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Abstract— Deep Machine Learning (DML) algorithms have 

proven to be highly successful at challenging, high-dimensional 

learning problems, but their widespread deployment is limited by 

their heavy computational requirements and the associated 

power consumption. Analog computational circuits offer the 

potential for large improvements in power efficiency, but noise, 

mismatch, and other effects cause deviations from ideal 

computations. In this paper we describe circuits useful for DML 

algorithms, including a tunable-width bump circuit and a 

configurable distance calculator. We also discuss the impacts of 

computational errors on learning performance. Finally we will 

describe a complete deep learning engine implemented using 

current-mode analog circuits and compare its performance to 

digital equivalents. 
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I. INTRODUCTION 

The proliferation of various types sensors in recent years, 
ranging from camera phones and traffic cameras to implanted 
medical monitoring devices, has generated vast quantities of 
data. The high dimensionality of the raw data makes 
processing and transmission very costly in terms of 
computational resources and, ultimately, power. Deep Machine 
Learning (DML), insired by the structure of mammalian 
cortex, has recently emerged as a promising approach to 
extract meaningful features from high-dimensional data [1]. 

DML algorithms are highly parallel and computationally 
intensive, restricting their use to resource-rich platforms such 
as grid-connected clusters. Analog computation offers an 
avenue to reduce the power consumption of DML systems and 
expand their use to a wide variety of mobile and implanted 
sensing platforms. In this paper, we describe micro-power 
analog circuits for computing distance, one of the key 
operations in DML algorithms. We also describe a modeling 
approach to account for analog error sources and a system 
implementation of a complete analog DML engine. 

II. DISTANCE COMPUTATION 

The calculation of the distance between two vectors, or 
equivalently, their similarity, is one of the critical operations 
common to many machine learning tasks. Distance 
measurement formalizes the notion of similarity so that 
observations may be grouped or classified. While there are 
many metrics that can be used to evaluate similarity in learning 
tasks, two of the most popular classes of distances are those 
based on probability distributions, such as a Gaussian kernel, 

 
 

Fig. 1. Schematic of the proposed tunable bump circuit. 

 

and those based on p-norms [2], such as the Euclidean 
distance. In this section we will discuss examples of these two 
classes of distance measurements and analog CMOS circuit 
implementations. 

A. Bump Circuits 

Statistical learning techniques often rely on maximizing the 
likelihood of an observation given a class assignment and must 
therefore find the likelihood that an observation could have 
been drawn from a random distribution centered at a location 
corresponding to a class prototype or template. This likelihood 
corresponds to a Gaussian kernel as a distance if one assumes 
that the underlying probability distribution is Gaussian. The 
“bump circuit” [3] is a well-known circuit that computes a 
similarity between two inputs with a function similar to a 
Gaussian distribution. The most basic implementation of the 
bump circuit includes a differential pair and a current 
correlator. The circuit shown in Fig. 1 [4] extends the concept 
of the original bump circuit by allowing the width of the output 
curve to be adjusted, as shown in Fig. 2. The height of the 
curve can also be independently adjusted by changing the bias 
current. This feature allows statistical inference systems built 
using the circuit to incorporate variance information into 
statistical calculations. 

B. Euclidean and Related Distances 

The Euclidean distance dE is another popular distance. 
 

 

dE  = JΣ(xi — yi)2 

i 

Related distances include the Manhattan distance dMan and the 
Mahalanobis distance dMah. 

 

dMan  = JΣ|xi — yi| 

i 
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Fig. 2. The effect of shifting one input and the width-tuning current. 

 

 
Fig. 4. Error model of the configurable distance calculator. Mean and 

variance are stored in floating-gate memories (FGM). 
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Figure 3 illustrates an analog arithmetic element (AAE) [5], 
a circuit that computes all three of these distances using 
configurable current-mode circuits. The AAE comprises an 
absolute value circuit and an x

2
/y circuit. The absolute value 

circuit utilizes an amplifier that senses the polarity of the input 
current to provide a sign output and selectively route negative 
currents through a current mirror, inverting their sign. It also 
acts as a feedback amplifier with M1/M2, synthesizing a low- 
impedance input to reduce the settling time relative to a simple 
current-mirror input. When the Manhattan distance is desired, 
the output is taken directly from the absolute value circuit and 
aggregated across dimensions. 

