
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 11 | NOV - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10979 | Page 1

Testing Golang Spanner Interactions Using Test Doubles

Nilesh Jagnik

Mountain View, USA

nileshjagnik@gmail.com

Abstract—Almost all software systems require the use of

databases for storing application data and state. As such, it is

important to test the correctness of database operations made

by various components of a system. A lack of testing can lead to

bugs, errors and even outages in production. For systems using

database services like Cloud Spanner, it is difficult to spawn a

local database instance. This can make hermetic test setup quite

difficult. To solve this problem, Spanner provides test doubles

which can be used for unit and functional testing of database

operations. These test doubles act like real Spanner servers but

keep data in memory only and do not persist it. Although the

performance and efficiency of these test doubles is quite low,

they are well suited for hermetic correctness testing. In this

paper, we review test doubles and the best practices associated

with them. We then take a look at two test doubles offered by

Spanner, with one of them being available only in Golang. We

also cover the caveats associated with the use of these test

doubles.

Keywords—databases, software testing, test doubles, Cloud

Spanner

I. INTRODUCTION

Databases are the backbone of software applications.

They are useful for input data, metadata and application state.

Databases allow separating the concerns of persisting data

from logic that does computations using data. As such,

databases have an important role in software design.

Databases can be of many types offering different features

and capabilities. In applications where data points can have

relationships between them, relational databases are often the

right choice. For applications using Google Cloud for data

storage, there are several relational database offerings

available. Cloud Spanner is the optimal choice for a fully

managed, scalable, multi-region database.

Along with choosing the right database service,

developers should also test their applications. This includes

unit testing for individual classes/modules and integration

and functional testing for asserting end-to-end behavior.

Because developers don’t own Spanner, they may be tempted

to mock/stub interactions with Spanner when writing tests.

However, this may reduce the effectiveness of tests in

detecting errors and bugs. This is because the real instance of

Spanner may not behave like the mock/stub. In general, the

use of mocks and stubs makes tests less effective and harder

to setup and maintain.

A better idea would be to use a test instance provided by

Spanner. Spanner provides a few lightweight database

instances for testing. These implementations provide the

same functionality as real Spanner, but not the same

performance. They are meant only for testing correctness of

an application’s interactions with Spanner.

In this paper, we first look at different test doubles that

can be used for testing, and why we would prefer one over

the other. We then look at test doubles available for testing

Spanner interactions in Golang, which has the best support

for Spanner testing.

II. TEST DOUBLES

A test double can act the same as a real object in a test

environment. There are a few types of test doubles that can

be used to test interactions with external systems. Let us

review them and look at best practices around the use of test

doubles.

A. Stubs

A stub is a test double which executes no logic and returns

a response, which can be configured during test setup. Stubs

are used to mimic certain responses from an external library

or service to get the test execution into an expected state.

They don’t do any of the actual work a real instance would

do and cannot mimic state changes which may occur from

interactions with real objects. Since stubs don’t do any actual

work, it is easy to manually create stubs that follow the real

instance’s interface. However, it is common to use a mocking

framework to create stubs.

B. Mocks

A mock is test double which is similar to a stub, but

provides some additional features. This includes the ability to

track how many times the mock instance was called, what

parameters values it was called with, etc. Mocks can used to

test that interactions with the test doubles are correct and

valid. Similar to stubs, mocks are useful in cases where no

state changes are expected as a result of interaction with the

real instance. E.g., A mock can be used to verify that a string

was stored into a file, but it cannot be used to verify that the

contents of the file are correctly written (since the mock will

not actually write to the file). It is common to use mocking

frameworks that can create mocks and stubs.

C. Fakes

Unlike stubs and mocks which use a mocking framework

to create a no-op version of the real instance, fakes are

lightweight implementations that follow the real object’s

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 11 | NOV - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10979 | Page 2

interface. Fakes are

expected to behave exactly like the real object but not be as

resource efficient or performant as the real object. This is

considered fine since tests process a small amount of data and

thus, do not require the performance or efficiency of the real

instance. Fakes are normally owned and maintained by the

owner of the real object so that clients have an easy way to

test interactions with the real object.

