
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6802 | Page 1

The Future of Automation Testing: From SDET to Autonomous Testing

Author: Swetha Sistla | Tech Evangelist | pcswethasistla@outlook.com

Abstract

Automation testing has rapidly evolved from traditional manual methods to sophisticated AI-driven autonomous

testing frameworks. In this paper, we have discussed the evolution of the automation testing role and, in particular, the

transition from the SDET, Software Development Engineer in Test, to a fully autonomous testing solution. We look at a

set of emerging technologies-artificial intelligence, machine learning, and advanced analytics-enabling the creation of

self-healing test scripts, predictive analysis, and real-time feedback loops. Autonomous testing promises not just

efficiency but also a more adaptive response to software changes with minimum human intervention as organizations

try to move toward quicker release cycles with higher resilience. The emphasis of this paper is on the skills SDETs will

require in this new landscape, the technological drive for autonomous testing, and what all this means for the future

of quality assurance. We aspire to present insights into how autonomous testing can help improve productivity and

cost reduction, thereby improving software reliability and setting milestones in automation for software development.

Keywords

Automation Testing, Autonomous Testing, SDET (Software Development Engineer in Test), AI in Testing, Machine

Learning in Testing, Natural Language Processing (NLP) in Testing.

Introduction

Software testing has undergone a sea change in the last

two decades-from manual testing practices to a highly

automated software testing process. In fact, testing was

actually a manual and repetitive process that

essentially concentrated on the validation of the

particular functionality. Therefore, with the

advancement in technology, automation testing has

come up as a strong tool for accelerating the testing

process and minimizing human error while increasing

the rates of coverage and efficiency. That led to the

development of the SDET role, which merged software

engineering skills with testing acumen in the design,

construction, and maintenance of automated test

scripts and frameworks. Hence, the SDETs helped

organizations shift testing earlier in the development

lifecycle, thus allowing for quicker feedback and

enabling Agile and DevOps practices.

Autonomous testing is the next generation for testing

automation in light of emerging AI, machine learning,

and big data analytics today.

Unlike traditional automation testing, which still

requires manual involvement in maintaining scripts,

generating test cases, and fixing problems,

autonomous testing would drive innovation in making

testing systems work themselves with minimum human

intervention. These systems use AI and machine

learning to adapt to code changes dynamically,

generate and execute tests, and provide predictive

insights, all to further drive testing toward autonomy.

This paper discusses the paradigm shift from SDET-

driven automation to autonomous testing: what drives

the technological advances enabling this shift and what

these changes portend for the role of testers, quality

assurance practices, and the wider landscape of

software development. We then explore the

implications for SDETs charged with designing

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6802 | Page 2

automation frameworks and embedding within them

intelligence capable of self-healing, adaptive learning,

and decision-making. With Automation testing, the

future will be much quicker, correct, and resilient. It

also requires a new kind of skillset and mindset,

managing and overseeing autonomous solutions.

However, as demand for shorter release cycles and

seamless user experiences rises, the shift toward

autonomous testing may be just one of those seminal

moments in software quality assurance that indeed

enables companies to release much more reliable

software at unprecedented velocities. The intent of this

paper is to point out the current status, challenges, and

potentials of autonomous testing; based on this, it

gives a roadmap for organizations and professionals in

testing so they can successfully make the transition and

capitalize on the opportunities.

Automated testing has seen its evolution over these

years; from scripted tests to most advanced

frameworks, using artificial intelligence and machine

learning. These initially were targeted at reducing work

by creating script-based repetitive scenarios of testing.

Then came growth in such frameworks like Selenium

and JUnit, which provided options for extendable

testing. As time progressed, software systems evolved

and grew more complex, increasing the demand for

such systems with respect to integration and delivery

pipelines or, in other words, Continuous

Integration/Continuous Deployment. These pipelines

have integrated testing as part of ensuring speed in

deployment while the quality standards are high.

Automation testing has gone from traditional

techniques to advanced ones where the use of AI and

ML is involved, making self-healing scripts that adjust

automatically to changing interfaces, while predictive

analytics find out areas of potential failure before it

actually happens. It points to more intelligent features

being required within dealing with the dynamic nature

of modern software applications.

1. Importance of Transitioning from SDET to

Autonomous Testing

The SDET role came in handy to bridge the gap between

development and testing by applying software

engineering principles to test automation. However,

with methodologies in software development evolving

to agile and DevOps, obvious inefficiencies from

human-driven testing processes came into play.

Autonomous testing represents the next frontier in this

direction, where AI-driven systems will independently

design, execute, and analyze tests without human

intervention.