The x
2
/y block squares the absolute distance (x) and divides 

by the variance (y) resulting in the Mahalanobis distance. 
When a Euclidean distance is desired, the y input is connected 

Fig. 3. (a) Schematic of the absolute value and x2/y circuits. (b) The 

effect of shifting one input (left) and the width-tuning current (right). 

 

   

to a constant unit current. The block operates on the translinear 
principle, equating the sum of VGS5 and VGS6 with the sum of 
VGS7 and VGS8, which results in the equality of the current 
products ID5ID6 and ID7ID8 when the transistors are biased in 
weak inversion. The output can then be expressed as 

 
 d = ƒ(x — y)TS–1(x — y)  = Σ 

(xi — yi)2 
 

 

ID8=ID5ID6/ID7. 

Mah J 2 

i i 

The Manhattan distance is a computationally simple 
distance that is also proportional to the required update 
magnitude in online mean estimation. In the Mahalanobis 
distance formulation S

-1
 is the inverse of the covariance matrix 

of the underlying multidimensional distribution and the 
approximation holds if S is diagonal, which is true when 
correlations between dimensions are negligible. As with the 
adjustable-width bump, the Mahalanobis distance provides the 
capability to incorporate variance information into statistical 
calculations. All of these distances share the property that 
multi-dimensional distances can be computed on a per- 
dimension basis and then aggregated across dimensions 
through simple summation. 

III. ERROR SENSITIVITY 

Analog computational circuits achieve excellent energy 
efficiency by exploiting the computation intrinsic to the 
physical operation of transistors and utilizing the continuous 
range of signal levels in a voltage or current. These same 
properties also make analog circuits susceptible to error 
sources, such as noise and mismatch. Fortunately, machine 
learning algorithms are robust to many error sources due to 
feedback intrinsic to the algorithms. In order to avoid 
degrading system accuracy with excessive computational 
errors while also minimizing power consumption, system-level 
simulations can be carried out to determine the effect of circuit- 
level errors on system-level performance [6]. 
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The first step in performing such a system-level evaluation 
is the construction of an error model. An error model of the 
configurable distance circuits (Fig. 3(a)) is shown in Fig. 4. 
Gain errors are injected into the computation after several key 
blocks. G1 models the error in copying the input current to 
different units, which results from threshold variations in the 
input current mirrors. Similarly, the absolute value circuit 
contributes a gain error G2 when it reverses the polarity for the 
signal using a current mirror, but not when it simply routes the 
input signal to the output. G3 and G4 model variation in the y 
input and output transistor of the x

2
/y circuit (M8 in Fig. 3(a)). 

G5 models the variation in the circuitry used to convey the 
single-dimension Manhattan distance to the update circuitry. 

There can also be errors in the parameter update 
mechanisms. The update rate can vary in magnitude, causing 
some elements to update slower or faster than intended, or 
exhibit asymmetry, where increments and decrements differ in 
magnitude. Asymmetry will cause the learned centroid to move 
away from the true mean, such that the weaker update occurs 
more often, until the sum of the increments and decrements are 
equal and equilibrium is achieved. 

Fig. 5 shows the impact of these errors, as measured by 
mean absolute error (MAE) with respect to an ideal clustering 
process. The system is particularly robust to errors in the 
update mechanism. Input errors simply shift patterns in the 
input space without reducing their separability and are thus 
also well tolerated. Because errors in the distance calculation 
can result in the incorrect cluster being chosen they are 
somewhat more harmful. However, none of the deterministic 
error sources contribute to noticeable performance degradation 
when their standard deviation is less than 10% of the full-scale 
range, indicating that only around 3.3 bits of matching is 
required. Therefore, device sizes were chosen to keep variation 
within 10%. The most destructive artifact by far was noise, 
which begain to degrade performance with an RMS value of 
about 1% of full scale. 

