingly 

involve high-dimensional data, where multiple 

interdependent series must be analyzed simultaneously. 

For example, a retail store might need to forecast demand 

for thousands of items, or climate scientists might analyze 

data from numerous sensors collected over several years[1]. 

This high dimensionality introduces several challenges: 

1. The curse of dimensionality makes traditional 

methods computationally expensive or infeasible. 

2. Data often contains missing values due to sensor 

malfunctions, human errors, or other collection 

issues. 

3. Complex dependencies exist between different time 

series. 

4. Scalability becomes a critical concern with large 

datasets. 

5. Data heterogeneity requires flexible modeling 

approaches. 

 

 

 

 

 

C. Problem Statement 

Given these challenges, there is a pressing need for 

forecasting methodologies that can effectively handle 

high-dimensional time series data with missing values. 

Specifically, we need approaches that are: 

1. Scalable to handle very large numbers (n) of 

possibly interdependent time series and/or have a 

large time frame (T). 

2. Robust to missing values and noise. 

3. Capable of capturing complex temporal 

dependencies. 

4. Effective at forecasting future values[1]. 

Traditional time series methods such as autoregressive 

(AR) models or dynamic linear models (DLM) fall short in 

handling these issues. For example, an AR model of order 

L requires O(TL²n⁴ + L³n⁶) time to estimate O(Ln²) 

parameters, which is prohibitive even for moderate values 

of n[1]. 

D. Importance of Handling Missing Values 

Missing values are pervasive in real-world time series data. 

In retail datasets like Walmart E-commerce data, missing 

values can constitute over 50% of the data due to stock-

outs and other factors[1]. Similarly, sensor data in climate 

applications often has gaps due to malfunctions or 

maintenance. Effective handling of missing values is 

therefore critical for accurate forecasting. 

E. Paper Organization 

The remainder of this paper is organized as follows: 

Section II reviews related work on time series forecasting. 
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Section III presents the Temporal Regularized Matrix 

Factorization framework. Section IV discusses 

applications in financial forecasting and climate prediction. 

Section V describes our experimental evaluation. Finally, 

Section VI concludes the paper and discusses future 

research directions. 

Related Work 

A. Traditional Time Series Forecasting Methods 

1) ARIMA Models 

Autoregressive Integrated Moving Average (ARIMA) 

models are among the most widely used approaches for 

time series forecasting. They combine autoregressive (AR) 

and moving average (MA) components with differencing 

to handle non-stationary data[2]. However, ARIMA models 

face significant challenges when applied to high-

dimensional data, particularly in terms of computational 

complexity and parameter estimation. 

2) Exponential Smoothing 

Exponential smoothing methods forecast future values by 

giving exponentially decreasing weights to past 

observations[3]. While effective for short, volatile time 

series, these methods struggle with high-dimensional data 

and complex dependencies between series. 

3) Vector Autoregression (VAR) 

VAR models extend univariate autoregressive models to 

capture linear interdependencies among multiple time 

series[1]. However, they suffer from computational 

inefficiency for high-dimensional data, requiring O(Tn²) 

computation cost to update parameters, where n is the 

dimensionality and T is the time frame. 

B. Matrix Factorization Approaches for Time 

Series 

1) Matrix Factorization Techniques 

Matrix factorization (MF) has been applied to time series 

data, particularly for handling missing values. In standard 

MF, a matrix Y ∈ ℝⁿˣᵀ representing n time series over T 

time points is factorized into a product of two low-rank 

matrices: Y ≈ FX, where F ∈ ℝⁿˣᵏ contains latent features 

for each time series, and X ∈ ℝᵏˣᵀ contains latent temporal 

embeddings[1]. 

2) Regularization Methods 

Regularization in matrix factorization helps prevent 

overfitting and can incorporate domain knowledge. Graph-

based regularization has been used to model temporal 

dependencies, but such approaches often fail to capture 

negative correlations between time points and struggle 

with learning the weights of dependencies[1][4]. 

C. Limitations of Existing Approaches 

Existing approaches face several limitations: 

1. Scalability: Traditional methods like ARIMA and 

VAR become computationally infeasible for high-

dimensional data[1]. 

2. Missing Values: Many methods cannot handle 

datasets with significant proportions of missing 

values[1]. 

3. Temporal Dependencies: Standard matrix 

factorization approaches do not account for the 

temporal ordering of data[5]. 

4. Forecasting Ability: While some methods excel at 

imputing missing values, they often perform poorly 

at forecasting future values[1]. 