Transitioning to autonomous testing is fundamental for

several reasons: first, it grants much higher test

coverage, reaching scenarios that no manual or semi-

automated process could ever dream of; second, it

reduces the time and cost needed for test script

maintenance as applications keep evolving. Equipped

with AI, an autonomous testing system learns from past

data to continuously improve its accuracy and

efficiency over time, turning into an essential element

of rapid deployment cycles.

2. Background

A Software Development Engineer in Test (SDET) is a

specialized role that merges the disciplines of software

development and quality assurance. SDETs are

responsible for designing, developing, and maintaining

automated testing frameworks and tools that ensure

the robustness, performance, and security of software

applications. Unlike traditional testers who primarily

focus on manual testing, SDETs leverage their

programming skills to build scalable and efficient

automated tests integrated into the software

development lifecycle (SDLC). This role is particularly

crucial in agile and DevOps environments, where

continuous integration and continuous delivery (CI/CD)

pipelines demand rapid feedback on code quality.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6802 | Page 3

2.1 Historical Context

Automation testing has come away from its very

beginnings, moving from the stages of testing to

advanced automated frameworks that have become

crucial in the software development landscape today.

During the stages of automation testing, it was all about

minimizing tasks at the level of manual testing through

basic scripts automating certain test scenarios.

Groundbreaking tools like WinRunner and Loadrunner

from Mercury Interactive introduced offerings that

provided automated performance testing functions.

These tools enabled testers to record user actions in

applications and play them back to validate that the

system acted accordingly. As the methodologies of

software development changed in the 2000s, the

deficiencies of early automation tools started to

appear.

The nature of development includes cycles and

frequent code updates, which proves to be challenging

when dealing with scripted tests. This called for the

invention of such automation frameworks like

Selenium, launched in 2004, and JUnit, launched in

1997. These frameworks could be used by testers in

order to create test scripts in the programming

languages that would make their integration into

continuous deployment and integration pipelines

easier: Java, Python, or C#. This move toward open-

source tools democratized access to automation

technologies and allowed many more organizations to

start automating their testing processes.

2.2 Challenges Faced by Traditional Automation

Testing

Despite these benefits, there are a number of

challenges regarding classic automation testing.

Probably the most important among these issues is test

script maintenance throughout the evolution of an

application. The maintenance for large suites of

automated tests becomes expensive and error-prone in

dynamic environments where user interfaces

frequently change or new features are added regularly.

It was this very challenge that gave rise to self-healing

test scripts powered by AI algorithms, capable of

automatically adapting to changes in the application

under test.

Other challenges include full test coverage across a

variety of platforms and devices. Whereas a few years

ago it was sufficient to check compatibility with a

handful of browsers and versions, more recently the

proliferation of mobile devices and browsers in use has

meant that it is much more difficult to ensure an

application will work across all configurations.

Solutions have emerged in the forms of cross-browser

testing tools like BrowserStack, allowing one to execute

their scripts in various browser-device combinations in

the cloud.

3. Shift Towards Autonomous Testing

This would mean enabling the process of AI and ML

technologies in an automated continuum for the whole

software testing life cycle, which pertains to the

generation of test cases through to the execution and

analysis of such tests with minimal or no human

intervention. Unlike traditional automation, where

human testers or SDETs are required to design and

maintain the test scripts, autonomous testing systems

can learn by themselves from historical data, adapt

themselves toward changes of the app under test, and

even self-heal when failures happen. In a nutshell, the

primary purpose of autonomous testing is to minimize

the manual effort in the maintenance of test suites

without any compromise on improvement in test

coverage or accuracy.

These test systems make use of AI algorithms so as to

create test cases dynamically based on user behavioral

patterns or changes made in an application. Predictive

analytics will further be able to highlight areas that are

likely to fail, meaning these systems do not have to

depend on any kind of predefined test case to

concentrate resources on high-risk areas. Even more

exciting are a set of self-healing capabilities that are

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6802 | Page 4

being integrated into generating autonomous testing

tools themselves, which update or fix test scripts

automatically when changes happen at the user

interface level of the application or at its core

architecture. This amount of flexibility in testing makes

test automation especially prized in agile and DevOps

environments, which consists of relentless code

changes, rapid releases.

3.1 Difference between SDET & Autonomous Testing

What follows are some of the major responsibilities

that distinguish an SDET from a testing system:

responsibilities include writing of code to automate

frequent test procedures through the creation and

maintenance of automated test frameworks. They also

work in collaboration with developers to ensure the

integration of automated tests into the software

development life cycle. While SDETs in test use their

programming skills to develop flexible testing

frameworks, they also depend on manual support in

activities that range from modifying scripts as software

evolves to debugging test failures. In contrast,

autonomous testing systems apply AI and machine

learning algorithms to automate many of these tasks

efficiently, aiming to cut down some of the manual

labor that comes with traditional automation.