IV. COMPLETE LEARNING SYSTEM 

In this section, we describe an example of a complete 

learning system implemented in an analog CMOS IC, first 

described in [5]. The chip implements the Deep 

Spatiotemporal Inference Network (DeSTIN) architecture [1]. 

The core computation is performed by the AAE described in 

II-B with parameters stored in non-volatile floating-gate 

memories (FGM)[7]. 

A. Architecture & Circuit Design 

Seven identical nodes form a 4-2-1 hierarchy. Each node 
captures structure in its inputs through a clustering process and 
constructs belief states about the current input, which it passes 
up to the layer above. The bottom layer acts on raw data (e.g. 
pixels of an image) and the information becomes increasingly 
abstract as it moves up through the hierarchy. The beliefs 
formed at the top layer are then used as rich features for 
classification. 

The node learns through an online k-means clustering 
algorithm [8]. Each recognized cluster is represented with a 
centroid, characterized by estimated mean μi and variance σ 2 

 

 

 
Fig. 5. Accuracy, expressed in Mean Average Error (MAE) with respect  

to an ideal clustering algorithm, versus level of error (σ). 

 

 

Fig. 6. Block diagram of a single node of the ADE. 

 

for each dimension. The node, shown in Figure 6, incorporates 
an 8×4 array of reconfigurable analog computation cells 
(RAC), grouped into 4 centroids, each with 8-dimensional 
input. 

A training cycle begins with the classification phase, in 
which an input vector is assigned to the nearest centroid. The 
RACs calculate the 1-D Euclidean distance Dij

EUC
 between the 

i
th

 elements of the j
th

 centroid mean and the input oi, which are 
then wire-summed in current form to yield the total Euclidean 
distances between the observation and each centroid. The 
nearest centroid is then selected and its mean and variance 
estimates are updated to calculate an exponential moving 
average estimate of the cluster mean and variance. The RAC 
then incorporates the centroids’ variances to compute the 
Mahalanobis distance and its inverse, which is the belief 
passed to the next layer in the hierarchy. 

The Reconfigurable Analog Computation cell (RAC) 
comprising the AAE and two floating-gate memories performs 
the core distance calculations. The Distance Processing Unit 
(DPU) shown in Fig. 7 performs inverse normalization and a 
winner-take-all operation on the combined distance outputs 
from the four centroids. The inverse is calculated by fixing the 
sum of gate-source voltages corresponding to the input and 
output so that the output current varies inversely with the input 
current. The sum across centroids of the inverted distance 
currents is constrained to a constant INorm so that the inverse 
distances act as a valid probability mass function. The DPU 
also implements the starvation trace [8], which allows poorly 
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bitmaps corrupted by random errors. A moving 8×4 window 

selects the 32 inputs. The ADE is first trained on unlabeled 

patterns. After training, adaptation can be disabled and the 

circuit operates in recognition mode. The 4 belief states from 

the top layer are used as features, reducing dimensionality 

from 32 to 4. A software neural network then classifies the 

four-element patterns. Three chips were tested and average 

recognition accuracy was comparable to the floating-point 

software baseline, as shown in Figure 8(d), demonstrating 

robustness to the non-idealities of analog computation. 

The ADE achieves an energy efficiency of 480 GOPS/W 

in training mode and 1.04 TOPS/W in recognition mode. A 

digital equivalent of the ADE was implemented in the same 

process using logic synthesized from standard cells. The 
Fig. 7. Schematic of one channel of the distance processing unit, which 
inverts and normalizes the distance before selecting the nearest centroid. 
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required resolution was determined through behavioral digital 

simulations to be 8-bit data-path resolution and 12-bit memory 

width. According to post-layout power estimation, this digital 

equivalent running at 2 MHz in training mode consumes 

3.46 W, yielding an energy efficiency of 1.66 GOPS/W, 288 

times lower than this analog implementation. 

V. CONCLUSION 
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