The Temporal Regularized Matrix Factorization 

framework presented in this paper addresses these 

limitations. 

Temporal Regularized Matrix Factorization 

A. TRMF Framework Overview 

Temporal Regularized Matrix Factorization (TRMF) is a 

novel approach designed to incorporate temporal 

dependencies into matrix factorization models for time 

series data[1]. TRMF offers several advantages over 

existing methods: 

1. It handles high-dimensional time series data 

efficiently. 

2. It naturally accommodates missing values. 

3. It captures temporal dependencies through well-

designed regularization. 

4. It enables effective forecasting of future values. 

5. It supports data-driven learning of dependency 

structures. 

The key innovation in TRMF is the incorporation of a 
temporal regularizer that encourages the latent temporal 

embeddings to follow specific time series patterns[1]. 

http://www.ijsrem.com/
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B. Mathematical Formulation 

1) Problem Definition 

Let Y ∈ ℝⁿˣᵀ be the matrix representing n time series over 

T time points, with Yᵢₜ being the observation at the t-th time 

point of the i-th time series. We aim to factorize Y into a 

product of two low-rank matrices F ∈ ℝⁿˣᵏ and X ∈ ℝᵏˣᵀ, 

where k is the latent dimensionality, such that Yᵢₜ ≈ fᵢᵀxₜ. 

Here, fᵢ ∈ ℝᵏ is the latent embedding for the i-th time series, 

and xₜ ∈ ℝᵏ is the latent temporal embedding for the t-th 

time point[1]. 

2) Matrix Factorization Component 

The standard matrix factorization objective function is 

given by: 

min
𝐹,𝑋

  ∑  

(𝑖,𝑡)∈Ω

(𝑌𝑖𝑡 − 𝐟𝑖
𝑇𝐱𝑡)

2 + 𝜆𝑓ℛ𝑓(𝐹) + 𝜆𝑥ℛ𝑥(𝑋) 

where Ω is the set of observed entries, R_f(F) and R_x(X) 

are regularizers for F and X respectively, and λₑ and λₓ are 

regularization parameters[1][4]. 

3) Temporal Regularization Component 

The key innovation in TRMF is the design of the 

regularizer R_x(X) to incorporate temporal dependencies. 

Instead of using the standard Frobenius norm, we define a 

temporal regularizer T_M(X|Θ) based on a time series 

model M_Θ[1]: 

𝐱𝑡 = 𝑀Θ({𝐱𝑡−𝑙: 𝑙 ∈ ℒ}) + 𝝐𝑡 

where L is a set of lag indices, Θ captures the weighting 

information of temporal dependencies, and εₜ is a Gaussian 

noise vector. 

The temporal regularizer is defined as the negative log-

likelihood of observing the latent temporal embeddings 

under the time series model[1]: 

𝒯𝑀(𝑋|Θ) = −log⁡ℙ(𝐱1, … , 𝐱𝑇|Θ) 

The complete TRMF objective function is[1]: 

min
𝐹,𝑋,Θ

  ∑  

(𝑖,𝑡)∈Ω

(𝑌𝑖𝑡 − 𝐟𝑖
𝑇𝐱𝑡)

2 + 𝜆𝑓ℛ𝑓(𝐹) + 𝜆𝑥𝒯𝑀(𝑋|Θ)

+ 𝜆𝜃ℛ𝜃(Θ) 

 

 

C. Learning Algorithm 

1) Optimization Procedure 

The TRMF objective function can be optimized using 

alternating minimization over F, X, and Θ[1]. The 

optimization consists of three main steps: 

a) Update F with X and Θ fixed: 

min
𝐹
  ∑  

(𝑖,𝑡)∈Ω

(𝑌𝑖𝑡 − 𝐟𝑖
𝑇𝐱𝑡)

2 + 𝜆𝑓ℛ𝑓(𝐹) 

b) Update X with F and Θ fixed: 

min
𝑋

  ∑  

(𝑖,𝑡)∈Ω

(𝑌𝑖𝑡 − 𝐟𝑖
𝑇𝐱𝑡)

2 + 𝜆𝑥𝒯𝑀(𝑋|Θ) 

c) Update Θ with F and X fixed: 

min
Θ
 𝜆𝑥𝒯𝑀(𝑋|Θ) + 𝜆𝜃ℛ𝜃(Θ) 

2) Parameter Estimation 

For the specific case of an autoregressive (AR) temporal 

regularizer, the parameter estimation step involves solving 

ridge regression problems for each dimension of the latent 

space[1]. This makes the learning procedure efficient and 

scalable. 