These would, in turn, be able to produce tests of their

own for changes in applications or user interactions, fix

broken tests with no input, and grade test results by

themselves. This shift reduces the need for script

maintenance and lets enterprises scale their testing

efforts with unprecedented efficiency. SDETs play a

major role in developing and maintaining automation

frameworks; this can be somewhat lighter by the use of

autonomous testing systems, which can automate

most of the tasks associated with this.

4. Technologies Enabling Autonomous Testing

4.1 Artificial Intelligence (AI) and Machine Learning

(ML) in Testing

Consequently, AI and ML have become key building-

block technologies to enable autonomous testing.

These technologies will afford these test systems the

capability to learn from historical data, predict the most

probable areas of failure, and adapt to changes in the

application under test with no human intervention. AI-

powered test automation uses machine learning

algorithms to achieve automatic generation of test

cases, identification of high-risk areas in the code, and

optimization of the test suite for execution based on

previous outcomes. For example, reinforcement

learning can be used to dynamically adjust testing

strategies based on previously accomplished test

outcomes and, therefore, enhance the efficiency and

effectiveness of testing processes.

The most significant contribution that AI has been able

to make to testing so far is the development of self-

healing test scripts. Traditional automated tests, when

minor changes have been made either in the UI or in

the underlying architecture of an application, often

tend to fail. An AI-based self-healing mechanism will

automatically find such changes and thus update the

test script for it, reducing manual intervention, hence

keeping tests functional as the application evolves. It is

a high level of adaptability that proves quite valuable in

Agile and DevOps environments where updates might

be very frequent.

Predictive analytics through AI are also used in testing,

wherein historical data of previous runs of tests are

analyzed by AI algorithms to predict areas of an

application that are most likely to fail. The effort of

testers thus focuses on such high-risk areas. This not

only enhances test coverage but reduces time taken to

discover critical defects.

4.2 Natural Language Processing (NLP) for Test Case

Generation

It is with NLP that this automation and improvement in

the process of deriving test scenarios from textual

requirements found its place in software testing. NLP

plays an important role in the interpretation of

requirements, user stories, or other natural language

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6802 | Page 5

input for automatic generation, optimization, and

maintenance of test cases. This would allow the NLP

algorithm to parse the requirements in looking at

nominal actions, entities, and their relationships to

perform preliminary test cases that map to functional

specifications. The other advantages of NLP are that it

enhances test coverage by supporting automatic

generation of valid test data, automatic detection of

duplicate or redundant test cases, and simplifies test

scenario prioritization based on requirements change.

With NLP, test case creation is going to be much faster,

less prone to human error, and closer to the business

objectives. This method also aligns an increase in

efficiency and effectiveness of testing processes with

the agile and continuous integration cycles of modern

software developments.

4.3 Cloud Computing & Its Impact on Testing

Environments

Cloud computing is one of the major shifts that have

happened regarding software testing, by providing

scalable infrastructure for running automated tests on

multi-platforms and devices. This allows organizations

to run tests parallel on different operating systems,

browsers, and devices without maintaining physical

hardware. This scalability becomes even more critical

for large-scale applications, which need to be tested on

a wide range of configurations.

The most significant advantage of performing tests on

the cloud is that it will support pipelines of Continuous

Integration and Delivery. It is with the integration of

cloud test platforms in the workflow of Continuous

Integration and Continuous Delivery that allows

organizations to run automated tests as a part of their

development process, by automating the processes. It

also provides early detection of defects at an early

stage of the development cycle. Cloud platforms also

facilitate on-demand access to virtual machines or even

containers where the execution of tests can be carried

out in isolated environments.

Cloud-based testing also faces its challenges in terms of

security and data privacy. Since the test data will be

stored and processed in remote servers managed by

third-party providers, appropriate security to sensitive

information during testing is required by the

organization. Additionally, network latency or down-

time issues may affect the performance of the cloud-

based tests not properly managed.

5. Challenges

Automated testing also brings organizational

challenges that need to be overcome. In this respect,

one big challenge is the integration of AI and ML

algorithms into today's testing structures. For many

companies, their systems simply cannot handle the

computational requirements for AI-powered tools.

Also, developing models of AI requires huge amounts

of high-quality data. Data from certain sectors, which

isn't available all the time and is a bit difficult to collect;

ensuring the accuracy of the data, as the trained

models may lead to test results that would decrease

the dependability of the whole testing process.