D. Best Practices

Mocks and stubs can cause more problems than they

solve. They make tests harder to understand and maintain.

Fakes are better since the test code does not usually need a lot

of setup and maintenance to use Fakes. However, all test

doubles have one common issue – test doubles may behave

differently to real instances because they are different

implementations. Developers to use real objects wherever

possible. If real objects are not available, they should prefer

the use of fakes. The use of mocks and stubs should be limited

to simple use cases where there is very less reliance on test

double behavior.

III. SPANNER IN-MEMORY FAKE FOR UNIT TESTING

The spannertest package in Golang allows easy testing of

Cloud Spanner interactions. This package creates a fake in-

memory implementation of Spanner. The fake server can be

started and closed inside of a unit test.

A. Usage

Using the spannertest package is simple and requires

minimal setup. The core functionality of this package is

provided by spannertest.NewServer(), which creates a new

in-memory server. The server will be listening for gRPC

connections on the provided address (without any security).

Once the server is up, we can use gRPC to start a connection

with this server. Note that this connection should be insecure.

Finally, we use this connection to create a new Spanner client.

The Spanner client can then be used by the code under test

that makes Spanner calls. The rest of the code can just assume

that real Spanner is being used.

Fig. 1. In-memory fake for unit testing in Golang (using spannertest).

B. Caveats

Although the spannertest package is great for easy unit

testing of code interacting with Spanner, it is experimental

and does not support all Spanner features. There are several

read/write operations, validations and data types supported

by Spanner, which are not supported by the in-memory fake.

Any use of these operations in the code under test will raise

Spanner exceptions. This could cause confusion and

frustration, so knowing and documenting the limitations of

this package is important when using it.

Another important thing to note is that the in-memory

server does not actually save data anywhere except in

memory, so data is lost after test execution.

IV. SPANNER EMULATOR FOR FUNCTIONAL TESTING

In addition to the spannertest package which is only

available for unit testing Golang, there is also a generic

emulator provided by Spanner. This emulator starts a local

Spanner server on a user-specified port. Similar to

spannertest, this emulator also provides an in-memory

Spanner server. The emulator can be created without setting

up billing and is free of cost. Since this emulator does not

provide an easy way for creation as part of a unit test, it is

more suited for local development and functional tests, where

test environment setup can be handled manually or scripted

into environment creation.

A. Setup

Using the Spanner emulator is similar to using

spannertest, however the steps for creating the fake server are

different. In this workflow the fake server is created using the

gcloud command shown in Fig. 2.

Fig. 2. Command for starting Spanner emulator.

B. Usage

Once the emulator is set up, the usage in test code is very

similar to Fig. 1. The only difference being that the step for

starting the server should be omitted. Instead, client libraries

should set the SPANNER_EMULATOR_HOST

environment variable. Spanner clients check for this variable

to be set and automatically connect to the local emulator

when this variable is set.

Fig. 3. Setting the enviroment variable that forces connection to emulator.

C. Caveats

Similar to the spannertest package, there are some

limitations in the local emulator’s functionality. It does not

support security, authentication and authorization, so any

func TestUsingSpannerFake(t *testing.T) {

 // Start a new in-memory fake server.

 spanner_server, err := spannertest.NewServer(":0")

 assert.NilError(t, err)

 ctx := context.Background()

 db_path := "projects/P/instances/I/databases/D"

 // Dail into fake server with no security.

 conn, err := grpc.DialContext(

 ctx,

 spanner_server.Addr,

 grpc.WithTransportCredentials(

 insecure.NewCredentials())

)

 // Create Spanner client.

 client, err := spanner.NewClient(

 ctx,

 db_path,

 option.WithGRPCConn(conn)

)

 assert.NilError(t, err)

 defer client.Close()

 // Use spanner client as normal

 ...