D. Handling Missing Values 

One of the key advantages of TRMF is its ability to handle 

missing values effectively[1]. Since the objective function 

only considers observed entries (i,t) ∈ Ω, TRMF naturally 

accommodates incomplete data. For missing entries, 

TRMF can impute the values as fᵢᵀxₜ once the model is 

learned. 

Furthermore, the matrix factorization approach enables 

information sharing across different time series, allowing 

for more accurate imputation of missing values compared 

to univariate methods that treat each time series 

independently[1]. 

E. Scalability Considerations 

TRMF is designed to be highly scalable, making it suitable 

for high-dimensional time series data[1]. The alternating 

http://www.ijsrem.com/
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minimization procedure can be implemented efficiently, 

with updates for F and X requiring O(|Ω|k²) and O(|L|Tk²) 

time respectively, where |Ω| is the number of observed 

entries, |L| is the size of the lag set, T is the number of time 

points, and k is the latent dimensionality. 

For practical high-dimensional applications, such as 

forecasting demand for 50,000 items, TRMF has been 

shown to be two orders of magnitude faster than competing 

methods[1]. 

Applications 

A. Financial Forecasting 

1) Market Prediction Applications 

Financial time series forecasting is one of the most 

challenging and important applications of time series 

analysis[3]. TRMF has been successfully applied to predict 

stock prices, exchange rates, and other financial indicators. 

The high dimensionality of financial data, with thousands 

of stocks and other securities, makes traditional methods 

computationally infeasible[1]. TRMF's scalability and 

ability to capture dependencies between different financial 

instruments make it particularly suitable for this domain. 

2) Challenges in Financial Data 

Financial data presents several unique challenges: 

a) High volatility and non-stationarity 

b) Complex interdependencies between different financial 

instruments 

c) Effects of external events and news 

d) Seasonal and cyclical patterns 

TRMF addresses these challenges through its flexible lag 

structure, which can incorporate domain knowledge about 

financial cycles, and its ability to learn complex 

dependency structures from data[1]. 

B. Climate Prediction 

1) Weather Pattern Analysis 

Climate data typically involves readings from numerous 

sensors over extended periods, resulting in high-

dimensional time series with complex spatial and temporal 

dependencies[1]. TRMF can be applied to analyze and 

predict weather patterns, temperature variations, and 

precipitation levels. 

The ability to handle missing values is particularly valuable 

in climate applications, where sensor malfunctions or 

maintenance can lead to gaps in the data[1]. 

2) Long-term Climate Forecasting 

Long-term climate forecasting requires capturing complex 

cyclical patterns and trends. TRMF's flexible lag structure 

allows it to incorporate domain knowledge about climate 

cycles, such as annual seasons, El Niño–Southern 

Oscillation (ENSO), and other periodic phenomena. 

By selecting an appropriate lag set L, TRMF can model 

both short-term dependencies and long-term cyclical 

patterns, leading to more accurate long-term forecasts[1]. 

Experimental Evaluation 

A. Datasets 

We evaluate TRMF on five datasets[1]: 

1. Synthetic: A randomly generated dataset with n=16 

time series and T=128 time points, following an AR 

process with lag set L={1,8}. 

2. Electricity: Data from the UCI repository containing 

electricity consumption measured for 370 customers 

over 26,304 time points. 

3. Traffic: Data from the UCI repository containing 

occupancy rates of 963 car lanes over 10,560 time 

points. 

4. Walmart-1: A proprietary dataset from Walmart E-

commerce containing weekly sales information for 

1,350 items over 187 weeks, with 55.3% of entries 

missing. 

5. Walmart-2: Another proprietary dataset from 

Walmart E-commerce containing weekly sales 

information for 1,582 items over 187 weeks, with 

49.3% of entries missing. 

B. Evaluation Metrics 

We evaluate the performance of different methods using 

two metrics[1]: 

1) Normalized Deviation (ND) 

ND measures the relative deviation of the predicted values 

from the true values: 

ND =
∑ ⁡ |𝑦true − 𝑦pred|

∑ ⁡ |𝑦true|
 

http://www.ijsrem.com/
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2) Normalized RMSE (NRMSE) 

NRMSE measures the root mean squared error normalized 

by the magnitude of the true values: 

NRMSE =
√∑ ⁡ (𝑦true − 𝑦pred)

2

√∑ ⁡ (𝑦true)
2

 

For both metrics, lower values indicate better performance. 

C. Experimental Setup 

We compare TRMF with several baseline methods[1]: 

1. TRMF-AR: Our proposed method with an 

autoregressive temporal regularizer. 