Ensuring that self-sustaining test systems can handle

real-world scenarios presents a technical challenge.

Whereas AI-driven tools proved to be surprisingly good

at automating tasks, they usually struggle with

situations or unexpected actions where human

judgment and discretion are required. For example, in

verticals like healthcare or finance, where software is

supposed to support certain compliance, automated

testing tools should give more than functional defects;

they must also report non-conformities.

One of the biggest challenges would be to do with

resistance to change within an organization. Numerous

teams are used to attempting methodologies where

either testers or SDETs spearhead test design and

execution. To make this shift into the world of testing,

companies have to not only change but also train their

staff to work with AI-powered tools and not just bank

on manual ways of working. Also, the companies need

to invest in infrastructure and testing tools, which may

involve huge costs and consumption of time.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6802 | Page 6

6. Future Trends
While AI and ML are going through continuous

development phases, their applications toward

autonomous testing will also increase. One of the

promising trends in this direction is the application of

reinforcement learning to enhance the strategy of test

case generation and execution. Reinforcement learning

will enable AI systems to learn from their interaction

with software applications and fine-tune their behavior

at every point in time through feedback provided from

previous test runs. This kind of approach is very useful

when it comes to finding those edge cases that might

not come out with traditional test cases.

However, with more AI-driven testing, the ethical

considerations have to be brought into view. One big

concern is the possibility of biased models of AI being

used for testing. If an AI system is trained on biased

information, it could fail to detect defects in particular

portions of an application or favor certain types of tests

over others. Also, there is an issue of accountability: if

an autonomous system fails in finding a critical defect

or makes a wrong decision in testing, who is to blame?

Such ethical issues will have to be taken into

consideration with the help of careful design and

oversight of the AI-driven systems.

Conclusion

The movement from SDET to autonomous testing is

actually a transformational transition within the

software testing world. As the automation technologies

evolved, so did the capability of the testing systems-

from human-driven automation to self-sustaining AI-

powered solutions. In that direction, autonomous

testing promises great efficiency, precision, and

adaptability by minimizing manual intervention,

speeding up feedback loops, and ensuring better

quality of software.

In fact, this is being driven by the inclusion of advanced

technologies such as AI, machine learning, and deep

analytics, making the testing systems intelligent

enough to create test cases, conduct those tests, and

even evolve those tests in response to changes to the

codebase or requirements. While SDETs will be there

for designing, implementing, and managing the

automation framework, the future is about more

integration and oversight of intelligent autonomous

systems learning from past tests through self-healing

and optimization of their processes.

Automation testing is the future for all cost-cutting,

speedy release cycles, and building software

application resilience. But this transition opens up

challenges: the need to reskill testers to manage and

monitor autonomous systems. Embracing such changes

will let organizations unleash the real power of

automation, delivering quality software at unmatched

speed and ensuring that the role of assurance keeps

pace with the technologies.

Looking to the future, autonomous testing will be one

of the major drivers for the future of software

development: a place where intelligent systems,

together with human oversight, ensure that reliable,

innovative, user-centric software solutions are

delivered.

Reference

1. V. Lenarduzzi and A. Panichella, “Serverless Testing:

Tool Vendors’ and Experts’ Point of View,” IEEE

Software, 2020 –

[https://api.semanticscholar.org/CorpusID:26786643

6]

2. X. Zhang, Y. Cai, and Z. Yang, “A Study on Testing

Autonomous Driving Systems,” in 2020 IEEE 20th

International Conference on Software Quality,

Reliability and Security Companion (QRS-C), IEEE, Dec.

2020, pp. 241–244. doi: 10.1109/QRS-

C51114.2020.00048

3. L. Gota, D. I. Goța, and L. C. Miclea, “Continuous

Integration in Automation Testing,” 2020 IEEE

International Conference on Automation, Quality and

Testing, Robotics (AQTR), pp. 1–6, 2020 –

[https://api.semanticscholar.org/CorpusID:22031383

4]

http://www.ijsrem.com/
https://api.semanticscholar.org/CorpusID:267866436
https://api.semanticscholar.org/CorpusID:267866436
https://api.semanticscholar.org/CorpusID:220313834
https://api.semanticscholar.org/CorpusID:220313834

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 02 | Feb - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM6802 | Page 7

4. D. Petrova-Antonova, D. Manova, and S. Ilieva,

“Testing Web Service Compositions: Approaches,

Methodology and Automation,” Advances in Science,

Technology and Engineering Systems Journal, vol. 5,

pp. 159–168, 2020 –

[https://api.semanticscholar.org/CorpusID:21357496

4]