}

Starts a gRPC server that listens on localhost:9010

$ gcloud emulators spanner start

$ export SPANNER_EMULATOR_HOST=localhost:9010

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 05 ISSUE: 11 | NOV - 2021 SJIF RATING: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10979 | Page 3

logic around these cannot be tested using the emulator. In

addition, it does not support profiles of queries. The

ANALYZE statement is ignored by the emulator. Logging

and monitoring are also not supported.

There are also some differences from production Spanner,

e.g., the error messages generated by the emulator may not be

same as production. The performance of the emulator is much

lower as compared to production, so it is only suited for

testing on smaller data sets. The emulator stores data only in

memory so data is lost if the emulator is restarted or shut

down.

CONCLUSION

Testing database interactions is mandatory for ensuring

correctness in an application. For applications using Cloud

Spanner, it is hard to spawn a real Spanner database inside a

test environment. Test double best practices suggest the use

of fakes in cases where real objects are not available. This is

because other test doubles are manually created and provide

no real guarantees of behaving like the real object. For this

reason, Spanner provided fakes are the best option for testing

database interactions. Spanner provides an in-memory

instance for unit testing of Golang applications. There is also

an emulator which is better suited to functional testing and

can be used in any language. With both of these test doubles,

there are caveats to be aware of, namely limited functionality

and reduced performance. Both of these test doubles are in-

memory and do not actually persist any data to storage.

REFERENCES

[1] Andrew Trenk, “Testing on the Toilet: Know Your Test Doubles (Jul
2013),” https://testing.googleblog.com/2013/07/testing-on-toilet-
know-your-test-doubles.html

[2] Andrew Trenk, “Testing on the Toilet: Don’t Overuse Mocks (May
2013),” https://testing.googleblog.com/2013/05/testing-on-toilet-dont-
overuse-mocks.html

[3] Laurence de Jong, “Cloud Spanner Testing in Go (Feb 2021),”
https://ldej.nl/post/cloud-spanner-testing-in-go

[4] “spannertest (Oct 2021),”
https://pkg.go.dev/cloud.google.com/go/spanner/spannertest

[5] “Cloud Spanner Emulator (Mar 2021),”
https://github.com/GoogleCloudPlatform/cloud-spanner-emulator

[6] Peter Runge, “Testing a Spring Boot application with the Google
Cloud Spanner Emulator (Nov 2020),” https://medium.com/google-
cloud/testing-a-spring-boot-application-with-the-google-cloud-
spanner-emulator-3c4d5d6b52fb

[7] “Cloud Spanner Emulator (Apr 2020),”
https://opensource.googleblog.com/2020/04/cloud-spanner-
emulator.html

http://www.ijsrem.com/
https://testing.googleblog.com/2013/07/testing-on-toilet-know-your-test-doubles.html
https://testing.googleblog.com/2013/07/testing-on-toilet-know-your-test-doubles.html
https://testing.googleblog.com/2013/05/testing-on-toilet-dont-overuse-mocks.html
https://testing.googleblog.com/2013/05/testing-on-toilet-dont-overuse-mocks.html
https://ldej.nl/post/cloud-spanner-testing-in-go
https://pkg.go.dev/cloud.google.com/go/spanner/spannertest
https://github.com/GoogleCloudPlatform/cloud-spanner-emulator
https://medium.com/google-cloud/testing-a-spring-boot-application-with-the-google-cloud-spanner-emulator-3c4d5d6b52fb
https://medium.com/google-cloud/testing-a-spring-boot-application-with-the-google-cloud-spanner-emulator-3c4d5d6b52fb
https://medium.com/google-cloud/testing-a-spring-boot-application-with-the-google-cloud-spanner-emulator-3c4d5d6b52fb
https://opensource.googleblog.com/2020/04/cloud-spanner-emulator.html
https://opensource.googleblog.com/2020/04/cloud-spanner-emulator.html