2. SVD-AR(1): Rank-k approximation using SVD 

followed by learning an AR(1) model on the latent 

temporal embeddings. 

3. TCF: Temporal Collaborative Filtering, a matrix 

factorization approach with a simple temporal 

regularizer. 

4. AR(1): n-dimensional AR(1) model. 

5. DLM: Dynamic Linear Model. 

6. Mean: Baseline that predicts everything to be the 

mean of the observed portion of the data. 

For TRMF-AR, we use the following lag sets[1]: 

• Synthetic: L={1,2,...,8} 

• Electricity and Traffic: 

L={1,...,24}∪{7×24,...,8×24-1} 

• Walmart-1 and Walmart-2: L={1,...,10}∪{50,...,56} 

 

D. Results and Discussion 

1) Prediction Accuracy 

Table 1 shows the forecasting results in terms of 

ND/NRMSE for each method. TRMF-AR outperforms all 

other methods on most datasets[1]. In particular, on the 

Walmart datasets with missing values, TRMF-AR achieves 

significantly better performance than competing methods. 

On the synthetic dataset, TRMF-AR achieves an ND of 

0.373 and an NRMSE of 0.487, which are substantially 

better than the next best method, SVD-AR(1), which 

achieves an ND of 0.444 and an NRMSE of 0.872[1]. 

2) Computational Efficiency 

Fig. 1 shows the scalability of different methods as the 

number of time series n increases from 500 to 50,000. 

TRMF-AR is significantly faster than competing methods, 

especially for large n[1]. For n=50,000, TRMF-AR is two 

orders of magnitude faster than the AR(1) method. 

3) Handling of Missing Values 

Table 2 shows the results for missing value imputation with 

different percentages of observed data. TRMF-AR 

consistently outperforms other methods across different 

observation percentages[1]. For example, with 20% 

observed data on the synthetic dataset, TRMF-AR achieves 

an ND of 0.467 and an NRMSE of 0.661, while TCF 

achieves an ND of 0.713 and an NRMSE of 1.030. 

Fig. 2 demonstrates that TRMF maintains superior 

performance even as the percentage of missing values 

increases, showing its robustness in real-world scenarios 

with incomplete data[1]. 

E. Comparison with Traditional Methods 

Our results demonstrate that TRMF-AR outperforms 

traditional time series methods in several aspects[1]: 

1. Prediction Accuracy: TRMF-AR consistently 

achieves better forecasting performance across 

multiple datasets. 

2. Handling Missing Values: TRMF-AR effectively 

handles datasets with significant proportions of 

missing values. 

3. Computational Efficiency: TRMF-AR is 

significantly faster than traditional methods for 

high-dimensional data. 

4. Scalability: TRMF-AR can handle time series data 

with dimensions up to 50,000, which is infeasible for 

traditional methods. 

Conclusion and Future Work 

A. Summary of Contributions 

In this paper, we presented Temporal Regularized Matrix 

Factorization (TRMF), a novel framework for high-

dimensional time series forecasting[1]. Our main 

contributions include: 

1. A general framework that incorporates temporal 

dependencies into matrix factorization models. 

http://www.ijsrem.com/
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2. A novel autoregressive temporal regularizer that can 

capture both positive and negative dependencies. 

3. An efficient learning algorithm that scales to high-

dimensional time series data. 

4. Empirical evidence of TRMF's superiority over 

traditional methods in terms of prediction accuracy, 

handling of missing values, and computational 

efficiency. 

TRMF addresses the limitations of existing approaches, 

providing a flexible and scalable solution for high-

dimensional time series forecasting with missing values[1]. 

B. Limitations 

Despite its advantages, TRMF has some limitations: 

1. Like many matrix factorization methods, TRMF 

assumes that the underlying data has a low-rank 

structure[1]. 

2. The autoregressive temporal regularizer assumes 

linear dependencies between time points, which may 

not capture all complex temporal patterns. 

3. The current formulation does not explicitly model 

uncertainty in the forecasts. 

C. Future Research Directions 

Several directions for future research emerge from this 

work[1]: 

1. Incorporating more complex temporal 

dependencies, such as nonlinear relationships or 

long-range dependencies. 

2. Extending TRMF to handle streaming data for 

online forecasting applications. 

3. Developing methods to quantify uncertainty in 

TRMF forecasts. 

4. Incorporating additional external factors or 

covariates that may influence the time series. 

5. Applying TRMF to new domains beyond financial 

forecasting and climate prediction. 
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