5. R. K. L. Ko, “Cyber Autonomy: Automating the Hacker-

Self-healing, self-adaptive, automatic cyber defense

systems and their impact to the industry, society and

national security,” Dec. 2020 –

[https://arxiv.org/abs/2012.04405]

6. M. N. Islam and S. M. K. Quadri, “Framework for

Automation of Cloud-Application Testing using

Selenium (FACTS),” Advances in Science, Technology

and Engineering Systems Journal, vol. 5, pp. 226–232,

2020 –

[https://api.semanticscholar.org/CorpusID:21350993

3]

7. “ACHIEVE COMPLETE AUTOMATION WITH ARTIFICIAL

INTELLIGENCE AND MACHINE LEARNING,” 2020 –

[https://api.semanticscholar.org/CorpusID:24725594

7]

8. D. P. Nguyen and S. Maag, “Codeless Web Testing

using Selenium and Machine Learning,” in

International Conference on Software and Data

Technologies, 2020 –

[https://api.semanticscholar.org/CorpusID:22084763

9]

9. M. Iot, “Microservices Iot And Azure Leveraging

Devops And Microservice Architecture To Deliver Saas

Solutions,” 2020. –

[https://api.semanticscholar.org/CorpusID:11424363

6]

10. T. Pham, N. Nguyen, T. Dang, L. Nguyen, and B. T.

Nguyen, “ATGW: A Machine Learning Framework for

Automation Testing in Game Woody,” in New Trends

in Software Methodologies, Tools and Techniques,

2020 –

[https://api.semanticscholar.org/CorpusID:23478572

9]

11. E. Nascimento, A. Nguyen-Duc, I. Sundbø, and T.

Conte, “Software engineering for artificial intelligence

and machine learning software: A systematic

literature review.” 2020 –

[https://arxiv.org/abs/2011.03751]

12. J. B. L. Filipe, A. Ghosh, R. O. Prates, O. Shehory, E.

Farchi, and G. Barash, “Engineering Dependable and

Secure Machine Learning Systems: Third International

Workshop, EDSMLS 2020, New York City, NY, USA,

February 7, 2020, Revised Selected Papers,”

Engineering Dependable and Secure Machine

Learning Systems, 2020 -

https://api.semanticscholar.org/CorpusID:22626527

5

13. M. I. Pereira and A. M. Pinto, “A Machine Learning

Approach for Predicting Docking-Based Structures,”

2020.-

[https://api.semanticscholar.org/CorpusID:23329510

6]

14. M. Wilms et al., “Machine Learning in Clinical

Neuroimaging and Radiogenomics in Neuro-

oncology: Third International Workshop, MLCN 2020,

and Second International Workshop, RNO-AI 2020,

Held in Conjunction with MICCAI 2020, Lima, Peru,

October 4–8, 2020, Proceedings,” Machine Learning

in Clinical Neuroimaging and Radiogenomics in

Neuro-oncology, 2020-

[https://api.semanticscholar.org/CorpusID:22972374

5]

15. T. Chiou, “Copyright lessons on Machine Learning:

what impact on algorithmic art?,” 2020 –

[https://api.semanticscholar.org/CorpusID:21584876

0]

http://www.ijsrem.com/
https://api.semanticscholar.org/CorpusID:213574964
https://api.semanticscholar.org/CorpusID:213574964
https://arxiv.org/abs/2012.04405
https://api.semanticscholar.org/CorpusID:213509933
https://api.semanticscholar.org/CorpusID:213509933
https://api.semanticscholar.org/CorpusID:247255947
https://api.semanticscholar.org/CorpusID:247255947
https://api.semanticscholar.org/CorpusID:220847639
https://api.semanticscholar.org/CorpusID:220847639
https://api.semanticscholar.org/CorpusID:114243636
https://api.semanticscholar.org/CorpusID:114243636
https://api.semanticscholar.org/CorpusID:234785729
https://api.semanticscholar.org/CorpusID:234785729
https://arxiv.org/abs/2011.03751
https://api.semanticscholar.org/CorpusID:226265275
https://api.semanticscholar.org/CorpusID:226265275
https://api.semanticscholar.org/CorpusID:233295106
https://api.semanticscholar.org/CorpusID:233295106
https://api.semanticscholar.org/CorpusID:229723745
https://api.semanticscholar.org/CorpusID:229723745
https://api.semanticscholar.org/CorpusID:215848760
https://api.semanticscholar.org/CorpusID:215848760

